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solutions	to	b)	exercises	and	even-numbered	problems	(instructor)	answers	to	a)	exercises	and	odd-numbered	problems	(student)	PHYSICAL	CHEMISTRY	Thermodynamics,	Structure,	and	Change	Tenth	Edition	Peter	Atkins	|	Julio	de	Paula	Foundations	A	Matter	Answers	to	discussion	questions	A.2	Metals	conduct	electricity,	have	luster,	and	they	are
malleable	and	ductile.	Nonmetals	do	not	conduct	electricity	and	are	neither	malleable	nor	ductile.	Metalloids	typically	have	the	appearance	of	metals	but	behave	chemically	like	a	nonmetal.	1	IA	1	H	1.008	3	Li	6.941	11	Na	22.99	19	K	39.10	37	Rb	85.47	55	Cs	132.9	87	Fr	(223)	2	IIA	3	IIIB	4	IVB	5	VB	6	VIB	7	VIIB	8	9	10	VIIIB	VIIIB	VIIIB	11	IB	12	IIB	13
IIIA	14	IVA	15	VA	16	VIA	17	VIIA	5	B	10.81	13	Al	26.98	31	Ga	69.72	49	In	114.8	81	Tl	204.4	6	C	12.01	14	Si	28.09	32	Ge	72.59	50	Sn	118.7	82	Pb	207.2	7	N	14.01	15	P	30.97	33	As	74.92	51	Sb	121.8	83	Bi	209.0	8	O	16.00	16	S	32.07	34	Se	78.96	52	Te	127.6	84	Po	(209)	9	F	19.00	17	Cl	35.45	35	Br	79.90	53	I	126.9	85	At	(210)	13	IIIA	14	IVA	15	VA	16
VIA	17	VIIA	5	B	10.81	13	Al	26.98	31	Ga	69.72	49	In	114.8	81	6	C	12.01	14	Si	28.09	32	Ge	72.59	50	Sn	118.7	82	7	N	14.01	15	P	30.97	33	As	74.92	51	Sb	121.8	83	8	O	16.00	16	S	32.07	34	Se	78.96	52	Te	127.6	84	9	F	19.00	17	Cl	35.45	35	Br	79.90	53	I	126.9	85	Periodic	Table	of	the	Elements	4	Be	9.012	12	Mg	24.31	20	Ca	40.08	38	Sr	87.62	56	Ba
137.3	88	Ra	226	21	Sc	44.96	39	Y	88.91	57	La	138.9	89	Ac	(227)	22	Ti	47.88	40	Zr	91.22	72	Hf	178.5	23	V	50.94	41	Nb	92.91	73	Ta	180.9	24	Cr	52.00	42	Mo	95.94	74	W	183.9	25	Mn	54.94	43	Tc	(98)	75	Re	186.2	26	Fe	55.85	44	Ru	101.1	76	Os	190.2	27	Co	58.93	45	Rh	102.9	77	Ir	192.2	58	Ce	140.1	90	Th	232.0	59	Pr	140.9	91	Pa	(231)	60	Nd	144.2
92	U	238.0	61	Pm	145	93	Np	237	62	Sm	150.4	94	Pu	(244)	28	Ni	58.69	46	Pd	106.4	78	Pt	195.1	63	Eu	152.0	95	Am	(243)	29	Cu	63.55	47	Ag	107.9	79	Au	197.0	64	Gd	157.3	96	Cm	(247)	30	Zn	65.38	48	Cd	112.4	80	Hg	200.6	65	Tb	158.9	97	Bk	(247)	18	VIIIA	2	He	4.003	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.3	86	Rn	(222)	66	Dy	162.5	98	Cf
(251)	Transition	metals	Lanthanoids	Actinoids	1	IA	1	H	1.008	3	Li	6.941	11	Na	22.99	19	K	39.10	37	Rb	85.47	55	2	IIA	3	IIIB	4	IVB	5	VB	6	VIB	7	VIIB	8	9	10	VIIIB	VIIIB	VIIIB	11	IB	12	IIB	Periodic	Table	of	the	Elements	4	Be	9.012	12	Mg	24.31	20	Ca	40.08	38	Sr	87.62	56	21	Sc	44.96	39	Y	88.91	57	22	Ti	47.88	40	Zr	91.22	72	23	V	50.94	41	Nb	92.91	73
24	Cr	52.00	42	Mo	95.94	74	25	Mn	54.94	43	Tc	(98)	75	26	Fe	55.85	44	Ru	101.1	76	27	Co	58.93	45	Rh	102.9	77	28	Ni	58.69	46	Pd	106.4	78	29	Cu	63.55	47	Ag	107.9	79	30	Zn	65.38	48	Cd	112.4	80	18	VIIIA	2	He	4.003	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.3	86	Cs	132.9	87	Fr	(223)	Ba	137.3	88	Ra	226	La	138.9	89	Ac	(227)	Hf	178.5	Ta
180.9	W	183.9	Re	186.2	Os	190.2	Ir	192.2	58	Ce	140.1	90	Th	232.0	59	Pr	140.9	91	Pa	(231)	60	Nd	144.2	92	U	238.0	61	Pm	145	93	Np	237	62	Sm	150.4	94	Pu	(244)	Pt	195.1	63	Eu	152.0	95	Am	(243)	Au	197.0	64	Gd	157.3	96	Cm	(247)	Hg	200.6	65	Tb	158.9	97	Bk	(247)	Tl	204.4	Pb	207.2	Bi	209.0	Po	(209)	At	(210)	Rn	(222)	66	Dy	162.5	98	Cf	(251)	A.4
Valence-shell	electron	pair	repulsion	theory	(VSEPR	theory)	predicts	molecular	shape	with	the	concept	that	regions	of	high	electron	density	(as	represented	by	single	bonds,	multiple	bonds,	and	lone	pair)	take	up	orientations	around	the	central	atom	that	maximize	their	separation.	The	resulting	positions	of	attached	atoms	(not	lone	pairs)	are	used	to
classify	the	shape	of	the	molecule.	When	the	central	atom	has	two	or	more	lone	pair,	the	molecular	geometry	must	minimize	repulsion	between	the	relatively	diffuse	orbitals	of	the	lone	pair.	Furthermore,	it	is	assumed	that	the	repulsion	between	a	lone	pair	and	a	bonding	pair	is	stronger	than	the	repulsion	between	two	bonding	pair,	thereby,	making
bond	angles	smaller	than	the	idealized	bond	angles	that	appear	in	the	absence	of	a	lone	pair.	Solutions	to	exercises	A.1(b)	Example	(i)	Group	3	(ii)	Group	5	(iii)	Group	13	Element	Sc,	scandium	V,	vanadium	Ga,	gallium	Ground-state	Electronic	Configuration	[Ar]3d14s2	[Ar]3d34s2	[Ar]3d104s24p1	A.2(b)	(i)	chemical	formula	and	name:	CaH2,	calcium
hydride	ions:	Ca2+	and	H–	oxidation	numbers	of	the	elements:	calcium,	+2;	hydrogen,	–1	(ii)	chemical	formula	and	name:	CaC2,	calcium	carbide	ions:	Ca2+	and	C22–	(a	polyatomic	ion)	oxidation	numbers	of	the	elements:	calcium,	+2;	carbon,	–1	(iii)	chemical	formula	and	name:	LiN3,	lithium	azide	ions:	Li+	and	N3–	(a	polyatomic	ion)	oxidation
numbers	of	the	elements:	lithium,	+1;	nitrogen,	–⅓	A.3(b)	(i)	Ammonia,	NH3,	illustrates	a	molecule	with	one	lone	pair	on	the	central	atom.	H	N	H	H	(ii)	Water,	H2O,	illustrates	a	molecule	with	two	lone	pairs	on	the	central	atom.	H	O	H	(iii)	The	hydrogen	fluoride	molecule,	HF,	illustrates	a	molecule	with	three	lone	pairs	on	the	central	atom.	Xenon
difluoride	has	three	lone	pairs	on	both	the	central	atom	and	the	two	peripheral	atoms.	H	F	F	Xe	F	A.4(b)	(i)	Ozone,	O3.	Formal	charges	(shown	in	circles)	may	be	indicated.	O	O	O	(ii)	O	O	F	ClF3+	Cl	O	F	F	(iii)	azide	anion,	N3–	N	N	N	A.5(b)	The	central	atoms	in	XeF4,	PCl5,	SF4,	and	SF6	are	hypervalent.	A.6(b)	Molecular	and	polyatomic	ion	shapes	are



predicted	by	drawing	the	Lewis	structure	and	applying	the	concepts	of	VSEPR	theory.	(i)	H2O2	Lewis	structure:	H	O	O	H	Orientations	caused	by	repulsions	between	two	lone	pair	and	two	bonding	pair	around	each	oxygen	atom:	H	O	O	H	Molecular	shape	around	each	oxygen	atom:	bent	(or	angular)	with	bond	angles	somewhat	smaller	than	109.5º	(ii)
FSO3–	Lewis	structure:	(Formal	charge	is	circled.)	O	S	O	F	O	Orientations	around	the	sulfur	are	caused	by	repulsions	between	one	lone	pair,	one	double	bond,	and	two	single	bonds	while	orientations	around	the	oxygen	to	which	fluorine	is	attached	are	caused	by	repulsions	between	two	lone	pair	and	two	single	bonds:	O	F	S	O	O	Molecular	shape
around	the	sulfur	atom	is	trigonal	pyramidal	with	bond	angles	somewhat	smaller	than	109.5º	while	the	shape	around	the	oxygen	to	which	fluorine	is	attached	is	bent	(or	angular)	with	a	bond	angle	somewhat	smaller	than	109.5º.	(iii)	KrF2	Lewis	structure:	F	Kr	F	Orientations	caused	by	repulsions	between	three	lone	pair	and	two	bonding	pair:	F	Kr	F
Molecular	shape:	linear	with	a	180º	bond	angle.	(iv)	Cl	PCl4+	Lewis	structure:	(Formal	charge	is	shown	in	a	circle.)	Cl	P	Cl	Cl	Orientations	caused	by	repulsions	between	four	bonding	pair	(no	lone	pair):	Cl	Cl	P	Molecular	shape:	tetrahedral	and	bond	angles	of	109.5º	Cl	A.7(b)	(i)	C	(ii)	P	Nonpolar	or	weakly	polar	toward	the	slightly	more
electronegative	carbon.	H	δ+	δ−	S	Cl	(c)	δ+	N	δ−	Cl	A.8(b)	(i)	O3	is	a	bent	molecule	that	has	a	small	dipole	as	indicated	by	consideration	of	electron	densities	and	formal	charge	distributions.	(ii)	XeF2	is	a	linear,	nonpolar	molecule.	(iii)	NO2	is	a	bent,	polar	molecule.	(iv)	C6H14	is	a	nonpolar	molecule.	A.9(b)	In	the	order	of	increasing	dipole	moment:
XeF2	~	C6H14,	NO2,	O3	A.10(b)	(i)	Pressure	is	an	intensive	property.	(ii)	Specific	heat	capacity	is	an	intensive	property.	(iii)	Weight	is	an	extensive	property.	(iv)	Molality	is	an	intensive	property.	A.11(b)	æ	1	mol	ö	m	=	5.0	g	ç	=		M	è	180.16	g	ø	(i)	=	n	(ii)	æ	6.0221×	1023	molecules	ö	22	0.028	mol	ç	=	N	nN=	=		1.7	×	10	molecules	A	mol	è	ø	A.12(b)	0.028
mol	[A.3]	(i)	æ	78.11	g	ö	=	m	n=	M	10.0	mol	ç	=		781.	g	è	mol	ø	[A.3]	(ii)	=	weight	F=	m	g	Mars	gravity	on	Mars	æ	1	kg	ö	−2	=(	781.	g	)	×	(	3.72	m	s	−2	)	×	ç		=2.91	kg	m	s	=2.91	N	1000	g	è	ø	=	p	A.13(b)	F	mg	=	A	A	(	60	kg	)	×	(	9.81	m	s	−2	)	æ	1	cm	2	ö	æ	1	bar	ö	=	3	×	106	Pa	ç	5	3	×	106	N	m	−2	=	ç	−4	2		=		2	2	cm	è	10	Pa	ø	è	10	m	ø	=	30	bar	±	10	bar	(
30	bar	A.14(b)	æ	1	atm	ö	±	10	bar	)	ç	30	atm	±	10	atm	=	è	1.01325	bar	ø	A.15(b)	(i)	æ	1.01325	×	105	Pa	ö	=	222	atm	ç		1	atm	è	ø	(ii)	æ	1.01325	bar	ö	222	atm	ç		=	225	bar	è	1	atm	ø	225	×	105	Pa	θ	/	°C	=T	/	K	−	273.15	=90.18	−	273.15	=−182.97	A.16(b)	[A.4]	θ=	−182.97	°C	A.17(b)	The	absolute	zero	of	temperature	is	0	K	and	0	ºR.	Using	the	scaling
relationship	1	ºF	/	1	ºR	(given	in	the	exercise)	and	knowing	the	scaling	ratios	5	ºC	/	9	ºF	and	1	K	/	1	ºC,	we	find	the	scaling	factor	between	the	Kelvin	scale	and	the	Rankine	scale	to	be:	æ	1	°F	ö	æ	5	°C	ö	æ	1	K	ö	5	K	ç	×ç	×ç	=	è	1	°R	ø	è	9	°F	ø	è	1	°C	ø	9	°R	The	zero	values	of	the	absolute	zero	of	temperature	on	both	the	Kelvin	and	Rankine	scales	and	the
value	of	the	scaling	relationship	implies	that:	T	/	K	=	5	×	(θ	R	/	°R	)	9	or	θ	R	/	°R	=	9	5	×	(	T	/	K	)	Normal	freezing	point	of	water:	θ	R	/	°R	=	9	5	×	(T	/	K	)	=	9	5	×	(	273.15	)	=	491.67	=	θR	491.67	°R	æ	1	mol	ö	A.18(b)	n	=	0.325	g	×	ç	0.0161	mol	=	è	20.18	g	ø	=	p	nRT	[A.5]	=	V	(	0.0161	mol	)	(8.314	J	K	−1	mol−1	)	(	293.15	K	)	æ	2.00	dm	dm3	ö	ç	−3	3		è
10	m	ø	3	=	1.96	×	104	Pa	=	19.6	kPa	mRT	M	A.19(b)	=	pV	nRT	=	[A.5]	M	=	mRT	ρ	RT	=	pV	p	where	ρ	is	the	mass	density	[A.2]	(	0.6388	kg	m	)(8.314	J	K	−3	=	mol−1	)	(	373.15	K	)	kg	mol−1	124	g	mol−1	=	0.124	=	16.0	×	103	Pa	−1	The	molecular	mass	is	four	times	as	large	as	the	atomic	mass	of	phosphorus	(30.97	g	mol–1)	so	the	molecular	formula
is	P4	.	æ	1	mol	ö	7.05	g	×	ç	0.220	mol	[A.3]	n=	=	è	32.00	g	ø	(	0.220	mol	)	(8.314	J	K	−1	mol−1	)	(	373.15.15	K	)	æ	cm3	ö	nRT	[A.5]	=	p	=	ç	−6	3		V	100.	cm3	è	10	m	ø	A.20(b)	=	6.83	×	106	Pa	=	6.83	MPa	=	nO2	0.25	=	mole	and	nCO2	0.034	mole	A.21(b)	=	pO2	nO2	RT	[A.5]	=	V	(	0.25	mol	)	(8.314	J	K	−1	mol−1	)	(	283.15	K	)	æ	100.	cm	3	cm3	ö	=	ç	−6	3	
5.9	MPa	è	10	m	ø	Since	the	ratio	of	CO2	moles	to	O2	moles	is	0.034/0.25,	we	may	scale	the	oxygen	partial	pressure	by	this	ratio	to	find	the	partial	pressure	of	CO2.	æ	0.034	ö	0.80	MPa	pCO2	=	ç		×	(	5.9	MPa	)	=	è	0.25	ø	B	p=	pO2	+	pCO2	[1.6]	=	6.7	MPa	Energy	Answers	to	discussion	questions	B.2	All	objects	in	motion	have	the	ability	to	do	work	during
the	process	of	slowing.	That	is,	they	have	energy,	or,	more	precisely,	the	energy	possessed	by	a	body	because	of	its	motion	is	its	kinetic	energy,	Ek.	The	law	of	conservation	of	energy	tells	us	that	the	kinetic	energy	of	an	object	equals	the	work	done	on	the	object	in	order	to	change	its	motion	from	an	initial	(i)	state	of	vi	=	0	to	a	final	(f)	state	of	vf	=	v.
For	an	object	of	mass	m	travelling	at	a	speed	v,	Ek	=	1	2	mv	2	[B.8]	.	The	potential	energy,	Ep	or	more	commonly	V,	of	an	object	is	the	energy	it	possesses	as	a	result	of	its	position.	For	an	object	of	mass	m	at	an	altitude	h	close	to	the	surface	of	the	Earth,	the	gravitational	potential	energy	is	=	=	V	(	h	)	mgh	[B.11]	where	g	9.81	m	s	−2	Eqn	B.11	assigns
the	gravitational	potential	energy	at	the	surface	of	the	Earth,	V(0),	a	value	equal	zero	and	g	is	called	the	acceleration	of	free	fall.	The	Coulomb	potential	energy	describes	the	particularly	important	electrostatic	interaction	between	two	point	charges	Q1	and	Q2	separated	by	the	distance	r:	V	(r	)	=	Q1Q2	in	a	vacuum	[B.14,	ε	0	is	the	vacuum
permittivity]	4πε	0	r	V	(r	)	=	Q1Q2	in	a	medium	that	has	the	relative	permittivity	ε	r	(formerly,	dielectric	constant)	4πε	r	ε	0	r	and	Eqn	B.14	assigns	the	Coulomb	potential	energy	at	infinite	separation,	V(∞),	a	value	equal	to	zero.	Convention	assigns	a	negative	value	to	the	Coulomb	potential	energy	when	the	interaction	is	attractive	and	a	positive	value
when	it	is	repulsive.	The	Coulomb	potential	energy	and	the	force	acting	on	the	charges	are	related	by	the	expression	F	=	−dV/dr.	B.4	Quantized	energies	are	certain	discrete	values	that	are	permitted	for	particles	confined	to	a	region	of	space.	The	quantization	of	energy	is	most	important—in	the	sense	that	the	allowed	energies	are	widest	apart—for
particles	of	small	mass	confined	to	small	regions	of	space.	Consequently,	quantization	is	very	important	for	electrons	in	atoms	and	molecules.	Quantization	is	important	for	the	electronic	states	of	atoms	and	molecules	and	for	both	the	rotational	and	vibrational	states	of	molecules.	B.6	The	Maxwell	distribution	of	speeds	indicates	that	few	molecules
have	either	very	low	or	very	high	speeds.	Furthermore,	the	distribution	peaks	at	lower	speeds	when	either	the	temperature	is	low	or	the	molecular	mass	is	high.	The	distribution	peaks	at	high	speeds	when	either	the	temperature	is	high	or	the	molecular	mass	is	low.	Solutions	to	exercises	B.1(b)	a	=	d /dt	=	g	of	the	Mars.	∫	v(t	)	dv	=	∫	t	=t	v	0=t	0	=	so
d 	=	g	dt	.	The	acceleration	of	free	fall	is	constant	near	the	surface	g	dt	v	(	t	)	=	g	Mars	t	(i)	s	)	3.72	m	s	(	3.72	m	s	)	×	(1.0=	=	mv	=	(	0.0010	kg	)	×	(	3.72	m	s	)	v	(1.0=	s)	Ek	1	−2	2	2	1	−1	−1	2	2	=	6.9	mJ	(ii)	s	)	11.2	m	s	(	3.72	m	s	)	×	(	3.0=	mv	=	63	mJ	=	(	0.0010	kg	)	×	(11.2	m	s	)	=	s)	v	(	3.0=	Ek	1	−2	2	1	2	−1	−1	2	2	B.2(b)	The	terminal	velocity
occurs	when	there	is	a	balance	between	the	force	exerted	by	the	pull	of	gravity,	mg	=	Vparticleρg	=	4/3πR3ρg,	and	the	force	of	frictional	drag,	6πηRs.	It	will	be	in	the	direction	of	the	gravitational	pull	and	have	the	magnitude	sterminal.	4	πR	3	ρ	g	=	6πη	Rs	terminal	3	sterminal	=	2R2	ρ	g	9η	B.3(b)	The	harmonic	oscillator	solution	x(t)	=	A	sin(ωt)	has
the	characteristics	that	dx	=	Aω	cos(ωt	)	dt	t)	v(=	2	kf	where	=	ω	(kf	/	m)1/	2	or	mω=	xmin	=	x(t=nπ/ω,	n=0,1,2...)	=	0	and	xmax	=	x(t=(n+½)π/ω,	n=0,1,2...)	=	A	At	xmin	the	harmonic	oscillator	restoration	force	(Hooke’s	law,	Fx	=	–kf	x,	Brief	illustration	B.2)	is	zero	and,	consequently,	the	harmonic	potential	energy,	V,	is	a	minimum	that	is	taken	to
equal	zero	while	kinetic	energy,	Ek,	is	a	maximum.	As	kinetic	energy	causes	movement	away	from	xmin,	kinetic	energy	continually	converts	to	potential	energy	until	no	kinetic	energy	remains	at	xmax	where	the	restoration	force	changes	the	direction	of	motion	and	the	conversion	process	reverses.	We	may	easily	find	an	expression	for	the	total	energy
E(A)	by	examination	of	either	xmin	or	xmax.	Analysis	using	xmin:	E	=	Ek	+	V	=	Ek,max	+	0	=	1	2	m	vmax	2	=	1	2	mA2ω	2	=	1	2	k	f	A2	We	begin	the	analysis	that	uses	xmax,	by	deriving	the	expression	for	the	harmonic	potential	energy.	dV	=	−	Fx	dx	[B.10]	=	k	f	x	dx	∫	V	(	x)	0	x	dV	=	∫	kf	x	dx	0	V	(	x)	=	12	kf	x	2	Thus,	Vmax	=V	(	xmax	)	=	12	kf	A2	and
E	=	Ek	+	V	=0	+	Vmax	=	12	kf	A2	B.4(b)	w=	w=	1	2	kx	2	where	x=	R	−	Re	is	the	displacement	from	equilibrium	[Brief	illustration	B.3]	1	2	(	510	N	m	)	×	(	20	×10	−1	−12	m	)	=	1.02	×	10−19	N	m	=	2	1.02	×	10−19	J	B.5(b)	Ek	=	ze∆φ	where	z	=	2	for	C6	H	4	2	+	and	M	=	76.03	g	mol	−1	for	the	major	isotopes	æ	2	ze∆φ	ö	v=	ç		è	m	ø	1/	2	1	2	mv	2	=
ze∆φ	or	where	m	=	M	/	NA	æ	2	×	2	×	(1.6022	×	10−19	C	)	×	(	20	×	103	V	)	ç	v=	−1	−1	23	ç	è	(	0.07603	kg	mol	)	/	(	6.022	×	10	mol	)	1/	2	ö			ø	1/2	æCVö	=	3.2	×	105	ç		è	kg	ø	1/2	æ	J	ö	=	3.2	×	105	ç		è	kg	ø	1/2	æ	kg	m	2	s	−2	ö	=	3.2	×	10	ç		kg	è	ø	=	3.2	×	105	m	s	−1	5	E	=	Ek	=	ze∆φ	=	2e	×	(	20	kV	)	=	40	keV	B.6(b)	The	work	needed	to	separate	two	ions	to
infinity	is	identical	to	the	Coulomb	potential	drop	that	occurs	when	the	two	ions	are	brought	from	an	infinite	separation,	where	the	interaction	potential	equals	zero,	to	a	separation	of	r.	In	a	vacuum:	æ	(	2e	)	×	(	−2e	)	ö	æ	QQ	ö	4e	2	e2	w	=−V	=−	ç	1	2		[B.14]	=−	ç	=	=	è	4πε	0	r	ø	è	4πε	0	r	ø	4πε	0	r	πε	0	r	=	(1.6022	×10	π	(	8.85419	×	10	−12	J	−1	−19	C
m	2	−1	C)	2	)	×	(	250	×10	−12	=	3.69	×	10−18	J	m)	In	water:	æ	(	2e	)	×	(	−2e	)	ö	e	2	e2	æQQ	ö	[B.15]	where	ε	r	=78	for	water	at	25°C	w	=−V	=−	ç	1	2		=−	ç	=	=		4πε	r	è	4πε	r	ø	è	ø	πε	r	πε	r	ε	0	r	=	(1.6022	×10	π	(	78	)	×	(	8.85419	×	10	−12	J	−1	−19	C)	C	m	2	2	−1	)	×	(	250	×10	−12	=	m)	4.73	×	10−20	J	B.7(b)	We	will	model	a	solution	by	assuming
that	the	NaCl	pair	consists	of	the	two	point	charge	ions	Na+	and	Cl–.	The	electric	potential	will	be	calculated	along	the	line	of	the	ions.	(	−e	)	e	e	æ	1	1	ö	[B.16]	=ç	φ=	φNa	+	φCl	[2.17]	=	+	−		4πε	0	rNa	4πε	0	rCl	4πε	0	çè	rNa	rCl	ø	+	−	+	−	+	−	When	rNa	=	rCl	,	the	electric	potential	equals	zero	in	this	model.	Likewise,	rNa	=	rCl	at	every	point	both	on
the	line	perpendicular	to	the	internuclear	line	and	crossing	the	internuclear	line	at	the	mid-point	so	electric	potential	equals	zero	at	every	point	on	that	perpendicular	line.	+	−	+	−	B.8(b)	∆U	ethanol	=	energy	dissipated	by	the	electric	circuit	=	I	∆φ	∆t	[B.20]	=	2.41×	103	C	s	−1	V	s	=	2.41	kJ	(1.12	A	)	×	(12.5	V	)	×	(172	s	)	=	∆U	ethanol	=	(	nC	∆T
)ethanol	[B.21]	∆U	ethanol	=	(	nC	)ethanol	=	∆T	∆U	ethanol	2.41×	103	J	=	(	mC	/	M	)ethanol	(150	g	)	×	(111.5	J	K	−1	mol−1	)	/	(	46.07	g	mol−1	)	=	6.64	K	=	6.64	°C	∆U	50.0	kJ	=	[B.21]	=	8.67	K	or	8.67	°C	C	5.77	kJ	K	−1	B.9(b)	=	∆T	æ	1	mol	ö	B.10(b)	n	=	10.0	g	×	ç	0.555	mol	=	è	18.01	g	ø	∆U	=	C	∆T	[B.21]	=	nCm	∆T	0.555	mol	)	(	75.2	J	K	−1	mol−1	)
(10.0	K	)	(=	417	J	B.11(b)	1	mol	ö	Cs	=	Cm	/	M	=	1.228	J	K	−1	g	−1	(	28.24	J	K	−1	mol−1	)	×	æç	22.99	=	gø	è	B.12(b)	gö	Cm	=	Cs	M	=	24.4	J	K	−1	mol−1	(	0.384	J	K	−1	g	−1	)	×	æçè	63.55	=	mol	ø	B.13(b)	H	m	−	U	m	=	pVm	[B.23]	=	pM	ρ	=	(1.00	×10	Pa	)	×	(18.02	g	mol−1	)	æ	10−6	m3	ö	−1	ç		=	1.81	J	mol	3	0.997	g	cm	−3	cm	è	ø	5	B.14(b)	SH	O(l)	>	SH
O(s)	2	2	B.15(b)	SH	O(l,	100	°C)	>	SH	O(l,	0	°C)	2	2	B.16(b)	In	a	state	of	static	equilibrium	there	is	no	net	force	or	torque	acting	on	the	system	and,	therefore,	there	is	no	resultant	acceleration.	Examples:	When	holding	an	object	in	a	steady	position	above	the	ground,	there	is	a	balance	between	the	downward	gravitational	force	pulling	on	the	object
downward	and	the	upward	force	of	the	hold.	Release	the	object	and	it	falls.	A	movable,	but	non-moving,	piston	within	a	cylinder	may	be	at	equilibrium	because	of	equal	pressures	on	each	side	of	the	piston.	Increase	the	pressure	on	one	side	of	the	piston	and	it	moves	away	from	that	side.	In	the	Bohr	atomic	model	of	1913	there	is	a	balance	between	the
electrostatic	attraction	of	an	electron	to	the	nucleus	and	the	centrifugal	force	acting	on	the	orbiting	electron.	Should	the	electron	steadily	lose	kinetic	energy,	it	spirals	into	the	nucleus.	Ni	−(	ε	i	−ε	j	)	/	kT	−∆ε	/	kT	=	e=	e	ij	[B.25a]	B.17(b)	Nj	(i)	−(	2.0	eV	)×(1.602×10−19	J	eV	−1	)	/{(1.381×10−23	J	K	−1	)×(	200	K	)}	N2	=	e	=	4.2	×10−51	N1	(ii)	−(
2.0	eV	)×(1.602×10−19	J	eV	−1	)	/{(1.381×10−23	J	K	−1	)×(	2000	K	)}	N2	=	e	=	9.2	×10−6	N1	æN	ö	upper	−0	B.18(b)	Tlim	=	=	e=	1	(	e−∆ε	/	kT	)	[B.25a]	ç		Tlim	→∞	N	→∞	è	lower	ø	In	the	limit	of	the	infinite	temperature	both	the	upper	and	the	lower	state	are	equally	occupied.	B.19(b)	∆ε	=	ε	upper	−	ε	lower	=	hν	=	(	6.626	×10−34	J	s	)(10.0	×109	s
−1	)	=	6.63	×10−24	J	N	upper	−	(	6.63×10−24	J	)	/	{(1.381×10−23	J	K	−1	)×(	293	K	)}	−∆ε	/	klT	[B.25a]	e	=	e=	=	N	lower	0.998	The	ratio	Nupper/Nlower	indicates	that	the	two	states	are	equally	populated.	A	large	fraction	of	gasphase	molecules	will	be	in	excited	rotational	states.	B.20(b)	Rates	of	chemical	reaction	typically	increase	with	increasing
temperature	because	more	molecules	have	the	requisite	speed	and	corresponding	kinetic	energy	to	promote	excitation	and	bond	breakage	during	collisions	at	the	high	temperatures.	B.21(b)	vmean	∝	(T	/	M	)1/	2	[B.26]	æ	T2	ö	(T2	/	M	)	=	ç		1/	2	(T1	/	M	)	è	T1	ø	vmean	(	303	K	)	æ	303	K	ö1/	2	=	ç=	1.02		vmean	(	293	K	)	è	293	K	ø	vmean	(T2	)	=	vmean	(T1	)
1/	2	1/	2	B.22(b)	vmean	∝	(T	/	M	)1/	2	[2.26]	vmean	(	M	2	)	=	vmean	(	M	1	)	(T	/	M	2	)	=	1/	2	(T	/	M	1	)	1/	2	1/	2	æ	M1	ö	ç		è	M2	ø	vmean	(	H	2	)	æ	401.2	g	mol−1	ö	14.11	=	ç=		vmean	(	Hg	2	)	è	2.016	g	mol−1	ø	1/	2	B.23(b)	A	gaseous	helium	atom	has	three	translational	degrees	of	freedom	(the	components	of	motion	in	the	x,	y,	and	z	directions).
Consequently,	the	equipartition	theorem	assigns	a	mean	energy	of	3	Um	=	2	kT	to	each	atom.	The	molar	internal	energy	is	N	A	kT	=	3	2	3	2	3	2	RT	=	U	nU	mM	−1=	Um	=	=	m	(8.3145	J	mol	−1	K	−1	)	(	303	=	K	)	3.78	kJ	mol−1	æ	1	mol	ö	æ	3.78	kJ	ö	=	ç		9.45	kJ	è	4.00	g	ø	è	mol	ø	(10.0	g	)	ç	B.24(b)	A	solid	state	lead	atom	has	three	vibrational	quadratic
degrees	of	freedom	(the	components	of	vibrational	motion	in	the	x,	y,	and	z	directions).	Its	potential	energy	also	has	a	quadratic	form	in	each	direction	because	V	∝	(x	–	xeq)2.	There	is	a	total	of	six	quadratic	degrees	of	freedom	for	the	atom	because	the	atoms	have	no	translational	or	rotational	motion.	Consequently,	the	equipartition	theorem	assigns	a
mean	energy	of	6	2	kT	=	3kT	to	each	atom.	This	is	the	law	of	Dulong	and	Petit.	The	molar	internal	energy	is	U	m	3=	N	A	kT	3RT	=	3	(	8.3145	J	mol−1	K	−1	)	(	293	=	=	K	)	7.31	kJ	mol−1	U	nU	mM	−1=	Um	=	=	m	æ	1	mol	ö	æ	7.31	kJ	ö	=	ç		0.353	kJ	è	207.2	g	ø	è	mol	ø	(10.0	g	)	ç	B.25(b)	See	exercise	B.23(b)	for	the	description	of	the	molar	internal	energy
of	helium.	CV=	,m	∂U	m	∂	(	32	RT	)	=	=	∂T	∂T	=	R	3	2	3	2	(8.3145	J	mol	−1	1	K	−=	)	12.47	J	mol−1	K	−1	B.26(b)	(i)	Water,	being	a	bent	molecule,	has	three	quadratic	translational	and	three	quadratic	rotational	degrees	of	freedom.	So,	U	m	=	3RT	CV=	,m	(ii)	∂U	m	∂	(	3RT	)	1	=	=	3=	R	3	(	8.3145	J	mol−1	K	−=	)	∂T	∂T	24.94	J	mol−1	K	−1	See	exercise
B.24(b)	for	the	description	of	the	molar	internal	energy	of	lead.	U	m	=	3RT	CV=	,m	C	for	water	vapour	for	Pb(s)	∂U	m	∂	(	3RT	)	1	R	3	(	8.3145	J	mol−1	K	−=	=	=	3=	)	∂T	∂T	24.94	J	mol−1	K	−1	Waves	Answers	to	discussion	questions	C.2	The	sound	of	a	sudden	‘bang’	is	generated	by	sharply	slapping	two	macroscopic	objects	together.	This	creates	a
sound	wave	of	displaced	air	molecules	that	propagates	away	from	the	collision	with	intensity,	defined	to	be	the	power	transferred	by	the	wave	through	a	unit	area	normal	to	the	direction	of	propagation.	Thus,	the	SI	unit	of	intensity	is	the	watt	per	meter	squared	(	W	m	−2	)	and	‘loudness’	increases	with	increasing	intensity.	The	‘bang’	creates	a	shell	of
compressed	air	molecules	that	propagates	away	from	the	source	as	a	shell	of	higher	pressure	and	density.	This	longitudinal	impulse	propagates	when	gas	molecules	escape	from	the	high	pressure	shell	into	the	adjacent,	lower	pressure	shell.	Molecular	collisions	quickly	cause	momentum	transfer	from	the	high	density	to	the	low	density	shell	and	the
effective	propagation	of	the	high	density	shell.	The	regions	over	which	pressure	and	density	vary	during	sound	propagation	are	much	wider	than	the	molecular	mean	free	path	because	sound	is	immediately	dissipated	by	molecular	collisions	in	the	case	for	which	pressure	and	density	variations	are	of	the	order	of	the	mean	free	path.	Solutions	to
exercises	C.1(b)	cbenzene	=	3.00	×	108	m	s	−1	c	[C.4]	=	=	1.97	×	108	m	s	−1	nr	1.52	1	ν	æ	106	μm	ö	1	=		−1	ç	3600	cm	è	102	cm	ø	c	3.00	×	108	m	s	−1	C.2(b)	[C.5]	=	λ	=	2.78	μm	ν	=	[C.1]	=	1.08	×	1014	Hz	=	1.08	×	1014	s	−1	=	λ	2.78	×	10−6	m	Integrated	activities	F.2	The	plots	of	Problem	F.1	indicate	that	as	temperature	increases	the	peak	of
the	Maxwell–	Boltzmann	distribution	shifts	to	higher	speeds	with	a	decrease	in	the	fraction	of	molecules	that	have	low	speeds	and	an	increase	in	the	fraction	that	have	high	speeds.	Thus,	justifying	summary	statements	like	'temperature	is	a	measure	of	the	average	molecular	speed	and	kinetic	energy	of	gas	molecules',	'temperature	is	a	positive
property	because	molecular	speed	is	a	positive	quantity',	'the	absolute	temperature	of	0	K	is	unobtainable	because	the	area	under	the	plots	of	Problem	F.1	must	equal	1'.	1	The	properties	of	gases	1A	The	perfect	gas	Answers	to	discussion	questions	1A.2	The	partial	pressure	of	a	gas	in	a	mixture	of	gases	is	the	pressure	the	gas	would	exert	if	it
occupied	alone	the	same	container	as	the	mixture	at	the	same	temperature.	Dalton’s	law	is	a	limiting	law	because	it	holds	exactly	only	under	conditions	where	the	gases	have	no	effect	upon	each	other.	This	can	only	be	true	in	the	limit	of	zero	pressure	where	the	molecules	of	the	gas	are	very	far	apart.	Hence,	Dalton’s	law	holds	exactly	only	for	a
mixture	of	perfect	gases;	for	real	gases,	the	law	is	only	an	approximation.	Solutions	to	exercises	1A.1(b)	The	perfect	gas	law	[1A.5]	is	pV	=	nRT,	implying	that	the	pressure	would	be	nRT	p=	V	All	quantities	on	the	right	are	given	to	us	except	n,	which	can	be	computed	from	the	given	mass	of	Ar.	25	g	n=	=	0.626	mol	−1	39.95	g	mol	(0.626	mol)	×	(8.31
×	10−2	dm	3	bar	K	−1	mol−1	)	×	(30	+	273)	K	=	10.5bar	1.5	dm	3	So	no,	the	sample	would	not	exert	a	pressure	of	2.0	bar.	so	p=	1A.2(b)	Boyle’s	law	[1A.4a]	applies.	pV	=	constant	so	pfVf	=	piVi	Solve	for	the	initial	pressure:	pV	(1.97	bar)	×	(2.14	dm	3	)	(i)	=	1.07	bar	pi	=	f	f	=	Vi	(2.14	+	1.80)	dm	3	(ii)	The	original	pressure	in	Torr	is	æ	1	atm	ö	æ	760
Torr	ö	=	803	Torr	×	pi	=	(1.07	bar)	×	ç	è	1.013	bar	ø	çè	1	atm	ø	1A.3(b)	The	relation	between	pressure	and	temperature	at	constant	volume	can	be	derived	from	the	perfect	gas	law,	pV	=	nRT	[1A.5]	pi	pf	so	p	∝	T	and	=	Ti	Tf	The	final	pressure,	then,	ought	to	be	pT	(125	kPa)	×	(11	+	273)K	pf	=	i	f	=	=	120	kPa	(23	+	273)K	Ti	1A.4(b)	According	to	the
perfect	gas	law	[1.8],	one	can	compute	the	amount	of	gas	from	pressure,	temperature,	and	volume.	pV	=	nRT	pV	(1.00	atm)	×	(1.013	×	105	Pa	atm	−1	)	×	(4.00	×	103	m	3	)	=	=	1.66	×	105	mol	RT	(8.3145	J	K	−1mol−1	)	×	(20	+	273)K	Once	this	is	done,	the	mass	of	the	gas	can	be	computed	from	the	amount	and	the	molar	mass:	so	n=	−1	m	=	(1.66	×
105	mol)	×	(16.04	g	mol	)	=	2.67	×	106	g	=	2.67	×	103	kg	1A.5(b)	The	total	pressure	is	the	external	pressure	plus	the	hydrostatic	pressure	[1A.1],	making	the	total	pressure	1	p	=	pex	+	ρgh	.	Let	pex	be	the	pressure	at	the	top	of	the	straw	and	p	the	pressure	on	the	surface	of	the	liquid	(atmospheric	pressure).	Thus	the	pressure	difference	is	3	1	kg	æ	1
cm	ö	p	−	pex	=	ρ	gh	=	(1.0	g	cm	)	×	3	×	ç	−2		×	(9.81	m	s	−2	)	×	(0.15m)	10	g	è	10	m	ø	−3	=	1.5	×	103	Pa	=	1.5	×	10−2	atm	1A.6(b)	The	pressure	in	the	apparatus	is	given	by	p	=	pex	+	ρgh	[1A.1]	where	pex	=	760	Torr	=	1	atm	=	1.013×105	Pa,	3	and	æ	1	kg	ö	æ	1	cm	ö	×	0.100	m	×	9.806	m	s	−2	=	1.33	×	104	Pa	×	è	103	g	ø	çè	10−2	m	ø	ρ	gh	=	13.55	g
cm	−3	×	ç	p	=	1.013	×	105	Pa	+	1.33	×	104	Pa	=	1.146	×	105	Pa	=	115	kPa	1A.7(b)	pVm	pV	=	nT	T	All	gases	are	perfect	in	the	limit	of	zero	pressure.	Therefore	the	value	of	pVm/T	extrapolated	to	zero	pressure	will	give	the	best	value	of	R.	The	molar	mass	can	be	introduced	through	m	RT	pV	=	nRT	=	M	m	RT	RT	which	upon	rearrangement	gives	M	=
=ρ	V	p	p	The	best	value	of	M	is	obtained	from	an	extrapolation	of	ρ/p	versus	p	to	zero	pressure;	the	intercept	is	M/RT.	Draw	up	the	following	table:	Rearrange	the	perfect	gas	equation	[1A.5]	to	give	R	=	p/atm	0.750	000	0.500	000	0.250	000	(pVm/T)/(dm3	atm	K–1	mol–1)	0.082	0014	0.082	0227	0.082	0414	(ρ/p)/(g	dm–3	atm–1)	1.428	59	1.428	22	1.427
90	æ	pV	ö	From	Figure	1A.1(a),	R	=	lim	ç	m		=	0.082	062	dm	3	atm	K	−1	mol−1	p→0	è	T	ø	Figure	1A.1	(a)	2	(b)	æ	ρö	From	Figure	1A.1(b),	lim	ç		=	1.427	55	g	dm	-3	atm	−1	p→0	è	p	ø	æ	ρö	M	=	lim	RT	ç		=	(0.082062	dm	3	atm	K	−1	mol−1	)	×	(273.15	K)	×	(1.42755	g	dm	-3	atm	−1	)	p→0	è	pø	=	31.9988	g	mol−1	The	value	obtained	for	R	deviates	from	the
accepted	value	by	0.005	per	cent,	better	than	can	be	expected	from	a	linear	extrapolation	from	three	data	points.	1A.8(b)	The	mass	density	ρ	is	related	to	the	molar	volume	Vm	by	V	V	m	M	Vm	=	=	×	=	n	m	n	ρ	where	M	is	the	molar	mass.	Putting	this	relation	into	the	perfect	gas	law	[1A.5]	yields	pM	pVm	=	RT	so	=	RT	ρ	Rearranging	this	result	gives
an	expression	for	M;	once	we	know	the	molar	mass,	we	can	divide	by	the	molar	mass	of	phosphorus	atoms	to	determine	the	number	of	atoms	per	gas	molecule.	−1	M=	RT	ρ	(8.3145	Pa	m	3	mol	)	×	[(100	+	273)	K]	×	(0.6388	kg	m	−3	)	=	p	1.60	×	104	Pa	=	0.124	kg	mol−1	=	124	g	mol−1	The	number	of	atoms	per	molecule	is	124	g	mol	−1	31.0	g	mol
−1	=	4.00	suggesting	a	formula	of	P4	.	1A.9(b)	Use	the	perfect	gas	equation	[1A.5]	to	compute	the	amount;	then	convert	to	mass.	pV	n=	pV	=	nRT	so	RT	We	need	the	partial	pressure	of	water,	which	is	53	per	cent	of	the	equilibrium	vapour	pressure	at	the	given	temperature	and	standard	pressure.	(We	must	look	it	up	in	a	handbook	like	the	CRC	or
other	resource	such	as	the	NIST	Chemistry	WebBook.)	p	=	(0.53)	×	(2.81	×	103	Pa)	=	1.49	×	103	Pa	3	(1.49	×	103	Pa)	×	(250	m	3	)	=	151	mol	(8.3145	J	K	−1	mol−1	)	×	(23	+	273)	K	so	n=	and	m	=	(151	mol)	×	(18.0	g	mol	)	=	2.72	×	103	g	=	2.72	kg	−1	1A.10(b)	(i)	The	volume	occupied	by	each	gas	is	the	same,	since	each	completely	fills	the
container.	Thus	solving	for	V	we	have	(assuming	a	perfect	gas,	eqn.	1A.5)	n	RT	V=	J	pJ	We	have	the	pressure	of	neon,	so	we	focus	on	it	0.225	g	=	1.115	×	10−2	mol	nNe	=	20.18	g	mol−1	Thus	1.115	×	10−2	mol	×	8.3145	Pa	m	3	K	−1	mol−1	×	300	K	=	3.14	×	10−3	m	3	=	3.14	dm	3	8.87	×	103	Pa	(ii)	The	total	pressure	is	determined	from	the	total
amount	of	gas,	n	=	nCH	+	nAr	+	nNe	.	V=	4	0.175	g	0.320	g	=	4.38	×	10−3	mol	nCH	=	=	1.995	×	10−2	mol	nAr	=	−1	4	39.95	g	mol−1	16.04	g	mol	(	)	n	=	1.995	+	0.438	+	1.115	×	10−2	mol	=	3.55	×	10−2	mol	and	p=	nRT	3.55	×	10−2	mol	×	8.3145	Pa	m	3	K	−1	mol−1	×	300	K	=	V	3.14	×	10−3	m	3	=	2.82	×	104	Pa	=	28.2	kPa	1A.11(b)	This
exercise	uses	the	formula,	M	=	ρ	RT	,	which	was	developed	and	used	in	Exercise	p	1A.8(b).	First	the	density	must	first	be	calculated.	33.5	×	10−3	g	æ	103	cm	3	ö	×ç	ρ=	=	0.134	g	dm	−3		3	3	250	cm	è	dm	ø	−1	M=	(0.134	g	dm	−3	)	×	(62.36	dm	3	torr	K	mol	−1)	×	(298	K)	=	16.4	g	mol−1	152	torr	1A.12(b)	This	exercise	is	similar	to	Exercise	1.12(a)	in
that	it	uses	the	definition	of	absolute	zero	as	that	temperature	at	which	the	volume	of	a	sample	of	gas	would	become	zero	if	the	substance	remained	a	gas	at	low	temperatures.	The	solution	uses	the	experimental	fact	that	the	volume	is	a	linear	function	of	the	Celsius	temperature:	where	V0	=	20.00	dm3	and	α	=	0.0741	dm3	°C–1	.	V	=	V0	+	αθ	At
absolute	zero,	V	=	0	=	V0	+	αθ	V	20.00	dm	3	so	θ	(abs.zero)	=	−	0	=	−	=	Ğ270°C	α	0.0741	dm	3	¡C−1	which	is	close	to	the	accepted	value	of	–273C.	1A.13(b)	(i)	Mole	fractions	are	n	2.5	mol	xN	=	N	[1A.9]	=	=	0.63	(2.5	+	1.5)	mol	ntotal	Similarly,	xH	=	0.37	According	to	the	perfect	gas	law	ptotV	=	ntotRT	4	ptot	=	so	ntot	RT	(4.0	mol)	×	(0.08206	dm
3	atm	mol−1	K	−1	)	×	(273.15	K)	=	4.0	atm	=	V	22.4	dm	3	(ii)	The	partial	pressures	are	pN	=	xN	ptot	=	(0.63)	×	(4.0	atm)	=	2.5	atm	and	pH	=	(0.37)	×	(4.0	atm)	=	1.5	atm	(iii)	p	=	pH	+	pN	[1A.10]	=	(2.5	+	1.5)	atm	=	4.0	atm	Solutions	to	problems	1A.2	Solving	for	n	from	the	perfect	gas	equation	[1A.5]	yields	n	=	pV	.	From	the	definition	of	RT	Mp
Rearrangement	yields	the	desired	relation,	namely	molar	mass	n	=	m	,	hence	ρ	=	m	=	M	V	RT	.	p	=	ρ	RT	.	M	Therefore,	for	ideal	gases	limit	of	p/(kPa)	ρ/(kg	m–3)	p/ρ	3	10	m	2	s	−2	p	ρ	p	ρ	=	RT	and	M	=	RT	.	For	real	gases,	find	the	zero-pressure	p/ρ	M	by	plotting	it	against	p.	Draw	up	the	following	table.	12.223	0.225	25.20	0.456	36.97	0.664	60.37
1.062	85.23	1.468	101.3	1.734	54.3	55.3	55.7	56.8	58.1	58.4	Bear	in	mind	that	1	kPa	=	103	kg	m–1	s–2.	p	is	plotted	in	Figure	1A.2.	A	straight	line	fits	the	data	rather	well.	The	extrapolation	to	p	=	0	ρ	yields	an	intercept	of	54.0×103	m2	s–2	.	Then	M=	RT	(8.3145	J	K	−1	mol−1	)	×	(298.15	K)	=	5.40	×	104	m	2	s	−2	5.40	×	104	m	2	s	−2	=	0.0459	kg
mol−1	=	45.9	g	mol	Figure	1A.2	5	−1	Comment.	This	method	of	the	determination	of	the	molar	masses	of	gaseous	compounds	is	due	to	Cannizarro	who	presented	it	at	the	Karlsruhe	Congress	of	1860.	That	conference	had	been	called	to	resolve	the	problem	of	the	determination	of	the	molar	masses	of	atoms	and	molecules	and	the	molecular	formulas
of	compounds.	1A.4	The	mass	of	displaced	gas	is	ρV,	where	V	is	the	volume	of	the	bulb	and	ρ	is	the	density	of	the	displaced	gas.	The	balance	condition	for	the	two	gases	is	m(bulb)	=	ρV(bulb)	m(bulb)	=	ρ′V(bulb)	pM	which	implies	that	ρ	=	ρ′.	Because	[Problem	1.2]	ρ	=	RT	the	balance	condition	is	pM	=	p′M′	,	p	which	implies	that	M	′	=	×M	p′	This
relation	is	valid	in	the	limit	of	zero	pressure	(for	a	gas	behaving	perfectly).	In	experiment	1,	p	=	423.22	Torr,	p′	=	327.10	Torr;	423.22	Torr	hence	×	70.014	g	mol−1	=	90.59	g	mol−1	M′	=	327.10	Torr	In	experiment	2,	p	=	427.22	Torr,	p′	=	293.22	Torr;	427.22	Torr	hence	×	70.014	g	mol−1	=	102.0	g	mol−1	M′	=	293.22	Torr	In	a	proper	series	of
experiments	one	should	reduce	the	pressure	(e.g.	by	adjusting	the	balanced	weight).	Experiment	2	is	closer	to	zero	pressure	than	experiment	1,	so	it	is	more	likely	to	be	close	to	the	true	value:	and	M	′	≈	102	g	mol−1	The	molecules	CH2FCF3	and	CHF2CHF2	have	molar	mass	of	102	g	mol–1.	Comment.	The	substantial	difference	in	molar	mass	between
the	two	experiments	ought	to	make	us	wary	of	confidently	accepting	the	result	of	Experiment	2,	even	if	it	is	the	more	likely	estimate.	1A.6	We	assume	that	no	H2	remains	after	the	reaction	has	gone	to	completion.	The	balanced	equation	is	N2	+	3	H2	→	2	NH3	.	We	can	draw	up	the	following	table	N2	H2	NH3	Total	Initial	amount	n	0	n′	n	+	n′	2	n	−	13
n′	n	+	13	n′	n	′	0	Final	amount	3	Specifically	0.33	mol	0	1.33	mol	1.66	mol	Mole	fraction	0.20	0	0.80	1.00	3	æ	(0.08206	dm	atm	mol−1	K	−1	)	×	(273.15	K)	ö	nRT	=	(1.66	mol)	×	ç	p=		=	1.66	atm	V	22.4	dm	3	è	ø	p(H2)	=	x(H2)p	=	0	p(N2)	=	x(N2)p	=	0.20	×	1.66	atm	=	0.33	atm	p(NH3)	=	x(NH3)p	=	0.80	×	1.66	atm	=	1.33	atm	1A.8	The	perfect	gas	law
is	pV	=	nRT	n=	so	pV	RT	At	mid-latitudes	(1.00	atm)	×	{(1.00	dm	2	)	×	(250	×	10−3	cm)	/	10	cm	dm	−1}	=	1.12	×	10−3	mol	(0.08206	dm	3	atm	K	−1mol−1	)	×	(273K)	In	the	ozone	hole	n=	(1.00	atm)	×	{(1.00	dm	2	)	×	(100	×	10−3	cm)	/	10	cm	dm	−1}	=	4.46	×	10−4	mol	(0.08206	dm	3	atm	K	−1mol−1	)	×	(273	K)	The	corresponding	concentrations
are	n=	6	1.12	×	10−3	mol	n	=	2.8	×	10−9	mol	dm	−3	=	2	V	(1.00	dm	)	×	(40	×	103	m)	×	(10	dm	m	−1	)	n	4.46	×	10−4	mol	=	=	1.1	×	10−9	mol	dm	−3	2	V	(1.00	dm	)	×	(40	×	103	m)	×	(10	dm	m	−1	)	respectively.	and	1A.10	The	perfect	gas	law	[1A.5]	can	be	rearranged	to	n	=	pV	RT	V	=	4π	r	3	=	4π	×	(3.0	m)3	=	113	m	3	3	3	(1.0	atm)	×	(113	×	103
dm	3	)	=	4.62	×	103	mol	n=	(a)	(0.08206	dm	3	atm	mol−1	K	−1	)	×	(298	K)	(b)	The	mass	that	the	balloon	can	lift	is	the	difference	between	the	mass	of	displaced	air	and	the	mass	of	the	balloon.	We	assume	that	the	mass	of	the	balloon	is	essentially	that	of	the	gas	it	encloses:	The	volume	of	the	balloon	is	−1	m	=	m(H	2	)	=	nM	(H	2	)	=	(4.62	×	103	mol)
×	(2.02	g	mol	)	=	9.33	×	103	g	−3	Mass	of	displaced	air	=	(113	m	3	)	×	(1.22	kg	m	)	=	1.38	×	102	kg	Therefore,	the	mass	of	the	maximum	payload	is	138	kg	−	9.33	kg	=	1.3	×	102	kg	(c)	For	helium,	m	=	nM	(He)	=	(4.62	×	103	mol)	×	(4.00	g	mol−1	)	=	18	kg	The	maximum	payload	is	now	138	kg	−	18	kg	=	1.2	×	102	kg	1A.12	Avogadro’s	principle
states	that	equal	volumes	of	gases	contain	equal	amounts	(moles)	of	the	gases,	so	the	volume	mixing	ratio	is	equal	to	the	mole	fraction.	The	definition	of	partial	pressures	is	pJ	=	xJp	.	The	perfect	gas	law	is	x	p	p	nJ	=	J	=	J	pV	=	nRT	so	RT	RT	V	n(CCl3	F)	(261	×	10−12	)	×	(1.0	atm)	(a)	=	1.1	×	10−11	mol	dm	-3	=	V	(0.08206	dm	3	atm	K	−1mol−1	)	×
(10	+	273)	K	and	n(CCl2	F2	)	(509	×	10−12	)	×	(1.0	atm)	=	=	2.2	×	10−11	mol	dm	-3	V	(0.08206	dm	3	atm	K	−1mol−1	)	×	(10	+	273)	K	(b)	n(CCl3	F)	(261	×	10−12	)	×	(0.050	atm)	=	=	8.0	×	10−13	mol	dm	-3	V	(0.08206	dm	3	atm	K	−1mol−1	)	×	(200	K)	and	n(CCl2	F2	)	(509	×	10−12	)	×	(0.050	atm)	=	=	1.6	×	10−12	mol	dm	-3	V	(0.08206	dm	3	atm
K	−1mol−1	)	×	(200	K)	1B	The	kinetic	model	Answers	to	discussion	questions	1B.2	The	formula	for	the	mean	free	path	[eqn	1B.13]	is	kT	λ=	σp	In	a	container	of	constant	volume,	the	mean	free	path	is	directly	proportional	to	temperature	and	inversely	proportional	to	pressure.	The	former	dependence	can	be	rationalized	by	noting	that	the	faster	the
molecules	travel,	the	farther	on	average	they	go	between	collisions.	The	latter	also	makes	sense	in	that	the	lower	the	pressure,	the	less	frequent	are	collisions,	7	and	therefore	the	further	the	average	distance	between	collisions.	Perhaps	more	fundamental	than	either	of	these	considerations	are	dependences	on	size.	As	pointed	out	in	the	text,	the	ratio
T/p	is	directly	proportional	to	volume	for	a	perfect	gas,	so	the	average	distance	between	collisions	is	directly	proportional	to	the	size	of	the	container	holding	a	set	number	of	gas	molecules.	Finally,	the	mean	free	path	is	inversely	proportional	to	the	size	of	the	molecules	as	given	by	the	collision	cross	section	(and	therefore	inversely	proportional	to	the
square	of	the	molecules’	radius).	Solutions	to	exercises	1B.1(b)	The	mean	speed	is	[1B.8]	1/2	æ	8RT	ö	vmean	=	ç	è	π	M	ø	The	mean	translational	kinetic	energy	is	3kT	m	æ	3RT	ö	[1B.3]	=	2	2	çè	M	ø	The	ratios	of	species	1	to	species	2	at	the	same	temperature	are	Ek	=	vmean,1	vmean,2	(i)	1	2	mv	2	=	æM	ö	=ç	2	è	M1	ø	vmean,H	1	2	m	v2	=	1/2	and	2
vmean,Hg	æ	200.6	ö	=ç	è	4.003	ø	1	2	2	mvrms	=	Ek	1	Ek	2	=1	1/2	=	7.079	(ii)	The	mean	translation	kinetic	energy	is	independent	of	molecular	mass	and	depends	upon	temperature	alone!	Consequently,	because	the	mean	translational	kinetic	energy	for	a	gas	is	proportional	to	T,	the	ratio	of	mean	translational	kinetic	energies	for	gases	at	the	same
temperature	always	equals	1.	1B.2(b)	The	root	mean	square	speed	[1B.3]	is	1/2	æ	3RT	ö	vrms	=	ç	è	M	ø	For	CO2	the	molar	mass	is	M	=	(12.011	+	2×15.9994)×10–3	kg	mol–1	=	44.010×10–3	kg	mol–1	so	1/2	vrms	æ	3(8.3145	J	K	−1	mol−1	)(20	+	273)	K	ö	=ç		44.01	×	10−3	kg	mol−1	è	ø	1/2	vrms	æ	3(8.3145	J	K	−1	mol−1	)(20	+	273)	K	ö	=ç		4.003	×	10−3
kg	mol−1	è	ø	=	408	m	s	−1	For	He	1B.3(b)	=	1.35	×	103	m	s	−1	=	1.35	km	s	−1	The	Maxwell-Boltzmann	distribution	of	speeds	[1B.4]	is	3/2	2	æ	M	ö	v	2	e	−	Mv	/2	RT	f	(v)	=	4π	ç		è	2π	RT	ø	and	the	fraction	of	molecules	that	have	a	speed	between	v	and	v+dv	is	f(v)dv.	The	fraction	of	molecules	to	have	a	speed	in	the	range	between	v1	and	v2	is,	therefore,
∫	v2	v1	f	(v)	dv	.	If	the	range	is	relatively	small,	however,	such	that	f(v)	is	nearly	constant	over	that	range,	the	integral	may	be	approximated	by	f(v)∆v,	where	f(v)	is	evaluated	anywhere	within	the	range	and	∆v	=	v2	–	v1	.	Thus,	we	have,	with	M	=	44.010×10–3	kg	mol–1	[Exericse	1B.2(b)],	∫	v2	v1	æ	ö	44.010	×	10−3	kg	mol−1	f	(v)dv	≈	f	(v)∆v	=4π	ç		−1
−1	è	2π	(8.3145	J	K	mol	)(400	K)	ø	8	3/	2	(402.5	m	s	−1	)	2	æ	(44.010	×	10−3	kg	mol−1	)(402.5	m	s	−1	)2	ö	−1	×	exp	ç	−		×	(405	−	400)	m	s	−1	−1	2(8.3145	J	K	mol	)(400	K)	è	ø	=	0.0107	,	just	over	1%	1B.4(b)	The	most	probable,	mean,	and	mean	relative	speeds	are,	respectively	1/2	æ	8RT	ö	æ	2RT	ö	[1B.9]	vmp	=	ç	vmean	=	ç		è	π	M	ø	è	M	ø	The
temperature	is	T	=	(20+273)	K	=	293	K.	so	æ	2(8.3145	J	K	−1	mol−1	)(293	K)	ö	vmp	=	ç		è	2	×	1.008	×	10−3	kg	mol−1	ø	1/2	[1B.8]	æ	8RT	ö	vrel	=	ç	è	πµ	ø	1/2	[1B.10b]	1/2	=	1.55	×	103	m	s	−1	1/2	æ	8(8.3145	J	K	−1	mol−1	)(293	K)	ö	vmean	=	ç	=	1.75	×	103	m	s	−1	−3	−1		π	(2	×	1.008	×	10	kg	mol	)	è	ø	For	many	purposes,	air	can	be	considered	as	a	gas
with	an	average	molar	mass	of	29.0	g	mol–1	.	In	that	case,	the	reduced	molar	mass	[1B.10b]	is	MA	MB	(29.0	g	mol−1	)(2	×	1.008	g	mol−1	)	=	1.88	g	mol−1	=	µ=	MA	+	MB	(29.0	+	2	×	1.008)	g	mol−1	and	1/2	æ	8(8.3145	J	K	−1	mol−1	)(293	K)	ö	3	−1	vrel	=	ç		=	1.81	×	10	m	s	è	π	(1.88	×	10−3	kg	mol−1	)	ø	Comment.	One	computes	the	average	molar
mass	of	air	just	as	one	computes	the	average	molar	mass	of	an	isotopically	mixed	element,	namely	by	taking	an	average	of	the	species	that	have	different	masses	weighted	by	their	abundances.	Comment.	Note	that	vrel	and	vmean	are	very	nearly	equal.	This	is	because	the	reduced	mass	between	two	very	dissimilar	species	is	nearly	equal	to	the	mass
of	the	lighter	species	(in	this	case,	H2).	and	1B.5(b)	1/2	æ	8(8.3145	J	K	−1	mol−1	)(298	K)	ö	−1	(i)	vmean	[1B.8]	=	ç		=	475	m	s	è	π	(2	×	14.007	×	10−3	kg	mol−1	)	ø	(ii)	The	mean	free	path	[1B.13]	is	kT	kT	(1.381	×	10−23	J	K	−1	)(298	K)	1	Torr	λ=	=	=	×	2	−12	2	−9	σ	p	π	d	p	π	(395	×	10	m)	(1	×	10	Torr)	133.3	Pa	æ	8RT	ö	=ç	è	π	M	ø	1/2	=	6.3	×	104	m
=	63	km	The	mean	free	path	is	much	larger	than	the	dimensions	of	the	pumping	apparatus	used	to	generate	the	very	low	pressure.	(iii)	The	collision	frequency	is	related	to	the	mean	free	path	and	relative	mean	speed	by	[1B.12]	1B.6(b)	vrel	21/2	vmean	λ=	vrel	so	z	z=	21/2	(475	m	s	−1	)	=	1.	1	×	10−2	s	−1	6.3	×	104	m	z=	λ	=	λ	[1B.10a]	The	collision
diameter	is	related	to	the	collision	cross	section	by	σ	=	πd2	so	d	=	(σ/π)1/2	=	(0.36	nm2/π)1/2	=	0.34	nm	.	The	mean	free	path	[1B.13]	is	kT	λ=	σp	Solve	this	expression	for	the	pressure	and	set	λ	equal	to	10d:	9	(1.381	×	10−23	J	K	−1	)(293	K)	=	3.3	×	106	J	m	−3	=	3.3	MPa	σλ	0.36	×	(10−9	m)2	(10	×	0.34	×	10−9	m)	Comment.	This	pressure	works
out	to	33	bar	(about	33	atm),	conditions	under	which	the	assumption	of	perfect	gas	behavior	and	kinetic	model	applicability	at	least	begins	to	come	into	question.	p=	1B.7(b)	kT	=	The	mean	free	path	[1B.13]	is	λ=	kT	(1.381	×	10−23	J	K	−1	)(217	K)	=	=	5.8	×	10−7	m	σ	p	0.43	×	(10−9	m)2	(12.1	×	103	Pa	atm	−1	)	Solutions	to	problems	1B.2	The
number	of	molecules	that	escape	in	unit	time	is	the	number	per	unit	time	that	would	have	collided	with	a	wall	section	of	area	A	equal	to	the	area	of	the	small	hole.	This	quantity	is	readily	expressed	in	terms	of	ZW,	the	collision	flux	(collisions	per	unit	time	with	a	unit	area),	given	in	eqn	19A.6.	That	is,	−	Ap	dN	=	−Z	W	A	=	dt	(2π	mkT	)1/2	where	p	is
the	(constant)	vapour	pressure	of	the	solid.	The	change	in	the	number	of	molecules	inside	the	cell	in	an	interval	∆t	is	therefore	∆N	=−	Z	W	A∆t	,	and	so	the	mass	loss	is	1/2	1/2	æ	M	ö	æ	m	ö	∆t	∆t	=	−	Ap	ç	∆w	=	m∆N	=	−	Ap	ç	è	2π	RT	ø	è	2π	kT	ø	Therefore,	the	vapour	pressure	of	the	substance	in	the	cell	is	1/	2	æ	−∆w	ö	æ	2π	RT	ö	=	×	p	ç	è	A∆t	ø	çè	M	ø	For
the	vapour	pressure	of	germanium	æ	ö	æ	2π	(8.3145	J	K	−1	mol−1	)(1273	K)	ö	43	×	10−9	kg	p=ç		×ç		72.64	×	10−3	kg	mol−1	è	π	(0.50	×	10	−3	m)(7200	s)	ø	è	ø	1/2	=	7.3	×	10−3	Pa	=	7.3	mPa	1B.4	We	proceed	as	in	Justification	1B.2	except	that,	instead	of	taking	a	product	of	three	onedimensional	distributions	in	order	to	get	the	three-dimensional
distribution,	we	make	a	product	of	two	one-dimensional	distributions.	æ	m	ö	−	mv	2	/2kT	e	dvx	dv	y	f	(vx	,	v	y	)dvx	dv	y	=	f	(vx2	)	f	(v	2y	)dvx	dv	y	=	ç	è	2π	kT	ø	where	v	2	=	vx2	+	v	2y	.	The	probability	f(v)dv	that	the	molecules	have	a	two-dimensional	speed,	v,	in	the	range	v	to	v	+	dv	is	the	sum	of	the	probabilities	that	it	is	in	any	of	the	area	elements
dvxdvy	in	the	circular	shell	of	radius	v.	The	sum	of	the	area	elements	is	the	area	of	the	circular	shell	of	radius	v	and	thickness	dv	which	is	π(ν+dν)2	–	πν2	=	2πνdν	.	Therefore,	2	æ	M	ö	−	Mv	2	/2	RT	æ	mö	ve	f	(v)	=	ç		ve	−	mv	/2kT	=	ç	è	RT	ø	è	kT	ø	é	M	mù	êR	=	kú	ë	û	The	mean	speed	is	determined	as	∞	2	æ	mö	∞	vmean	=	∫	vf	(v)	dv	=	ç		∫	v	2	e	−	mv	/2kT	dv
0	0	è	kT	ø	Using	integral	G.3	from	the	Resource	Section	yields	æ	m	ö	æ	π	1/2	ö	æ	2kT	ö	vmean	=	ç		×	ç	×	è	kT	ø	è	4	ø	çè	m	ø	1B.6	3/2	æ	π	kT	ö	=	ç	è	2m	ø	The	distribution	[1B.4]	is	10	1/2	æ	π	RT	ö	=	ç	è	2	M	ø	1/2	3/2	æ	M	ö	2	−	Mv	2	/2	RT	.	ve	f	(v)	=	4π	ç	è	2π	RT	ø	The	proportion	of	molecules	with	speeds	less	than	vrms	is	P=	∫	æ	M	ö	f	(v)	dv	=	4π	ç	è	2π	RT	ø	vrms
0	3/2	∫	vrms	0	v	2	e	−	Mv	2	/2	RT	dv	Defining	a	≡	R	/	2RT	,	æ	aö	P	=	4π	ç		èπø	3/2	∫	vrms	0	æ	aö	dv	=	−4π	ç		èπø	2	−	av	2	ve	Defining	χ	2	≡	av	2	.	Then,	dv	=	a	−1/	2	dχ	and	æ	aö	P	=	−4π	ç		èπø	{∫	3/2	d	1	da	a1/2	vrms	a1/	2	0	2	e−	χ	d	χ	3/2	d	vrms	−	av2	dv	e	da	∫0	}	()	()	3/2	vrms	a1/	2	2	ïì	1	1	e−	χ	d	χ	+	1	í−	∫	0	2	a	a	îï	Then	we	use	the	error	function
[Integral	G.6]:	æ	aö	=	−4π	ç		èπø	∫	vrms	a1/	2	0	3/2	(	2	1/2	1/	2	d	vrms	a	e	−	χ	2	d	χ	ïü	ý	da	∫0	þï	)	e	−	χ	d	χ	=	π	1/2	/	2	erf	(vrms	a1/2	)	.	æ	dvrms	a1/2	ö	d	vrms	a1/	2	−	χ	2	1	æ	c	ö	−	av	2	−	av	2	×	(e	rms)	=	ç	1/2		e	rms	e	d	χ	=	ç		∫	da	0	2èa	ø	è	da	ø	where	we	have	used	d	dz	∫	z	0	f	(	y)	d	y	=	f	(z)	(	)	Substituting	and	cancelling	we	obtain	P	=	erf	(vrms	a1/2	)	−
2vrms	a1/2	/	π	1/2	e	Now	æ	3RT	ö	vrms	=	ç	è	M	ø	and	P	=	erf	çç	æ	ç	1/2	æ	3RT	ö	vrms	a1/2	=	ç	è	M	ø	so	ö	1/2	æ	M	ö	×ç	è	2RT	ø	1/2	2	−	avrms	æ	3ö	=ç		è	2ø	1/2	1/2	3		æ	6	ö	−3/2		−	e	=	0.92	−	0.31	=	0.61	2	ø	çè	π	ø	çè	Therefore,	(a)	1	–	P	=	39%	have	a	speed	greater	than	the	root	mean	square	speed.	(b)	P	=	61%	of	the	molecules	have	a	speed	less	than	the
root	mean	square	speed.	(c)	For	the	proportions	in	terms	of	the	mean	speed	vmean,	replace	vrms	by	(	vmean	=	8kT	/	π	m	Then	)	=	(8	/	3π	)	1/2	1/2	(	vrms	)	P	=	erf	(vmean	a1/2	)	−	2vmean	a1/2	/	π	1/2	×	(e	(	=	erf	2	/	π	1/2	)−	(4	/	π	)e	−4/π	vmeana1/2	=	2/π1/2	.	so	−	av	2mean	)	=	0.889	−	0.356	=	0.533	That	is,	53%	of	the	molecules	have	a	speed	less
than	the	mean,	and	47%	have	a	speed	greater	than	the	mean.	1B.8	The	average	is	obtained	by	substituting	the	distribution	(eqn	1B.4)	into	eqn	1B.7:	æ	M	ö	n	∫0	v	f	(v)	dv	=	4π	çè	2π	RT	ø	For	even	values	of	n,	use	Integral	G.8:	vn	=	v	where	n	∞	æ	M	ö	=	4π	ç	è	2π	RT	ø	3/2	3/2	∫	∞	0	v	n+2	e	−	Mv	æ	n+2	ö	ç	2	ø	(n	+	1)!!	æ	2RT	ö	è		æ	n+4	ö	ç	çè	2	ø	è	M	ø	2
(n+1)!!	=	1	×	3	×	5	...	×	(n+1)	1/2	Thus	vn	1/n	ìï	æ	RT	ö	üï	=	í(n	+	1)!!ç	ý	è	M	ø	þï	îï	even	n	11	2	/2	RT	æ	2π	RT	ö	çè	M	ø	dv	1/2	æ	nö	æ	RT	ö	çè	2	ø	=	(n	+	1)!!ç	è	M	ø	For	odd	values	of	n,	use	Integral	G.7:	æ	n	+	1ö	æ	n+3ö	3/2	ç	n/2	ø	!	æ	2RT	ö	èç	2	ø	2	æ	ö	è	2	æ	2RT	ö	M	n	v	=	4π	ç	=	1/2	ç	çè	M	ø	2	è	2π	RT	ø	π	è	M	ø	1/n	1/2	ìï	2	æ	2RT	ö	n/2	üï	21/n	æ	2RT	ö	Thus	odd	n
v	=	í	1/2	ç	=	ý	π	è	M	ø	ï	π	1/2n	çè	M	ø	îï	þ	Question.	Show	that	these	expressions	reduce	to	vmean	and	vrms	for	n	=	1	and	2	respectively.	n	1B.10	1/n	Dry	atmospheric	air	is	78.08%	N2,	20.95%	O2,	0.93%	Ar,	0.04%	CO2,	plus	traces	of	other	gases.	Nitrogen,	oxygen,	and	carbon	dioxide	contribute	99.06%	of	the	molecules	in	a	volume	with	each
molecule	contributing	an	average	rotational	energy	equal	to	kT.	(Linear	molecules	can	rotate	in	two	dimensions,	contributing	two	“quadratic	terms”	of	rotational	energy,	or	kT	by	the	equipartition	theorem	[Topic	B.3(b)].	The	rotational	energy	density	is	given	by	0.9906N	ε	E	0.9906NkT	=	0.9906	p	=	ρR	=	R	=	V	V	V	=	0.9906(1.013	×	105	Pa)	=	1.004
×	105	J	m	−3	=	0.1004	J	cm	−3	The	total	energy	density	is	translational	plus	rotational	(vibrational	energy	contributing	negligibly):	R	ρtot	=	ρT	+	ρR	=	0.15	J	cm	−3	+	0.10	J	cm	−3	=	0.25	J	cm	−3	1B.12	The	fraction	of	molecules	(call	it	F)	between	speeds	a	and	b	is	given	by	F(a,	b)	=	∫	b	a	f	(v)	dv	where	f(v)	is	given	by	eqn	1B.4.	This	integral	can	be
approximated	by	a	sum	over	a	discrete	set	of	velocity	values.	For	convenience,	let	the	velocities	vi	be	evenly	spaced	within	the	interval	such	that	vi+1	=	vi	+	∆v:	F	(a,	b)	≈	∑	f	(vi	)Δv	On	a	spreadsheet	or	other	mathematical	software,	make	a	column	of	velocity	values	and	then	a	column	for	f(v)	[1B.4]	at	300	K	and	at	1000	K.	Figure	1B.1	shows	f(v)
plotted	against	v	for	these	two	temperatures.	Each	curve	is	labeled	with	the	numerical	value	of	T/K,	and	each	is	shaded	under	the	curve	between	the	speeds	of	100	and	200	m	s–1.	F(a,b)	is	simply	the	area	under	the	curve	between	v	=	a	and	v	=	b.	One	should	take	some	care	to	avoid	double	counting	at	the	edges	of	the	interval,	that	is,	not	including
both	endpoints	of	the	interval	with	full	weight.	example,	beginning	the	sum	with	the	area	under	the	curve	at	those	speeds.	Using	a	spreadsheet	that	evaluates	f(v)	at	5-m	s–1	intervals,	and	including	points	at	both	100	and	200	m	s–1	with	half	weight,	F(100	m	s–1,	200	m	s–1)	≈	0.281	at	300	K	and	0.066	at	1000	K.	Figure	1B.1	12	1C	Real	gases	Answers
to	discussion	questions	1C.2	The	critical	constants	represent	the	state	of	a	system	at	which	the	distinction	between	the	liquid	and	vapour	phases	disappears.	We	usually	describe	this	situation	by	saying	that	above	the	critical	temperature	the	liquid	phase	cannot	be	produced	by	the	application	of	pressure	alone.	The	liquid	and	vapour	phases	can	no
longer	coexist,	though	supercritical	fluids	have	both	liquid	and	vapour	characteristics.	1C.4	The	van	der	Waals	equation	is	a	cubic	equation	in	the	volume,	V.	Every	cubic	equation	has	some	values	of	the	coefficients	for	which	the	number	of	real	roots	passes	from	three	to	one.	In	fact,	any	equation	of	state	of	odd	degree	n	>	1	can	in	principle	account
for	critical	behavior	because	for	equations	of	odd	degree	in	V	there	are	necessarily	some	values	of	temperature	and	pressure	for	which	the	number	of	real	roots	of	V	passes	from	n	to	1.	That	is,	the	multiple	values	of	V	converge	from	n	to	1	as	the	temperature	approaches	the	critical	temperature.	This	mathematical	result	is	consistent	with	passing	from
a	two	phase	region	(more	than	one	volume	for	a	given	T	and	p)	to	a	one	phase	region	(only	one	V	for	a	given	T	and	p),	and	this	corresponds	to	the	observed	experimental	result	as	the	critical	point	is	reached.	Solutions	to	exercises	1C.1(b)	The	van	der	Waals	equation	[1C.5a]	is	2	an	p	=	nRT	−	2	V	−	nb	V	From	Table	1C.3	for	H2S,	a	=	4.484	dm6	atm
mol–1	and	b	=	0.0434	dm3	mol–1.	(1.0	mol)	×	(0.08206	dm	3	atm	mol−1	K	−1	)	×	(273.15	K)	(i)	p=	22.414	dm	3	−	(1.0	mol)	×	(4.34	×	10−2	dm	3	mol−1	)	−	(ii)	p=	−	1C.2(b)	(4.484	dm	6	atm	mol−2	)	×	(1.0	mol)2	=	0.99	atm	(22.414	dm	3	)2	(1.0	mol)	×	(0.08206	dm	3	atm	mol−1	K	−1	)	×	(500	K)	0.150	dm	3	−	(1.0	mol)	×	(4.34	×	10−2	dm	3	mol−1	)
(4.484	dm	3	atm	mol−1	)	×	(1.0	mol)2	=	190	atm	(2	sig.	figures)	(0.150	dm	3	)2	The	conversions	needed	are	as	follows:	1	atm	=	1.013×105	Pa,	1	Pa	=	1	kg	m–1	s–2,	1	dm6	=	(10–1	m)6	=	10–6	m6,	1	dm3	=	10–3	m3.	Therefore,	a	=	1.32	atm	dm	6	mol−2	×	1.013	×	105	kg	m	−1	s	−2	10−6	m	6	×	1	atm	dm	6	=	1.34	×	10−1	kg	m	5	s	−2	mol−2	and
1C.3(b)	b	=	0.0426	dm	3	mol−1	×	10−3	m	3	=	4.26	×	10−5	m	3	mol−1	dm	3	The	compression	factor	Z	is	[1C.1]	V	pVm	Z	=	m°	=	RT	Vm	(i)	Because	Vm	=	Vmο	+	0.12	Vmο	=	(1.12)Vmο	,	we	have	Z	=	1.12	(ii)	The	molar	volume	is	13	æ	RT	ö	Vm	=	(1.12)Vmο	=	(1.12)	×	ç	è	p	ø	æ	(0.08206	dm	3	atm	mol−1	K	−1	)	×	(350	K)	ö	3	−1	=	(1.12)	×	ç		=	2.7	dm
mol	12	atm	è	ø	Since	Vm	>	Vmo	repulsive	forces	dominate.	1C.4(b)	(i)	According	to	the	perfect	gas	law	3	RT	(8.3145	J	K	−1	mol−1	)	×	(298.15	K)	æ	1	dm	ö	×	ç	−1		=	0.124	dm	3	mol−1	=	V	=	−1	p	è	10	m	ø	(200	bar)	×	(105	Pa	bar	)	(ii)	The	van	der	Waals	equation	[1C.5b]	is	a	cubic	equation	in	Vm.	Cubic	equations	can	be	solved	analytically.	However,
this	approach	is	cumbersome,	so	we	proceed	as	in	Example	1C.1.	The	van	der	Waals	equation	is	rearranged	to	the	cubic	form	æ	RT	ö	2	æ	a	ö	ab	Vm	+	ç		Vm	−	=0	Vm3	−	ç	b	+		p	ø	p	è	è	pø	o	m	æ	RT	ö	2	æ	a	ö	ab	with	x	=	Vm/(dm3	mol–1)	.	x3	−	ç	b	+	=0	x	+ç		x−		p	ø	p	è	è	pø	It	will	be	convenient	to	have	the	pressure	in	atm:	1	atm	200	bar	×	=	197.4	atm
1.013	bar	The	coefficients	in	the	equation	are	RT	(0.08206	dm	3	atm	mol−1	K	−1	)	×	(298.15	K)	b+	=	(3.183	×	10−2	dm	3	mol−1	)	+	p	197.4	atm	or	=	(3.183	×	10−2	+	0.1239)	dm	3	mol−1	=	0.1558	dm	3	mol−1	a	1.360	dm	6	atm	mol−2	=	=	6.89	×	10−3	dm	6	mol−2	p	197.4	atm	ab	(1.360	dm	6	atm	mol−2	)	×	(3.183	×	10−2	dm	3	mol−1	)	=	=	2.193
×	10−4	dm	9	mol−3	p	197.4	atm	Thus,	the	equation	to	be	solved	is	x	3	−	0.1558x	2	+	(6.89	×	10−3	)x	−	(2.193	×	10−4	)	=	0	.	Calculators	and	computer	software	for	the	solution	of	polynomials	are	readily	available.	In	this	case	we	find	x	=	0.112	and	Vm	=	0.112	dm3	mol–1	.	The	perfect-gas	value	is	about	15	percent	greater	than	the	van	der	Waals
result.	1C.5(b)	The	molar	volume	is	obtained	by	solving	Z	=	Vm	=	pVm	[1C.2],	for	Vm	,	which	yields	RT	ZRT	(0.86)	×	(0.08206	dm	3	atm	mol−1	K	−1	)	×	(300	K)	=	1.06	dm	3	mol−1	=	p	20	atm	V	=	nVm	=	(8.2	×	10−3	mol)	×	(1.06	dm	3	mol−1	)	=	8.7	×	10−3	dm	3	=	8.7	cm	3	(i)	Then,	(ii)	An	approximate	value	of	B	can	be	obtained	from	eqn	1C.3b	by
truncation	of	the	series	expansion	after	the	second	term,	B/Vm,	in	the	series.	Then,	æ	pV	ö	B	=	Vm	ç	m	−	1	=	Vm	×	(Z	−	1)	è	RT	ø	=	(1.06	dm	3	mol−1	)	×	(0.86	−	1)	=	−0.15	dm	3	mol−1	1C.6(b)	Equations	1C.6are	solved	for	b	and	a,	respectively,	and	yield	a	=	27b2pc	=	3Vc2pc	.	b	=	Vc/3	and	Substituting	the	critical	constants	b=	148	cm	3	mol−1	=
49.3	cm	3	mol−1	=	0.0493	dm	3	mol−1	3	14	−2	and	a	=	3	×	(0.148	dm	3	mol−1	)2	×	(48.20	atm)	=	3.17	dm	6	atm	mol	But	this	problem	is	overdetermined.	We	have	another	piece	of	information	8a	Tc	=	27Rb	If	we	use	Tc	along	with	Vc	as	above,	we	would	arrive	at	the	same	value	of	b	along	with	27RbTc	9RVcTc	a=	=	8	8	9(0.08206	dm	3	atm	mol−1	K
−1	)(0.148	dm	3	mol−1	)(305.4	K)	=	8	6	−2	=	4.17	dm	atm	mol	Or	we	could	use	Tc	along	with	pc.	In	that	case,	we	can	solve	the	pair	of	equations	for	a	and	b	by	first	setting	the	two	expressions	for	a	equal	to	each	other:	27RbTc	a	=	27b2	pc	=	8	Solving	the	resulting	equation	for	b	yields	RTc	(0.08206	dm	3	atm	mol−1	K	−1	)(305.4	K)	=	=	0.06499	dm	3
mol−1	b=	8(48.20	atm)	8	pc	and	then	a	=	27(0.06499	dm3	mol–1)2(48.20	atm)	=	5.497	dm6	atm	mol–2	These	results	are	summarized	in	the	following	table	Using	Vc	&	p	c	Vc	&	Tc	pc	&	Tc	a/dm6	atm	mol–2	3.17	4.17	5.497	b/dm3	mol–1	0.0493	0.0493	0.06499	One	way	of	selecting	best	values	for	these	parameters	would	be	to	take	the	mean	of	the
three	determinations,	namely	a	=	4.28	dm6	atm	mol–2	and	b	=	0.0546	dm3	mol–1	.	By	interpreting	b	as	the	excluded	volume	of	a	mole	of	spherical	molecules,	we	can	obtain	an	estimate	of	molecular	size.	The	centres	of	spherical	particles	are	excluded	from	a	sphere	whose	radius	is	the	diameter	of	those	spherical	particles	(i.e.,	twice	their	radius);	that
volume	times	the	Avogadro	constant	is	the	molar	excluded	volume	b	æ	4π	(2r)3	ö	b	=	NA	ç	3	ø	è	1	æ	3b	ö	so	r	=	ç	2	è	4π	N	A	ø	1	æ	3(0.0546	dm	3	mol−1	)	ö	r=	ç	2	è	4π	(6.022	×	1023	mol−1	)	ø	1C.7(b)	1/3	1/3	=	1.39	×	10−9	dm	=	0.139	nm	The	Boyle	temperature,	TB,	is	the	temperature	at	which	the	virial	coefficient	B	=	0.	In	order	to	express	TB	in	terms
of	a	and	b,	the	van	der	Waals	equation	[1C.5b]	must	be	recast	into	the	form	of	the	virial	equation.	a	RT	−	2	p=	Vm	−	b	Vm	a	üï	RT	ìï	1	Factoring	out	RT	yields	p	=	−	í	ý	Vm	Vm	îï1	−	b	/	Vm	RTVm	þï	So	long	as	b/Vm	<	1,	the	first	term	inside	the	brackets	can	be	expanded	using	(1–x)–1	=	1	+	x	+	x2	+	...	,	which	gives	ü	a	ö	æ	1ö	RT	ìï	æ	ï	×	ç		+L	ý	p=	í1
+	ç	b	−		RT	ø	è	Vm	ø	Vm	ïî	è	ï	þ		a	We	can	now	identify	the	second	virial	coefficient	as	B	=	b	−	RT	15	At	the	Boyle	temperature	27Tc	a	a	so	TB	=	=	bR	8	RTB	6	–2	(i)	From	Table	1C.3,	a	=	4.484	dm	atm	mol	and	b	=	0.0434	dm3	mol–1.	Therefore,	B	=	0	=	b−	(4.484	dm	6	atm	mol−2	)	=	1259	K	(0.08206	L	atm	mol−1	K	−1	)	×	(0.0434	dm	3	mol−1	)	(ii)
As	in	Exercise	1C.6(b),	TB	=	æ	4π	(2r)3	ö	b	=	NA	ç	3	ø	è	1	æ	3b	ö	so	r	=	ç	2	è	4π	N	A	ø	1	æ	3(0.0434	dm	3	mol−1	)	ö	r=	ç	2	è	4π(6.022	×	1023	mol−1	)	ø	1/3	1/3	=	1.29	×	10−9	dm	=	1.29	×	10−10	m	=	0.129	nm	1C.8(b)	States	that	have	the	same	reduced	pressure,	temperature,	and	volume	[1C.8]	are	said	to	correspond.	The	reduced	pressure	and
temperature	for	N2	at	1.0	atm	and	25°C	are	[Table	1C.2]	p	1.0	atm	T	(25	+	273)	K	=	=	0.030	and	Tr	=	=	=	2.36	pr	=	pc	33.54	atm	Tc	126.3K	The	corresponding	states	are	(i)	For	H2S	(critical	constants	obtained	from	NIST	Chemistry	WebBook)	T	=	2.36(373.3	K)	=	881	K	p	=	0.030(89.7	atm)	=	2.67	atm	(ii)	For	CO2	T	=	2.36(304.2	K)	=	718	K	p	=
0.030(72.9	atm)	=	2.2	atm	(iii)	For	Ar	T	=	2.36(150.7	K)	=	356	K	p	=	0.030(48.0	atm)	=	1.4	atm	1C.9(b)	The	van	der	Waals	equation	[1C.5b]	is	a	RT	−	2	p=	Vm	−	b	Vm	which	can	be	solved	for	b	RT	(8.3145	J	K	−1	mol−1	)	×	(288	K)	b	=	Vm	−	=	4.00	×	10−4	m	3	mol−1	−	a	æ	0.76	m	6	Pa	mol−2	ö	p+	2	4.0	×	106	Pa	+	ç	Vm	è	(4.00	×	10−4	m	3	mol−1	)2
ø	=	1.3	×	10−4	m	3	mol−1	The	compression	factor	is	pVm	(4.0	×	106	Pa)	×	(4.00	×	10−4	m	3	mol−1	)	=	0.67	Z=	[1C.2]	=	RT	(8.3145	J	K	−1	mol−1	)	×	(288	K)	Solutions	to	problems	1C.2	From	the	definition	of	Z	[1C.1]	and	the	virial	equation	[1C.3b],	Z	may	be	expressed	in	virial	form	as	2	æ	1ö	æ	1ö	Z	=	1	+	B	ç		+	Cç		+	L	è	Vm	ø	è	Vm	ø		16	p	Since	Vm
=	RT	(by	assumption	of	approximate	perfect	gas	behavior),	1	=	;	hence	upon	Vm	RT	p	æ	ö	substitution,	and	dropping	terms	beyond	the	second	power	of	ç	1		è	Vm	ø	æ	p	ö	æ	p	ö	+Cç	Z	=	1+	Bç		è	RT	ø	è	RT	ø	2	æ	ö	100	atm	=	1	+	(−21.7	×	10−3	dm	3	mol−1	)	×	ç	−1	−1	3	è	(0.08206	dm	atm	mol	K	)	×	(273K)	ø	æ	ö	100	atm	+(1.200	×	10−3	dm	6	mol−2	)	×	ç	−1
−1	3	è	(0.08206	dm	atm	mol	K	)	×	(273K)	ø	2	=	1	−	0.0968	+	0.0239	=	0.927	æ	RT	ö	Vm	=	(0.927)	ç	è	p	ø	æ	(0.08206	dm	3	atm	mol−1	K	−1	)(273	K)	ö	3	=	(0.927)	ç		=	0.208	dm	100	atm	è	ø	Question.	What	is	the	value	of	Z	obtained	from	the	next	approximation	using	the	value	of	Vm	just	calculated?	Which	value	of	Z	is	likely	to	be	more	accurate?	1C.4
Since	B′(TB)	=	0	at	the	Boyle	temperature	[Topic	1.3b]:	B	′(TB	)	=	a	+	be	−	c/TB2	=0	1/	2	Solving	for	TB:	1C.6	ì	ï	−c	T	=	í	B	ï	ln	−a	b	î	(	)	1/	2	ü	ï	ý=	ï	þ	æ	2	ö	æ	2a	ö	From	Table	1C.4	Tc	=	ç		×	ç	è	3	ø	è	3bR	ø	1/2	ì	ü	ï	ï	2	−(1131K	)	ï	ï	2	í	ý=	5.0	×	10	K	−1	ï	ln	æ	−(−0.1993bar	)	ö	ï	ïî	èç	(0.2002	bar	−1	)	ø	ïþ	æ	1	ö	æ	2aR	ö	,	pc	=	ç		×	ç	3		è	12	ø	è	3b	ø	1/2	(
32bRa	)	æ	12bpc	ö	may	be	solved	for	from	the	expression	for	pc	and	yields	ç	.	è	R	ø	Thus	æ	2	ö	æ	12	pc	b	ö	æ	8	ö	æ	pcVc	ö	=	Tc	=	ç		×	ç	×	è	3	ø	è	R	ø	çè	3	ø	çè	R	ø	1/	2	æ	8	ö	æ	(40	atm)	×	(160	×	10−3	dm	3	mol−1	)	ö	=ç		×ç	=	210K	è	3	ø	è	0.08206	dm	3	atm	mol−1	K	−1	ø	By	interpreting	b	as	the	excluded	volume	of	a	mole	of	spherical	molecules,	we	can	obtain
an	estimate	of	molecular	size.	The	centres	of	spherical	particles	are	excluded	from	a	sphere	whose	radius	is	the	diameter	of	those	spherical	particles	(i.e.,	twice	their	radius);	that	volume	times	the	Avogadro	constant	is	the	molar	excluded	volume	b	æ	4π(2r)3	ö	b	=	NA	ç	3	ø	è	1	æ	3b	ö	so	r	=	ç	2	è	4πN	A	ø	ö	1æ	160	cm	3	mol−1	r=	ç	23	−1		2	è	4π(6.022	×	10
mol	)	ø	1C.8	1/3	1æ	V	ö	[Exercise	1C.6(b)]	=	ç	c		2	è	4πN	A	ø	1/3	1/3	=	1.38	×	10−8	cm	=	0.138	nm	Substitute	the	van	der	Waals	equation	[1C.5b]	into	the	definition	of	the	compression	factor	[1C.2]	17	Z=	pVm	1	[Exercise	1C.7(a)]	=	−	a	RTVm	RT	æ	ö	b	ç1	−	V		è	m	ø	−1	2	æ	ö	æ	ö	which	upon	expansion	of	ç1	−	b		=+	1	b	+	ç	b		+		yields	V	V	è	è	Vm	ø	m	ø	m	2
a	ö	æ	1	ö	2æ	1	ö	æ	Z	=1	+	ç	b	−		×	ç		+	b	ç		+	RT	ø	è	Vm	ø	è	è	Vm	ø	We	note	that	all	terms	beyond	the	second	are	necessarily	positive,	so	only	if	2	a	b	æ	b	ö	>	+	ç		+	RTVm	Vm	è	Vm	ø	can	Z	be	less	than	one.	If	we	ignore	terms	beyond	b	,	the	conditions	are	simply	stated	as	Vm	a	a	>b	Z	>	1	when	1	when	size	effects	(short-range	repulsions)	predominate.	Z	<
1	when	1C.10	The	Dieterici	equation	is	−	a/	RTV	m	RTe	[Table	1C.4]	Vm	−	b	At	the	critical	point	the	derivatives	of	p	with	respect	to	Vm	equal	zero	along	the	isotherm	defined	by	T	=	Tc	.	This	means	that	(∂p	/	∂Vm	)T	=	0	and	(∂	2	p	/	∂Vm2	)T	=	0	at	the	critical	point.	p=	ìï	aVm	−	ab	−	RTVm2	üï	æ	∂p	ö	=	p	í	2	ý	ç	∂V		è	m	øT	îï	Vm	(Vm	−	b)(RT	)	þï	and
−2aVm2	+	4Vm	ab	+	RTVm3	−	2ab	2	)	(	æ	∂	2	p	ö	æ	∂p	ö	ì	aVm	−	ab	−	RTVm2	ü	=	ý+	p	ç	2	ç		í	2	Vm3	éë	(Vm	−	b)	2	(	RT	)	ùû	è	∂Vm	ø	T	è	∂Vm	øT	î	Vm	(Vm	−	b)(	RT	)	þ	{	}	Setting	the	Dieterici	equation	equal	to	the	critical	pressure	and	making	the	two	derivatives	vanish	at	the	critical	point	yields	three	equations:	pc	=	−	a/	RT	Vc	c	RTc	e	Vc	−	b	aVc	−	ab
−	RTcVc2	=	0	−2aVc2	+	4Vc	ab	+	RTcVc3	−	2ab2	=	0	Solving	the	middle	equation	for	Tc,	substitution	of	the	result	into	the	last	equation,	and	solving	for	Vc	yields	the	result	b	=	Vc	/	2	Vc	=	2b	or	(The	solution	Vc	=	b	is	rejected	because	there	is	a	singularity	in	the	Dieterici	equation	at	the	point	Vm	=	b.)	Substitution	of	Vc	=	2b	into	the	middle
equation	and	solving	for	Tc	gives	the	result	or	a	=	2RTcVc	Tc	=	a	/	4bR	Substitution	of	Vc	=	2b	and	Tc	=	a	/	4bR	into	the	first	equation	gives	and	−2	ae	−2	2RTc	e	=	Vc	4b2	The	equations	for	Vc,	Tc,	pc	are	substituted	into	the	equation	for	the	critical	compression	factor	[1C.7]	to	give	pV	Zc	=	c	c	=	2e	−2	=	0.2707	.	RTc	This	is	significantly	lower	than
the	critical	compression	factor	that	is	predicted	by	the	van	der	Waals	equation:	Zc	(vdW)	=	pcVc	/	RTc	=	3	/	8	=	0.3750	.	Experimental	values	for	Zc	are	pc	=	18	summarized	in	Table	1C.2	where	it	is	seen	that	the	Dieterici	equation	prediction	is	often	better.	1C.12	pVm	=	1	+	B	′p	+	C	′p	2	+	[1C.3a]	RT	pVm	1	B	+	C2	+	[1C.3b]	=+	RT	Vm	Vm	Thus	B	′p
+	C	′p	2	+		=	B	+	C2	+		Vm	Vm	Multiply	through	by	Vm,	replace	pVm	by	RT{1+(B/Vm)	+	...},	and	equate	coefficients	of	powers	of	1/Vm:	2	2	B	′RT	+	BB	′RT	+	C	′R	T	+		=	B	+	C	+		Vm	Vm	Hence,	B′RT	=	B,	implying	that	B	′	=	1C.14	B	RT	Also	BB′RT	+	C′R2T2	=	C	=	B2	+	C′R2T2,	implying	that	C	′	=	Write	æ	∂V	ö	æ	∂V	ö	Vm	=	f(T,	p);	then	dVm	=	ç	m		dT
+	ç	m		dp	∂T	è	∂p	ø	T	è	øp	C	−	B2	R	2T	2	Restricting	the	variations	of	T	and	p	to	those	which	leave	Vm	constant,	that	is	dVm	=	0,	we	obtain	−1	æ	∂p	ö	æ	∂Vm	ö	æ	∂p	ö	æ	∂Vm	ö	æ	∂p	ö	ç	∂T		=	−ç	∂p		×	çè	∂T	ø	=	−ç	∂V		×	çè	∂T	ø	è	øT	è	øp	è	m	øT	Vm	Vm	From	the	equation	of	state	æ	∂p	ö	V	RT	+	2(a	+	bT	)	RT	2(a	+	bT	)	=−	m	ç	∂V		=	−	2	−	3	Vm3	Vm	Vm	è	m	øT	and
RVm	+	b	æ	∂p	ö	b	R	çè	∂T	ø	=	V	+	V	2	=	V	2	m	V	m	m	m	Substituting	æ	ö	æ	RVm	+	b	ö	æ	∂Vm	ö	Vm3	RVm2	+	bVm	=	=		ç	ç	ç	∂T		è	ø	P	è	Vm	RT	+	2(a	+	bT	)	ø	è	Vm2	ø	Vm	RT	+	2(a	+	bT	)	From	the	equation	of	state,	a	+	bT	=	pVm2	–	RTVm	Then	1C.16	æ	∂Vm	ö	RVm2	+	bVm	RVm	+	bm	=	=	ç	∂T		2	2	pVm	−	RT	−	2RTV	V	RT	+	2	pV	è	øP	m	m	m	Z=	Vm	[1C.1],
where	Vm°	=	the	molar	volume	of	a	perfect	gas	Vmo	From	the	given	equation	of	state	RT	Vm	=	b	+	=	b	+	Vmo	p	For	Vm	=10b,	we	have	10b	=	b	+	Vm°,	so	Vm°	=	9b	.	10	Then	Z	=	10b	=	=	1.11	9b	9	1C.18	The	virial	equation	is	æ	ö	B	C	+	2	+		[1C.3b]	pVm=	RT	ç1	+	è	Vm	Vm	ø	19	or	pVm	B	C	=+	1	+	+	RT	Vm	Vm2	(a)	If	we	assume	that	the	series	may
be	truncated	after	the	B	term,	then	a	plot	of	pVm	vs	1	RT	Vm	will	have	B	as	its	slope	and	1	as	its	y-intercept.	Transforming	the	data	gives	p/MPa	Vm/(dm3	mol–1)	(1/Vm)/(mol	dm–3)	pVm/RT	0.4000	6.2208	0.1608	0.9976	0.5000	4.9736	0.2011	0.9970	0.6000	4.1423	0.2414	0.9964	0.8000	3.1031	0.3223	0.9952	1.000	2.4795	0.4033	0.9941	1.500	1.6483
0.6067	0.9912	2.000	1.2328	0.8112	0.9885	2.500	0.98357	1.017	0.9858	3.000	0.81746	1.223	0.9832	4.000	0.60998	1.639	0.9782	Figure	1C.1(a)	The	data	are	plotted	in	Figure	1C.1(a).	The	data	fit	a	straight	line	reasonably	well,	and	the	yintercept	is	very	close	to	1.	The	regression	yields	B	=	–1.324×10–2	dm3	mol–1	.	(b)	A	quadratic	function	fits	the
data	somewhat	better	(Figure	1C.1(b))	with	a	slightly	better	correlation	coefficient	and	a	y-intercept	closer	to	1.	This	fit	implies	that	truncation	of	the	virial	series	after	the	term	with	C	is	more	accurate	than	after	just	the	B	term.	The	regression	then	yields	20	Figure	1C.1(b)	B	=	–1.503×10–2	dm3	mol–1	1C.20	and	C	=	–1.06×10–3	dm6	mol–2	The
perfect	gas	equation	[1A.5]	gives	RT	(8.3145	J	K	−1	mol−1	)(250	K)	=	=	0.0139	m	3	=	13.9	dm	3	p	150	×	103	Pa	The	van	der	Waals	equation	[1C.5b]	is	a	cubic	equation	in	Vm.	Cubic	equations	can	be	solved	analytically.	However,	this	approach	is	cumbersome,	so	we	proceed	as	in	Example	1C.1.	The	van	der	Waals	equation	is	rearranged	to	the	cubic
form	æ	ab	RT	ö	2	æ	a	ö	=0	V	+	V	−	Vm3	−	ç	b	+	p	ø	m	çè	p	ø	m	p	è	Vm	=	æ	ab	RT	ö	2	æ	a	ö	x	+ç		x−	with	x	=	Vm/(dm3	mol–1)	.	=0	x3	−	ç	b	+	p	p	ø	è	pø	è	It	will	be	convenient	to	have	the	pressure	in	atm:	1	atm	150	kPa	×	=	1.48	1	atm	101.3	kPa	The	coefficients	in	the	equation	are	RT	(0.08206	dm	3	atm	mol−1	K	−1	)	×	(250	K)	b+	=	(5.42	×	10−2	dm	3
mol−1	)	+	p	1.48	1	atm	or	=	(5.42	×	10−2	+	13.85)	dm	3	mol−1	=	13.9	1	dm	3	mol−1	a	6.260	dm	6	atm	mol−2	=	=	4.23	dm	6	mol−2	p	1.48	1	atm	ab	(6.260	dm	6	atm	mol−2	)	×	(5.42	×	10−2	dm	3	mol−1	)	=	2.29	1	×	10−2	dm	9	mol−3	=	p	1.48	1	atm	Thus,	the	equation	to	be	solved	is	x	3	−	13.9	1x	2	+	4.23x	−	(2.29	1	×	10−2	)	=	0	.	Calculators	and
computer	software	for	the	solution	of	polynomials	are	readily	available.	In	this	case	we	find	x	=	13.6	and	Vm	=	13.6	dm3	mol–1	.	Taking	the	van	der	Waals	result	to	be	more	accurate,	the	error	in	the	perfect-gas	value	is	13.9	−	13.6	×	100%	=	2%	13.6	21	Assume	all	gases	are	perfect	unless	stated	otherwise.	Unless	otherwise	stated,	thermochemical
data	are	for	298.15	K.	2	The	First	Law	2A	Internal	energy	Answers	to	discussion	questions	2A.2	Work	is	a	precisely	defined	mechanical	concept.	It	is	produced	from	the	application	of	a	force	through	a	distance.	The	technical	definition	is	based	on	the	realization	that	both	force	and	displacement	are	vector	quantities	and	it	is	the	component	of	the	force
acting	in	the	direction	of	the	displacement	that	is	used	in	the	calculation	of	the	amount	of	work,	that	is,	work	is	the	scalar	product	of	the	two	vectors.	In	vector	notation	w	=−F	⋅	d	=−	fd	cos	θ	,	where	θ	is	the	angle	between	the	force	and	the	displacement.	The	negative	sign	is	inserted	to	conform	to	the	standard	thermodynamic	convention.	Heat	is
associated	with	a	non-adiabatic	process	and	is	defined	as	the	difference	between	the	adiabatic	work	and	the	non-adiabatic	work	associated	with	the	same	change	in	state	of	the	system.	This	is	the	formal	(and	best)	definition	of	heat	and	is	based	on	the	definition	of	work.	A	less	precise	definition	of	heat	is	the	statement	that	heat	is	the	form	of	energy
that	is	transferred	between	bodies	in	thermal	contact	with	each	other	by	virtue	of	a	difference	in	temperature.	The	interpretations	of	heat	and	work	in	terms	of	energy	levels	and	populations	is	based	upon	the	change	in	the	total	energy	of	a	system	that	arises	from	a	change	in	the	molecular	energy	levels	of	a	system	and	from	a	change	in	the
populations	of	those	levels	as	explained	more	fully	in	Chapter	15	of	this	text.	The	statistical	thermodynamics	of	Chapter	15	allows	us	to	express	the	change	in	total	energy	of	a	system	in	the	following	form:	=	Nd	áε	ñ	∑	ε	dN	+	∑	N	d	ε	i	i	i	i	i	i	The	work	done	by	the	system	in	a	reversible,	isothermal	expansion	can	be	identified	with	the	second	term	on	the
right	of	this	expression,	since	there	is	no	change	in	the	populations	of	the	levels	which	depend	only	on	temperature;	hence,	the	first	term	on	the	right	is	zero.	Because	the	influx	of	energy	as	heat	does	not	change	the	energy	levels	of	a	system,	but	does	result	in	a	change	in	temperature,	the	second	term	on	the	right	of	the	above	equation	is	zero	and	the
heat	associated	with	the	process	(a	constant	volume	process,	with	no	additional	work)	can	be	identified	with	the	first	term.	The	change	in	populations	is	due	to	the	change	in	temperature,	which	redistributes	the	molecules	over	the	fixed	energy	levels.	Solutions	to	exercises	2A.1(b)	See	the	solution	to	Exercise	2A.1(a)	where	we	introduced	the	following
equation	based	on	the	material	of	Chapter	15.	CV	,m	=	12	(3	+	vR*	+	2vV*	)R	with	a	mode	active	if	T	>	θ	M	(where	M	is	T,	R,	or	V).	(i)	O3	:	CV	,m	=	12	(3	+	3	+	0)R	=	3R	[experimental	=	3.7R]	E=	3RT	=	3	×	8.314	J	K	−1	mol	−1	×	298.15	K=	7.436	kJ	mol−1	(ii)	C2	H	6	:	CV	,m	=	12	(3	+	3	+	2	×	1)R	=	4R	[experimental	=	6.3R]	E	=	4	RT	=	4	×	8.314	J
K	−1	mol−1	×	298.15	K=	9.915	kJ	mol−1	2:1	(iii)	SO	2	:	CV	,m=	1	2	(3	+	3	+	0)	R=	3R	[experimental	=	3.8R]	E=	3RT	=	3	×	8.314	J	K	−1	mol	−1	×	298.15	K=	7.436	kJ	mol−1	Consultation	of	Herzberg	references,	G.	Herzberg,	Molecular	spectra	and	Molecular	structure,	II,	Chapters	13	and	14,	Van	Nostrand,	1945,	turns	up	only	one	vibrational	mode
among	these	molecules	whose	frequency	is	low	enough	to	have	a	vibrational	temperature	near	room	temperature.	That	mode	was	in	C2H6,	corresponding	to	the	“internal	rotation”	of	CH3	groups.	The	discrepancies	between	the	estimates	and	the	experimental	values	suggest	that	there	are	vibrational	modes	in	each	molecule	that	contribute	to	the	heat
capacity—albeit	not	to	the	full	equipartition	value—that	our	estimates	have	classified	as	inactive.	2A.2(b)	(i)	volume,	(iii)	internal	energy,	and	(iv)	density	are	state	functions.	2A.3(b)	This	is	an	expansion	against	a	constant	external	pressure;	hence	w	=	−	pex	∆V	[2A.6]	The	change	in	volume	is	the	cross-sectional	area	times	the	linear	displacement:	3	æ
1m	ö	−3	3	∆V=	(75.0	cm	2	)	×	(25.0	cm)	×	ç		=	1.87	×	10	m	è	100	cm	ø	3	w=	−(150	×	103	Pa)	×	(1.87	×	10−3	m3	)	=	−281J	as	1	Pa	m	=	1	J	so	2A.4(b)	For	all	cases	∆U	=	0,	since	the	internal	energy	of	a	perfect	gas	depends	only	on	temperature.	From	the	definition	of	enthalpy,	H	=	U	+	pV,	so	∆H	=	∆U	+	∆(	pV	)	=	∆U	+	∆(nRT	)	(perfect	gas).	∆H	=	0
as	well,	at	constant	temperature	for	all	processes	in	a	perfect	gas.	∆U	=	∆H	=	0	(i)	æV	ö	w	=	−nRT	ln	ç	f		[2A.9]	è	Vi	ø	=−(2.00	mol)	×	(8.3145	J	K	−1	mol−1	)	×	273K	×	ln	20.0	dm3	=−6.29	×	103	J	5.0	dm3	q	=−	w	=6.29	×	103	J	∆U	=	∆H	=	0	(ii)	w	=	−	pex	∆V	[2A.6]	where	pex	in	this	case	can	be	computed	from	the	perfect	gas	law	pV	=	nRT	(2.00	mol)
×	(8.3145JK	−1mol−1	)	×	273K	so	p	=	×	(10	dm	m	−1	)3	=	2.22	×	105	Pa	20.0	dm3	−(2.22	×	105	Pa)	×	(20.0	−	5.0)	dm3	and	w	=	=	−3.34	×	103	J	(10	dm	m	−1	)3	q	=−	w	=3.34	×	103	J	(iii)	∆U	=	∆H	=	0	w	=	0	[free	expansion]	q	=	∆U	−	w	=	0	−	0	=	0	Comment.	An	isothermal	free	expansion	of	a	perfect	gas	is	also	adiabatic.	2:2	2A.5(b)	The	perfect
gas	law	leads	to	p1V	nRT1	=	p2V	nRT2	or	p2	=	p1T2	(111k	Pa)	×	(356	K)	=	=	143k	Pa	277	K	T1	There	is	no	change	in	volume,	so	w	=	0.	The	heat	flow	is	q	=	∫	CV	dT	≈	CV	∆T	=	(2.5)	×	(8.3145J	K	−1	mol−1	)	×	(2.00	mol)	×	(356	−	277)	K	=	3.28	×	103	J	∆U	=	q	+	w	=	3.28	×	103	J	2A.6(b)	(i)	(ii)	−(7.7	×	103	Pa)	×	(2.5dm3	)	w=	−	pex	∆V	=	=−19	J	(10
dm	m	−1	)3	æV	ö	w	=	−	nRT	ln	ç	f		[2A.9]	è	Vi	ø	æ	ö	(	2.5	+	18.5)	dm3	6.56	g	−1	−1	w=	8.3145	J	K	mol	305	K	ln	−ç	×	×	×	(	)	)	−1		(	18.5	dm3	è	39.95	g	mol	ø	=	−52.8	J	Solutions	to	problems	w	=	−	pex	∆V	[2A.6]	2A.2	Hence	Vf	=	nRT	>>	Vi	;	so	∆V	≈	Vf	pex	æ	nRT	ö	−1	−1	w	≈	(−	pex	)	×	ç		=	−nRT	=	(−1.0	mol)	×	(8.314	J	K	mol	)	×	(1073K)	p	è	ex	ø	w	≈	–
8.9	kJ	Even	if	there	is	no	physical	piston,	the	gas	drives	back	the	atmosphere,	so	the	work	is	also	w	≈	–8.9	kJ	2A.4	V2	dV	dV	+	n2	a	∫	V1	V	2	V1	V1	V	−	nb	æ	V	−	nb	ö	æ	1	1ö	−	n2	a	ç	−		=	−nRT	lnç	2		è	V1	−	nb	ø	è	V2	V1	ø	w	=	−∫	V2	pdV	=	−nRT	∫	V2	By	multiplying	and	dividing	the	value	of	each	variable	by	its	critical	value	we	obtain	æ	V2	nb	ö	ç	V	−	V		æ
2	ö	æV	V	ö	æTö	na	c		−	w	=	−nR	×	ç		Tc	×	lnç	c	×	c	−	c	ç	V1	nb		çè	Vc	ø	çè	V2	V1	ø	è	Tc	ø	ç	−		è	Vc	Vc	ø	2:3	T	V	Tr	=	,	Vr	=	,	Tc	Vc	8a	Tc	=	,	Vc	=3nb	[Table	1C.4]	27	Rb	æ	1ö	ç	Vr,2	−	3		æ	na	ö	æ	1	æ	8na	ö	1	ö	×	(Tr	)	×	lnç	w	=	−ç	−		−ç		×ç			è	27b	ø	ç	V	−	1		è	3b	ø	è	Vr,2	Vr,1	ø	è	r,1	3	ø	The	van	der	Waals	constants	can	be	eliminated	by	defining	wr	=	awr	3bw
,	then	w	=	and	3b	a	æ	V	−	1	/	3ö	æ	1	8	1	ö	wr	=	−	nTr	ln	ç	r,2	−		−	nç		9	è	Vr,1	−	1	/	3	ø	è	Vr,2	Vr,1	ø	Along	the	critical	isotherm,	Tr	=	1,	Vr,1	=	1,	and	Vr,2	=	x.	Hence	wr	8	æ	3x	−	1ö	1	−	+1	=	−	ln	ç	9	è	2	ø	x	n	2A.6	One	obvious	limitation	is	that	the	model	treats	only	displacements	along	the	chain,	not	displacements	that	take	an	end	away	from	the	chain.
(See	Fig.	2A.2	in	the	Student’s	Solutions	Manual)	(a)	The	displacement	is	twice	the	persistence	length,	so	x	=	2l,	n	=	2,	ν	=	n/N	=	2/200	=	1/100	and	F	=	æ	1	+	ν	ö	(1.381	×	10−23	J	K	−1	)(298	K)	æ	1.01	ö	kT	=	9.1	×	10−16	N	ln	ç	=	ln	ç	2l	è	0.99	ø	è	1	−	ν	ø	2	×	45	×	10−9	m	Figure	2A.1	5	4	3	2	force	1	Hooke	0	1-D	model	-1	-2	-3	-4	-5	-1	-0.8	-0.6	-0.4	-0.2
0	0.2	0.4	0.6	0.8	1	displacement	(b)	Fig.	2A.1	displays	a	plot	of	force	vs.	displacement	for	Hooke’s	law	and	for	the	one-dimensional	freely	jointed	chain.	For	small	displacements	the	plots	very	nearly	coincide.	However,	for	large	displacements,	the	magnitude	of	the	force	in	the	one-dimensional	model	grows	much	faster.	In	fact,	in	the	one-dimensional
model,	the	magnitude	of	the	force	approaches	infinity	for	a	finite	displacement,	2:4	namely	a	displacement	the	size	of	the	chain	itself	(|ν|	=	1).	(For	Hooke’s	law,	the	force	approaches	infinity	only	for	infinitely	large	displacements.)	(c)	Work	is	dw	=	−	F	dx	=	æ	1+	ν	ö	æ	1+	ν	ö	kNT	kT	dx	=	dν	ln	ç	ln	ç		2	2l	è	1−	ν	ø	è	1	−	ν	ø	This	integrates	to	w=	∫	νf	0	æ
1+	ν	ö	kNT	kNT	dν	=	ln	ç	2	2	è	1	−	ν	ø	∫	νf	0	[ln(1	+	ν	)	−	ln(1	−	ν	)]dν	νf	kNT	[(1	+	ν	)	ln(1	+	ν	)	−	ν	+	(1	−	ν	)	ln(1	−	ν	)	+	ν	]	0	2	=	kNT	[(1	+	ν	f	)	ln(1	+	ν	f	)	+	(1	−	ν	f	)	ln(1	−	ν	f	)]	2	=	(d)	The	expression	for	work	is	well	behaved	for	displacements	less	than	the	length	of	the	chain;	however,	for	νf	=	±1,	we	must	be	a	bit	more	careful,	for	the
expression	above	is	indeterminate	at	these	points.	In	particular,	for	expansion	to	the	full	length	of	the	chain	kNT	[(1	+	ν	)	ln(1	+	ν	)	+	(1	−	ν	)	ln(1	−	ν	)]	2	kNT	é	kNT	é	ln(1	−	ν	)	ù	(1	+	1)	ln(1	+	1)	+	lim(1	−	ν	)	ln(1	−	ν	)	ù	=	2	ln	2	+	lim	=	ê	ú	ν	→1	ν	→1	(1	−	ν	)	−1	û	2	ë	2	ë	û	w	=	lim	ν	→1	where	we	have	written	the	indeterminate	term	in	the	form	of	a
ratio	in	order	to	apply	l’Hospital’s	rule.	Focusing	on	the	problematic	limit	and	taking	the	required	derivatives	of	numerator	and	denominator	yields:	−(1	−	ν	)−1	ln(1	−	ν	)	=	lim[−(1	−	ν	)]	=	0	=	lim	−1	ν	→1	ν	→1	(1	−	ν	)	−2	ν	→1	(1	−	ν	)	lim	w=	Therefore;	2B	kNT	(2	ln	2)	=	kNT	ln	2	2	Enthalpy	Answers	to	discussion	questions	2B.2	See	figure	2B.3	of
the	text.	There	are	two	related	reasons	that	can	be	given	as	to	why	Cp	is	greater	than	CV.	For	ideal	gases	Cp	−	CV	=	nR.	For	other	gases	that	can	be	considered	roughly	ideal	the	difference	is	still	approximately	nR.	Upon	examination	of	figure	2B.3,	we	see	that	the	slope	of	the	curve	of	enthalpy	against	temperature	is	in	most	cases	greater	that	the
slope	of	the	curve	of	energy	against	temperature;	hence	Cp	is	in	most	cases	greater	than	CV.	Solutions	to	exercises	2B.1(b)	q	p	=	nC	p,m	∆T	[2B.7]	C	p,m	=	qp	n∆T	=	178	J	=	53J	K	−1	mol−1	1.9	mol	×	1.78	K	CV	,m	=	C	p,m	−	R	=	(53	−	8.3)	J	K	−1	mol−1	=	45J	K	−1	mol−1	2:5	At	constant	pressure,	q	=	∆H.	2B.2(b)	(i)	q	=	dT	∫	∫C=	p	100	+	273	K	25
+	273	K	[20.17	+	(0.4001)T	/	K]dT	J	K	−1	373	K	é	æ	T	2	öù	1	J	K	−1	=	ê(	20.17	)	T	+	(0.4001)	×	ç		ú	2	è	K	ø	û	298	K	ë	1	é	ù	=ê(20.17)	×	(373	−	298)	+	(0.4001)	×	(3732	−	2982	)	ú	J	=11.6	×	103	J	=∆H	2	ë	û	w	=−	p∆V	=−nR∆T	=−	(1.00	mol	)	×	(	8.3145	J	K	−1	mol−1	)	×	(	75	K	)	=−623	J	∆U	=	q	+	w	=	(11.6	−	0.623)	kJ	=	11.0	kJ	(ii)	The	energy	and	enthalpy
of	a	perfect	gas	depend	on	temperature	alone.	Thus,	11.0	kJ	,	as	above.	At	constant	volume,	w	=	0	and	∆U	=	q	,	so	∆H	=	11.6	kJ	and	∆U	=	q	=	+11.0	kJ	.	2B.3(b)	∆H	=	q	p	=	C	p	∆T	[2B.2,	2B.7]	=	nC	p	,m	∆T	∆H	=	q	p	=	(2.0	mol)	×	(37.11J	K	−1	mol−1	)	×	(277	−	250)	K	=	2.0	×	103	J	mol−1	∆H	=	∆U	+	∆(	pV	)	=	∆U	+	nR∆T	so	∆U	=	∆H	−	nR∆T	−1	∆U
=	2.0	×	10	J	mol	−	(2.0	mol)	×	(8.3145J	K	−1	mol−1	)	×	(277	−	250)	K	3	=	1.6	×	103	J	mol−1	Solutions	to	problems	2B.2	In	order	to	explore	which	of	the	two	proposed	equations	best	fit	the	data	we	have	used	PSIPLOT®.	The	parameters	obtained	with	the	fitting	process	to	eqn.	2B.8	along	with	their	standard	deviations	are	given	in	the	following	table.
parameters	a	b/10-3	K-1	c/105	K2	values	28.796	27.89	-1.490	std	dev	of	parameter	0.820	0.91	0.6480	The	correlation	coefficient	is	0.99947.	The	parameters	and	their	standard	deviations	obtained	with	the	fitting	process	to	the	suggested	alternate	equation	are	as	follows:	parameters	α	β/10-3	K-1	γ/10-6	K-2	values	24.636	38.18	-6.495	std	dev	of
parameter	0.437	1.45	1.106	2:6	The	correlation	coefficient	is	0.99986.	It	appears	that	the	alternate	form	for	the	heat	capacity	equation	fits	the	data	slightly	better,	but	there	is	very	little	difference.	æ	∂U	ö	CV	=	ç	è	∂T	ø	V	2B.4	æ	∂	æ	∂U	ö	ö	æ	∂	æ	∂U	ö	ö	æ	∂CV	ö	=	=	ç		ç		[Derivatives	may	be	taken	in	any	order.]	ç	∂V		ç		çè	∂T	çè	∂V	ø	T	ø	è	ø	T	çè	∂V	è	∂T	ø	V	ø	T	V
æ	∂U	ö	çè	∂V	ø	=	0	for	a	perfect	gas	[Section	2D.2(a)]	T	Hence,	æ	∂CV	ö	ç	∂V		=	0	è	øT	æ	∂H	ö	Likewise	C	p	=	ç	è	∂T	ø	p	so	æ	∂	æ	∂H	ö	ö	æ	∂	æ	∂H	ö	ö	æ	∂C	p	ö	=	ç			ç		=	çç	ç		çè	∂T	çè	∂p	ø	T	ø	è	∂p	ø	T	è	∂p	è	∂T	ø	pø	p	T	æ∂Hö	ç	∂p		=	0	for	a	perfect	gas.	è	øT	æ	∂C	ö	Hence,	ç	p		=	0.	è	∂p	ø	T	2C	Thermochemistry	Answers	to	discussion	questions	2C.2	The	standard	state	of
a	substance	is	the	pure	substance	at	a	pressure	of	1	bar	and	a	specified	temperature.	The	term	reference	state	generally	refers	to	elements	and	is	the	thermodynamically	most	stable	state	of	the	element	at	the	temperature	of	interest.	The	distinction	between	standard	state	and	reference	state	for	elements	may	seem	slight	but	becomes	clear	for	those
elements	that	can	exist	in	more	than	one	form	at	a	specified	temperature.	So	an	element	can	have	more	than	one	standard	state,	one	for	each	form	that	exists	at	the	specified	temperature.	Solutions	to	exercises	2C.1(b)	At	constant	pressure	q=	∆H	=∆	n	vap	H	O	=	(1.75	mol)	×	(43.5	kJ	mol−1	)	=76.1	kJ	and	w	=	−	p∆V	≈	−	pVvapor	=	−nRT	=	−(1.75
mol)	×	(8.3145	J	K	−1	mol−1	)	×	(260	K)	w=	−3.78	×	103	J	=	−3.78	kJ	∆U	=w	+	q	=−3.78	+	76.1	=72.3	kJ	2:7	Comment.	Because	the	vapor	is	treated	as	a	perfect	gas,	the	specific	value	of	the	external	pressure	provided	in	the	statement	of	the	exercise	does	not	affect	the	numerical	value	of	the	answer.	2C.2(b)	The	reaction	is	C6	H	5OH(l)	+	7	O	2	(g)
→	6	CO	2	(g)	+	3	H	2	O(l)	∆c	H	O	=	6∆	f	H	O	(CO	2	)	+	3∆	f	H	O	(H	2	O)	−	∆	f	H	O	(C6	H	5	OH)	−	7∆	f	H	O	(O	2	)	=	[6(−393.51)	+	3(−285.83)	−	(−165.0)	−	7(0)]	kJ	mol−1	=	−3053.6	kJ	mol−1	2C.3(b)	We	need	∆	f	H	O	for	the	reaction	(4)	2B(s)	+	3H	2	(g)	→	B2	H	6	(g)	reaction(4)	=	reaction(2)	+	3	×	reaction(3)	–	reaction(1)	Thus,	∆	f	H	O	=	∆	r	H	O
{reaction(2)}	+	3	×	∆	r	H	O	{reaction(3)}	−	∆	r	H	O	{reaction(1)}	=	[−1274	+	3	×	(−241.8)	−	(−2036)]	kJ	mol−1	=	+36.6	kJ	mol−1	2C.4(b)	Because	∆	f	H	O	(	H	+	,	aq)	=	0	the	whole	of	∆	f	H	O	(HI,aq)	is	ascribed	to	∆	f	H	O	(I	−	,	aq)	.	Therefore,	∆	f	H	O	(I	−	,	aq)	=	−55	kJ/mol−1	2C.5(b)	For	anthracene	the	reaction	is	C14	H10	(s)	+	33	O	(g)	→	14CO
2	(g)	+	5H	2	O(l)	2	2	∆	cU	O	=	∆	c	H	O	−	∆ng	RT	[2B.4],	∆ng	=	−	5	mol	2	æ	5	ö	∆	cU	O	=	−7061	kJ	mol−1	−	ç	−	×	8.3	×	10−3	kJ	K	−1	mol−1	×	298	K		è	2	ø	=	−7055	kJ	mol−1	æ	225	×	10−3	g	ö	q	=	qV	=	n∆	cU	O	=	×	7055	kJ	mol−1	)	ç	−1		(	è	178.23	g	mol	ø	=	8.91	kJ	C	=	q	8.91	kJ	=	=	6.60	kJ	K	−1	∆T	1.35	K	When	phenol	is	used	the	reaction	is	C6	H
5OH(s)	+	15	O	2	(g)	→	6CO	2	(g)	+	3H	2	O(l)	2	∆c	H	O	=	−3054	kJ	mol−1	[Table	2C.1]	∆	cU	=	∆	c	H	−	∆ng	RT	,	∆ng	=	−	3	2	−1	3	=	(−3054	kJ	mol	)	+	(	2	)	×	(8.314	×	10−3	kJ	K	−1	mol−1	)	×	(298	K)	=	−3050	kJ	mol−1	æ	135	×	10−3	g	ö	q	=	ç	×	3050	kJ	mol−1	)	=	4.375	kJ	−1		(	94.12	g	mol	è	ø	2:8	q	4.375	kJ	∆T	=	=	=+0.663	K	C	6.60	kJ	K	−1	2C.6(b)
(a)	reaction(3)	=	(–2)	×	reaction(1)	+	reaction(2)	and	∆ng	=	−1	The	enthalpies	of	reactions	are	combined	in	the	same	manner	as	the	equations	(Hess’s	law).	∆	r	H	O	(3)	=	(−2)	×	∆	r	H	O	(1)	+	∆	r	H	O	(2)	=	[(−2)	×	(52.96)	+	(−483.64)]kJ	mol−1	=	−589.56	kJ	mol−1	∆	rU	O	=	∆	r	H	O	−	∆ng	RT	=	−589.56	kJ	mol−1	−	(−3)	×	(8.314	J	K	−1	mol−1	)	×
(298	K)	=	−589.56	kJ	mol−1	+	7.43	kJ	mol−1	=	−582.13	kJ	mol−1	(b)	∆	f	H	O	refers	to	the	formation	of	one	mole	of	the	compound,	so	O	(HI)	∆f	H	=	1	mol−1	)	(	52.96	kJ=	2	26.48	kJ	mol−1	1	∆	f	H	O	(H	2	O)	=	−241.82	kJ	mol−1	(	−483.64	kJ	mol−1	)	=	2	∆	rU	O	+	RT	∆ng	[2B.4]	2C.7(b)	∆	r	H	O	=	=	−772.7	kJ	mol−1	+	(5)	×	(8.3145	×	10−3	kJ	K	−1
mol−1	)	×	(298	K)	=	−760.3	kJ	mol−1	2C.8(b)The	hydrogenation	reaction	is	(1)	C2	H	2	(g)	+	H	2	(g)	→	C2	H	4	(g)	∆	r	H	O	(T	)	=	?	The	reactions	and	accompanying	data	which	are	to	be	combined	in	order	to	yield	reaction	(1)	and	∆	r	H	O	(T	)	are	(2)	H	2	(g)	+	1	O	(g)	→	H	2	O(l)	∆	c	H	O	(2)	=	−285.83kJ	mol−1	2	2	(3)	C2	H	4	(g)	+	3O	2	(g)	→	2H	2	O(l)	+
2CO	2	(g)	∆	c	H	O	(3)	=	−1411kJ	mol−1	(4)	C2	H	2	(g)	+	5	O	(g)	→	H	2	O(l)	+	2CO	2	(g)	∆	c	H	O	(4)	=	−1300	kJ	mol−1	2	2	reaction	(1)	=	reaction	(2)	−	reaction	(3)	+	reaction	(4)	Hence,	at	298	K:	(i)	∆	r	H	O	=	∆	c	H	O	(2)	−	∆	c	H	O	(3)	+	∆	c	H	O	(4)	=	[(−285.83)	−	(−1411)	+	(−1300)]kJ	mol−1	=	−175kJ	mol−1	∆	rU	O	=	∆	r	H	O	−	∆ng	RT	[2B.4];	∆ng
=	−1	=−175	kJ	mol−1	−	(−1)	×	(2.48	kJ	mol−1	)	=	−173kJ	mol−1	(ii)	At	427	K:	∆	r	H	O	(427	K)	=	∆	r	H	O	(298	K)	+	∆	r	C	pO	(427	K	−	298	K)	2:9	[Example	2C.2]	=	∆rC	p	∑ν	C	J	O	p	,m	(J)[2C.7c]	=	C	pO,m	(C	2	H	4	,	g)	−	C	pO,m	(C	2	H	2	,	g)	−	C	pO,m	(H	2	,	g)	J	=	(43.56	−	43.93	−	28.82)	×	10−3	kJ	K	−1	mol−1	=	−29.19	×	10−3	kJ	K	−1	mol−1	∆	r
H	O	(427	K)	=−	(	175	kJ	mol−1	)	−	(29.19	×	10−3	kJ	K	−1	mol−1	)	×	(129	K)	=	−171	kJ	mol−1	2C.9(b)	For	the	reaction	C10	H	8	(l)	+	12O	2	(g)	→	10CO	2	(g)	+	4H	2	O(g)	O	∆	r	H=	10	×	∆	f	H	O	(CO	2	,	g)	+	4	×	∆	f	H	O	(H	2	O,g)	−	∆	f	H	O	(C10	H	8	,	l)	In	order	to	calculate	the	enthalpy	of	reaction	at	478	K	we	first	calculate	its	value	at	298	K	using
data	in	Tables	2C.1	and	2C.2.	Note	at	298	K	naphthalene	is	a	solid.	It	melts	at	80.2	°C	=	353.4	K.	−1	∆	r	H	(298	K)	=10	×	(	−393.51	kJ	mol	)	+	4	×	(	−241.82	kJ	mol	)	−	(78.53	kJ	mol	)	=−4980.91	kJ	mol	O	−1	−1	−1	Then,	using	data	on	the	heat	capacities	and	transition	enthalpies	of	all	the	reacting	substances,	we	can	calculate	the	change	in	enthalpy,
ΔH,	of	each	substance	as	the	temperature	increases	from	298	K	to	478	K.	The	enthalpy	of	reaction	at	478	K	can	be	obtained	by	adding	all	these	enthalpy	changes	to	the	enthalpy	of	reaction	at	298	K.	This	process	is	shown	below:	∆	r	H	(478	K)	=	∆	r	H	(298	K)	+	10	×	∆H	(CO	2	,	g)	+	4	×	∆H	(H	2	O,	g)	−	∆H	(C10	H	8	)	−	12	×	∆H	(O	2	,	g)	O	O	For
H2O(g),	CO2(g),	and	O2(g)	we	have	∆	f	H	O	(478	K)	=	∆	f	H	O	(298	K)	+	∫	478K	298K	O	C	p	,m	dT	For	naphthalene	we	have	to	take	into	account	the	change	in	state	from	solid	to	liquid	at	80.2	°C	=	353.4	K.	Then	∆	f	H	O	(478	K)	=	∆	f	H	O	(298	K)	+	∫	353.4K	298K	C	p	,m	dT	+	∆H	trs	+	O	∫	478K	353.4K	O	C	p	,m	dT	We	will	express	the	temperature



dependence	of	the	heat	capacities	in	the	form	of	the	equation	given	in	Problem	2C.7	because	data	for	the	heat	capacities	of	the	substances	involved	in	this	reaction	are	only	available	in	that	form.	They	are	not	available	for	all	the	substances	in	the	form	of	the	equation	of	Table	2B.1.	We	use	C	p	,m	=α	+	β	T	+	γ	T	2	O	For	H2O(g),	CO2(g),	and	O2(g),	α,
β,	and	γ	values	are	given	in	Problem	2C.7.	For	naphthalene,	solid	and	liquid,	γ	is	zero	and	the	two	forms	of	the	heat	capacity	equation	are	then	identical	and	we	take	α	=	a	and	β	=	b	from	Table	2B.1.	19.01	kJ	mol−1	∆	fus	H	O	(C10	H8	)	=	Using	the	data	given	in	Problem	2C.7	we	calculate	∆H	(CO=	,	g)	5.299	kJ	mol−1	,	∆H	(H	O,	=	g)	6.168	kJ	mol−1	,
and	∆H	(O=	,	g)	5.430	kJ	mol−1	2	2	2	Using	the	data	from	Table	2C.1	we	calculate	for	naphthalene	55.36	kJ	mol−1	∆H	(C10	H8	)	=	Collecting	all	these	enthalpy	changes	we	have	∆	H	r	2C.10(b)	O	(478	K)	=	O	−1	−5023.77	kJ	mol−1	∆	H	(298	K)	+	(10	×	5.299	+	4	×	6.168	−	55.36	−	12	×	5.430)kJ	mol	=	r	The	cycle	is	shown	in	Fig.	2C.1.	Figure	2C.1
2:10	−∆	hyd	H	O	(Ca	2	+	)	=	−∆	soln	H	O	(CaBr2	)	−	∆	f	H	O	(CaBr2	,	s)	+	∆	sub	H	O	(Ca)	+	∆	vap	H	O	(Br2	)	+	∆	diss	H	O	(Br2	)	+	∆	ion	H	O	(Ca)	+	∆	ion	H	O	(Ca	+	)	+	2∆	eg	H	O	(Br)	+	2∆	hyd	H	O	(Br	−	)	=	[−(−103.1)	−	(−682.8)	+	178.2	+	30.91	+	192.9	+589.7	+	1145	+	2(−331.0)	+	2(−289)]kJ	mol−1	=	1684	kJ	mol−1	so	∆	hyd	H	O	(Ca	2	+	)	=
−1684	kJ	mol−1	Solutions	to	problems	2C.2	Cr(C6	H	6	)2	(s)	→	Cr(s)	+	2C6	H	6	(g)	∆ng	=	+2	mol	∆r	H	O	=	∆	rU	O	+	2	RT	,	from[2B.4]	=(8.0	kJ	mol−1	)	+	(2)	×	(8.314	J	K	−1	mol−1	)	×	(583K)	=+17.7	kJ	mol−1	In	terms	of	enthalpies	of	formation	∆	r	H	O	=	(2)	×	∆	f	H	O	(benzene,583K)	−	∆	f	H	O	(metallocene,583K)	or	∆	r	H	O	(metallocene,583K)	=
2∆	f	H	O	(benzene,583K)	−	17.7	kJ	mol−1	The	enthalpy	of	formation	of	benzene	gas	at	583	K	is	related	to	its	value	at	298	K	by	∆	f	H	O	(benzene,583K)	=	∆	f	H	O	(benzene,	298	K)	+(Tb	−	298	K)C	p,m	(l)	+	∆	vap	H	O	+	(583K	−	Tb	)C	p,m	(g)	−6	×	(583K	−	298	K)C	p,m	(gr)	−	3	×	(583K	−	298	K)C	p,m	(H	2	,	g)	where	Tb	is	the	boiling	temperature	of
benzene	(353	K).	We	shall	assume	that	the	heat	capacities	of	graphite	and	hydrogen	are	approximately	constant	in	the	range	of	interest	and	use	their	values	from	Tables	2B.1	and	2B.2.	2:11	∆	f	H	O	(benzene,583K)	=	(49.0	kJ	mol−1	)	+	(353	−	298)	K	×	(136.1J	K	−1	mol−1	)	+	(30.8	kJ	mol−1	)	+	(583	−	353)	K	×	(81.67	J	K	−1	mol−1	)	−	(6)	×	(583	−
298)	K	×	(8.53J	K	−1	mol−1	)	−	(3)	×	(583	−	298)	K	×	(28.82	J	K	−1	mol−1	)	=	{(49.0)	+	(7.49)	+	(18.78)	+	(30.8)	−	(14.59)	−	(24.64)}kJ	mol−1	=	+66.8	kJ	mol−1	Therefore,	∆	f	H	O	(metallocene,583K)	=	(2	×	66.8	−	17.7)	kJ	mol−1	=	+116.0	kJ	mol−1	2C.4	The	reaction	is	C60	(s)	+	60O	2	(g)	→	60CO	2	(g)	Because	the	reaction	does	not	change	the
number	of	moles	of	gas,	∆	r	H	=	∆	rU	[2B.4].	Therefore	∆c	H	O	=	−25968	kJ	mol−1	(−36.0334	kJ	g	−1	)	×	(60	×	12.011	g	mol−1	)	=	Now	relate	the	enthalpy	of	combustion	to	enthalpies	of	formation	and	solve	for	that	of	C60.	∆	c	H	O	=	60∆	f	H	O	(CO	2	)	−	60∆	f	H	O	(O	2	)	−	∆	f	H	O	(C60	)	∆	f	H	O	(C60	)	=	60∆	f	H	O	(CO	2	)	−	60∆	f	H	O	(O	2	)	−	∆	c	H
O	=	[60(−393.51)	−	60(0)	−	(−25968)]	kJ	mol−1	=	2357	kJ	mol−1	2C.6	(a)	(b)	2C.8	∆	r	H	O	=	∆	f	H	O	(SiH	2	)	+	∆	f	H	O	(H	2	)	−	∆	f	H	O	(SiH	4	)	=	(274	+	0	−	34.3)	kJ	mol−1	=	240	kJ	mol−1	∆	r	H	O	=	∆	f	H	O	(SiH	2	)	+	∆	f	H	O	(SiH	4	)	−	∆	f	H	O	(Si2	H	6	)	=	(274	+	34.3	−	80.3)	kJ	mol−1	=	228	kJ	mol−1	In	order	to	calculate	the	enthalpy	of	the
protein’s	unfolding	we	need	to	determine	the	area	under	the	plot	of	Cp,ex	against	T,	from	the	baseline	value	of	Cp,ex	at	T1,	the	start	of	the	process,	to	the	baseline	value	of	Cp,ex	at	T2,	the	end	of	the	process.	We	are	provided	with	an	illustration	that	shows	the	plot,	but	no	numerical	values	are	provided.	Approximate	numerical	values	can	be	extracted
from	the	plot	and	∫	T2	then	the	value	of	the	integral	∆H	=	C	p	,ex	dT	can	be	obtained	by	numerical	evaluation	of	the	area	T1	under	the	curve.	The	first	two	columns	in	the	table	below	show	the	data	estimated	from	the	curve,	the	last	column	gives	the	approximate	area	under	the	curve	from	the	beginning	of	the	process	to	the	end.	The	final	value,	1889
kJ	mol-1	,	is	the	enthalpy	of	unfolding	of	the	protein.	The	four	significant	figures	shown	are	not	really	justified	because	of	the	imprecise	estimation	process	involved.	2:12	θ	/˚C	C	p,	ex/kJ	K-1	mol-1	ΔH	/kJ	mol	20	23	26	28	33	40	46	52	58	63	70	80	89	90	85	80	68	60	52	47	41	37	36	0	215	460	567	626	663	706	755	810	870	937	1011	1096	1141	1185	1267
1342	1405	1461	1511	1598	1676	1889	30	40	50	54	56	57	58	59	60	61	62	63	64	64.5	65	66	67	68	69	70	72	74	80	2C.10	-1	(a)	qV	=	−n∆	cU	O	;	hence	(ii)	∆	cU	O	=	so	(180.16	g	mol-1	)	×	(641J	K	−1	)	×	(7.793K)	∆	cU	O	=	−	=	−2802	kJ	mol−1	0.3212	g	−qV	−C∆T	−	MC∆T	=	=	where	m	is	sample	mass	and	M	molar	mass	n	m	n	(i)	The	complete	aerobic
oxidation	is	C6	H12	O6	(s)	+	6O	2	(g)	→	6CO	2	(g)	+	6H	2	O(l)	Since	there	is	no	change	in	the	number	of	moles	of	gas,	∆	r	H	=	∆	rU	[2.21]	and	∆	c	H	O	=	∆	cU	O	=	−2802	kJ	mol−1	(iii)	∆	c	H	O	=	6∆	f	H	O	(CO	2	,g)	+	6∆	f	H	O	(H	2	O,l)	−	∆	f	H	O	(C6	H12	O6	,s)	−	6∆	f	H	O	(O	2	,g)	so	∆	f	H	O	(C6	H12	O6	,s)	=	6∆	f	H	O	(CO	2	,g)	+	6∆	f	H	O	(H	2	O,l)	−	6∆
f	H	O	(O	2	,g)	−	∆	c	H	O	∆	f	H	O	(C6	H12	O6	,s)	=	[6(−393.51)	+	6(−285.83)	−	6(0)	−	(−2802)]	kJ	mol−1	=	−1274	kJ	mol−1	(b)	The	anaerobic	glycolysis	to	lactic	acid	is	C6	H12	O6	→	2CH	3CH(OH)COOH	∆	r	H	O	=	2∆	f	H	O	(lactic	acid)	−	∆	f	H	O	(glucose)	={(2)	×	(−694.0)	−	(−1274)}	kJ	mol-1	=	−114	kJ	mol−1	Therefore,	aerobic	oxidation	is	more
exothermic	by	2688	kJ	mol–1	than	glycolysis.	2:13	2D	State	functions	and	exact	differentials	Answers	to	discussion	questions	2D.2	An	inversion	temperature	is	the	temperature	at	which	the	Joule-Thomson	coefficient,	µ,	changes	sign	from	negative	to	positive	or	vice-versa.	For	a	perfect	gas	µ	is	always	zero,	thus	it	cannot	have	an	inversion	temperature.
As	explained	in	detail	in	Section	2D.3,	the	existence	of	the	Joule-Thomson	effect	depends	upon	intermolecular	attractions	and	repulsions.	A	perfect	gas	has	by	definition	no	intermolecular	attractions	and	repulsions,	so	it	cannot	exhibit	the	Joule-Thomson	effect.	Solutions	to	exercises	2D.1(b)	Also	see	exercises	E2D.1(a)	and	E2D.2(a)	and	their	solutions.
The	internal	pressure	of	a	van	der	Waals	gas	is	=	Vm	π	T	=	a	/	Vm2	.	The	molar	volume	can	be	estimated	from	the	perfect	gas	equation:	RT	0.08206	dm3	atm	K	−1	mol−1	×	298	K	=	=	24.76	dm3	mol−1	p	æ	1.000	atm	ö	1.00	bar	×	ç		è	1.013	bar	ø	a	6.775	atm	dm	6	mol−2	1.11	10−2	atm	=	11.2	mbar	πT	=	=	=×	Vm2	(24.76	dm3	mol−1	)	2	2D.2(b)	The
internal	energy	is	a	function	of	temperature	and	volume,	Um	=	Um(T,Vm),	so	æ	∂U	m	ö	æ	∂U	ö	[π	T	=	(∂U	m	/	∂V	)T	]	dT	+	ç	m		dVm	dU	m	=	ç		è	∂Vm	ø	T	è	∂T	ø	V	m	For	an	isothermal	expansion	dT	=	0;	hence	æ	∂U	ö	a	dU	m	=	ç	m		dVm	=	π	T	dVm	=	2	dVm	∂V	Vm	è	m	øT	∆U	m	=	∫	Vm,2	Vm,1	dU	m	=	∫	Vm,2	Vm,2	a	dVm	Vm2	=	a∫	30.00	dm3	mol−1	1.00
dm3	mol−1	dVm	Vm2	=−	a	Vm	a	a	29.00a	=	−	+	=	−1	−1	3	3	30.00	dm	mol	1.00	dm	mol	30.00	dm3	mol−1	30.00	dm3	mol−1	1.00	dm3	mol−1	=	0.9667a	dm	−3	mol	From	Table	1C.3,	a	=	1.337	dm6	atm	mol–1	∆U	m	=(0.9667	mol	dm3	)	×	(1.337	atm	dm	6	mol−2	)	æ	1m3	ö	=	(1.2924	atm	dm3	mol−1	)	×	(1.01325	×	105	Pa	atm	−1	)	×	ç	3	3		è	10	dm	ø
=	131.0	=	Pa	m3	mol−1	131.0	J	mol−1	w	=	−	∫	p	dVm	where	p=	a	RT	−	2	for	a	van	der	Waals	gas.	Hence,	Vm	−	b	Vm	æ	RT	ö	a	w	=	−∫	ç		dVm	+	∫	V	2	dVm	=	−q	+	∆U	m	è	Vm	−	b	ø	m	Thus	2:14	=	q	∫	30.00	dm3	mol−1	3	1.00	dm	mol	−1	30.00	dm3	mol−1	æ	RT	ö	dVm	RT	ln(Vm	−	b)	|1.00	dm3	mol−1	ç	=	è	Vm	−	b	ø	30.00	−	3.20	×	10−2	ö		=	+8.505	kJ
mol−1	−2		ç	1.00	−	3.20	×	10		è	ø	æ	ç	=	(8.314	J	K	−1	mol−1	)	×	(298	K)	×	lnçç	and	w	=	−q	+	∆U	m	=	−(8505	J	mol−1	)	+	(131J	mol−1	)	=	−8374	J	mol−1	=	−8.37	kJ	mol−1	2D.3(b)	The	expansion	coefficient	is	α=	1	æ	∂V	ö	V	′(3.7	×	10−4	K	−1	+	2	×	1.52	×	10−6	T	K	−2	)	=	V	çè	∂T	ø	p	V	=	V	′[3.7	×	10−4	+	2	×	1.52	×	10−6	(T	/	K)]	K	−1	V	′[0.77	+	3.7
×	10−4	(T	/	K)	+	1.52	×	10−6	(T	/	K)2	]	=	[3.7	×	10−4	+	2	×	1.52	×	10−6	(310)]	K	−1	=	1.27	×	10−3	K	−1	0.77	+	3.7	×	10−4	(310)	+	1.52	×	10−6	(310)2	2D.4(b)	Isothermal	compressibility	is	κT	=	−	1	æ	∂V	ö	∆V	≈−	V	çè	∂p	ø	T	V	∆p	∆p	=	−	so	∆V	Vκ	T	A	density	increase	of	0.10	per	cent	means	∆V	/	V	=−0.0010	.	So	the	additional	pressure	that	must
be	applied	is	∆p=	2D.5(b)	0.0010	=	2.21×	10−6	atm	−1	4.5	×	102	atm	The	isothermal	Joule-Thomson	coefficient	is	æ	∂H	m	ö	−1	−1	−1	−1	−1	ç	∂p		=−	µ	C	p	,m	=−(1.11K	atm	)	×	(37.11J	K	mol	)	=−41.2	J	atm	mol	è	øT	If	this	coefficient	is	constant	in	an	isothermal	Joule-Thomson	experiment,	then	the	heat	which	must	be	supplied	to	maintain	constant
temperature	is	∆H	in	the	following	relationship	∆H	/	n	=−41.2	J	atm	−1	mol−1	so	∆H	=−(41.2	J	atm	−1	mol	−1	)n∆p	∆p	∆H	=−(41.2	J	atm	−1	mol	−1	)	×	(10.0	mol)	×	(−75atm)	=	30.9	×	103	J	Solutions	to	problems	æ	γ	RT	ö	cs	=	ç	è	M	ø	2D.2	(a)	12	,	γ	=	C	p,m	CV	,m	,	C	p,m	=	CV	,m	+	R	CV	,m	=	12	R(3	+	ν	R∗	+	2ν	V∗	)	=	12	R(3	+	2)	=	52	R	C	p,m	=
52	R	+	R	=	72	R	7	γ	=	=	1.40;	hence	5	(b)	CV	,m	=	æ	1.40RT	ö	cs	=	ç	è	M	ø	1	5	R(3	+	2)	=	R,	2	2	12	γ	=	1.40,	2:15	æ	1.40RT	ö	cs	=	ç	è	M	ø	12	CV	,m	=	12	R(3	+	3)	=	3R	(c)	æ	4RT	ö	cs	=	ç	è	3M	ø	4	γ	=	,	3	C	p,m	=	3R	+	R	=	4R,	12	For	air,	M	≈	29	g	mol−1	,	T	≈	298	K,	γ	=	1.40	12	æ	(1.40)	×	(2.48	kJ	mol−1	)	ö	cs	ç=	350	m	s	−1	=		−3	−1	29	10	kg	mol	×	è	ø
2D.4	æ	∂V	ö	æ	∂V	ö	(a)	V	=	V(p,T);	hence,	dV	=	ç	dp	+	ç	dT		è	∂p	ø	T	è	∂T	ø	p	æ	∂p	ö	æ	∂p	ö	Likewise	p	=	p(V,T),	so	dp	=	ç	dV	+	ç		dT		è	∂V	ø	T	è	∂T	ø	V	æ	1	ö	æ	∂V	ö	æ	1	ö	æ	∂V	ö	[2D.6]	and	κ	T	=	−	ç		ç	[2D.7]	and	obtain	(b)	We	use	α	=	ç		ç	è	V	ø	è	∂T	ø	p	è	V	ø	è	∂p	ø	T	d	lnV	=	æ	1	ö	æ	∂V	ö	æ	1	ö	æ	∂V	ö	1	dp	+	ç		ç	dT	=	−κ	T	dp	+	α	dT	.	dV	=	ç		ç		V	è	V	ø	è	∂p	ø	T	è	V	ø	è	∂T	ø
p	d	ln	p	=	Likewise	1	æ	∂p	ö	dp	1	æ	∂p	ö	dV	+	ç		dT	=	ç	p	è	∂T	ø	V	p	è	∂V	ø	T	p	æ	∂p	ö	We	express	ç		in	terms	of	κT:	è	∂V	ø	T	é	æ	∂p	ö	ù	1	æ	∂V	ö	κT	=	−	ç	=	−	êV	ç		ú	V	è	∂p	ø	T	êë	è	∂V	ø	T	úû	−1	æ	∂p	ö	1	so	ç	=−		∂V	κ	V	è	øT	T	æ	∂p	ö	We	express	ç	in	terms	of	κT	and	α	è	∂T	ø	V	æ	∂p	ö	ç		è	∂T	øV	so	2D.6	(∂V	/	∂T	)	p	α	æ	∂T	ö	æ	∂V	ö	æ	∂p	ö	−1	−	=	so	ç		=		=	ç		çç	(∂V	/	∂p	)T	κ	T
è	∂V	ø	p	è	∂p	øT	è	∂T	øV	dV	1	æ	dV	ö	α	dT	−	+	=ç	α	dT	−	d	ln	p	=		pκ	T	V	pκ	T	pκ	T	è	V	ø	(	)	∂V	1	α	1=	=	V	∂T	p	V	∂T	∂V	α=	1	×	V	=	(	T	V	−	nb	(	)	)	[reciprocal	identity,	Mathematical	Background	2]	p	1	[Problem	2D.5]	æ	2	−	ç	na3	ö	×	(V	−	nb)	è	RV	ø	(	RV	2	)	×	(V	−	nb)	(	RTV	3	)	−	(2na	)	×	(V	−	nb)	2	2:16	ö	æ	−1	κ	T	=	−	1	ç	∂V		=	V	è	∂p	ø	T	æ	∂p	ö	[reciprocal
identity]	Vç	è	∂V	ø	T	κT	=	−1×	V	=	æ	−nRT	ç	2	è	(V	−	nb)	1	[Problem	2D.5]	ö	æ	2n	2	a	ö	+ç	3		ø	è	V	ø	V	2	(V	−	nb)	2	nRTV	3	−	2n	2	a	(V	−	nb)	2	κ	T	V	−	nb	=	,	implying	that	κTR	=	α(Vm	–	b)	nR	α	Alternatively,	from	the	definitions	of	α	and	κT	above	Then	κT	=	α	æ	ö	−ç	∂V		∂	p	è	øT	=	∂V	æ	∂p	ç	∂T	p	è	∂V	(	)	−1	ö	∂V		øT	∂T	(	)	[reciprocal	identity]	p	æ	∂T	ö	=	ç	
[Euler	chain	relation]	è	∂p	øV	V	−	nb	=	[Problem	2D.5],	nR	α	(V	−	nb)	κT	R	=	n	Hence,	κTR	=	α(Vm	–	b)	ö	æ	ö	æ	µ	=	ç	∂T		=	−	1	ç	∂H		[Justification	2D.2]	è	∂p	ø	H	C	p	è	∂p	ø	T	2D.8	ìï	æ	∂V	ö	üï	−	V	ý	[See	the	section	below	for	a	derivation	of	this	result]	íT	ç		ïî	è	∂T	ø	p	ïþ	∂V	=	nR	V	=	nRT	p	+	nb	or	∂T	p	p	µ=	But	1	Cp	(	)	Therefore,	µ=	ü	−nb	ü	1	ì	nRT	nRT	1
ì	nRT	−	nbý	=	−	−V	ý	=	í	í	C	p	Cp	î	p	p	þ	þ	Cp	p	î	æ	ö	Since	b	>	0	and	Cp	>	0,	we	conclude	that	for	this	gas	µ	<	0	or	ç	∂T		<	0	.	This	says	that	when	the	è	∂p	ø	H	pressure	drops	during	a	Joule–Thomson	expansion	the	temperature	must	increase.	Derivation	of	expression	for	æç	∂H	ö	follows:	è	∂p	øT	2:17	æ	∂H	ö	æ	∂H	ö	æ	∂V	ö		ç	ç		=ç		[change	of	variable]	è	∂p
øT	è	∂V	øT	è	∂p	øT	æ	∂	(U	+	pV	)	ö	æ	∂V	ö	=ç		ç		[definition	of	H	]	∂V	è	øT	è	∂p	øT	æ	∂U	ö	æ	∂V	ö	æ	∂	(	pV	)	ö	æ	∂V	ö	=	ç		ç		ç		+ç		è	∂V	øT	è	∂p	øT	è	∂V	øT	è	∂p	øT	ì	æ	∂p	ö	üæ	∂V	ö	æ	∂	(	pV	)	ö	é	æ	∂U	ö	ù	=	íT	ç		−	pý	ç		ú		+ç		êequation	forç	è	∂V	øT	û	î	è	∂T	øV	þ	è	∂p	øT	è	∂p	øT	ë	æ	∂V	ö	æ	∂V	ö	æ	∂p	ö	æ	∂V	ö	=	Tç		ç		−	pç		+	V	+	pç		è	∂T	øV	è	∂p	øT	è	∂p	øT	è	∂p	øT	æ	∂p	ö	æ	∂V	ö	=	Tç	V		ç	
+=	è	∂T	øV	è	∂p	øT	−T	∂T	∂V	(	)	+	V	[chain	relation]	p	(	)	+	V	[reciprocal	identity]	=	−T	∂V	∂T	2D.10	p	(a)	The	Joule–Thomson	coefficient	is	related	to	the	given	data	by	µ	=	−(1	/	C	p	)(∂H	/	∂p)T	=	−(−3.29	×	103	J	mol−1	MPa	−1	)	/	(110.0	J	K	−1	mol−1	)	=	29.9	K	MPa	−1	(b)	The	Joule–Thomson	coefficient	is	defined	as	µ	=	(∂T	/	∂p)	H	≈	(∆T	/	∆p)	H
Assuming	that	the	expansion	is	a	Joule–Thomson	constant-enthalpy	process,	we	have	∆T	=	µ∆p	=	(29.9	K	MPa	−1	)	×	[(0.5	−	1.5)	×	10−1	MPa]	=	−2.99	K	2E	Adiabatic	changes	Answers	to	discussion	questions	2E.2	See	Figure	2E.2	of	the	text	and	the	Interactivity	associated	with	that	figure.	For	an	adiabatic	change,	π	T	dV	+	CV	dT	=	−	pex	dV	[2A.6,
2D.5].	Thus	we	see	that	the	heat	capacity	enters	into	the	dU	=	dw	=	calculation	of	the	change	in	energy	of	the	system	that	occurs	during	an	adiabatic	expansion.	For	a	perfect	γ	Cp	æV	ö	.	Again	the	heat	capacity	plays	a	gas	Eqn	2E.3	of	the	text	can	be	written	as	pf	=	ç	i		pi	with	γ	=	CV	è	Vf	ø	role.	Solutions	to	exercises	2E.1(b)	1	2	R	for	every
translational	and	rotational	degree	of	freedom	and	R	for	each	vibrational	mode.	For	an	ideal	gas,	Cp,m	=	R	+	CV,m.	So	for	CO2	The	equipartition	theorem	would	predict	a	contribution	to	molar	heat	capacity	of	2:18	With	vibrations	CV	,m	/	R=	3	(	12	)	+	2	(	12	)	+	(3	×	4	−	5)=	6.5	and	γ=	Without	vibrations	CV	,m	/	R	=3	(	12	)	+	2	(	12	)	=2.5	and	7.5	=
1.15	6.5	3.5	=1.40	2.5	γ	=	37.11	J	mol−1K	−1	1.29	=	(37.11	−	8.3145)	J	mol−1K	−1	Experimental	γ	=	The	experimental	result	is	closer	to	that	obtained	by	neglecting	vibrations,	but	not	so	close	that	vibrations	can	be	neglected	entirely.		(6.626	×	10−34	J	s)	×	(2.998	×1010	cm	s	−1	)	×	(0.39	cm	−1	)	hcB	=	=	0.56	K	0	,	for	all	spontaneous	processes.
In	this	case,	S	tot	10	J	K	−1	>	0	,	so	the	process	may	be	spontaneous.	∆=	3A.2(b)	Efficiency,	η,	is	work	performed	w	0.71	kJ	=	=	=	0.262	.	For	an	ideal	heat	absorbed	qh	2.71	kJ	T	T	Th	273.16	K	c	Heat	engine	we	have	η	rev	=	1	−	c	[3A.10]	=	0.262	=	1−	obtain	Tc	=	201.6	K	as	the	temperature	of	the	organic	liquid.	F12:1	.	Solving	for	Tc,	we	3A.3(b)
Assume	that	the	block	is	so	large	that	its	temperature	does	not	change	significantly	as	a	result	of	the	heat	transfer.	Then	f	dq	f	q	rev	=	∆S	=	[3A.2]	1	∫i	dqrev	[constant	=	T	]	rev	T	T	T	i	250	×	103	J	250	×	103	J	(a)	∆S	=	=	853	J	K	−1	=	(b)	∆S	=	670	J	K	−1	293.15	K	373.15	K	∫	3A.4(b)	CO2(g)	will	have	the	higher	standard	molar	entropy,	primarily
because	∆Sfus	and	∆S	vap	are	greater	for	CO2(g).	3A.5(b)	We	use	æV	ö	nR	ln	ç	f		[3A.14]	∆S	=	è	Vi	ø	æ	4.00	g	ö	æ	750	ö	−1	−1	−1	=	ç		×	8.314	J	K	mol	×	ln	ç	=		0.482	J	K	28.0	g/mol	500	è	ø	è	ø	3A.6(b)	Trouton’s	rule	in	the	form	∆	vap	H	O	=	Tb	×	85	J	K	−1	mol	−1	can	be	used	to	obtain	approximate	enthalpies	of	vaporization.	For	cyclohexane	∆	vap	H	O	=
(273.2	+	80.7)K	×	85	J	K	−1	mol−1	=	30.1	kJ/mol−1	3A.7(b)	At	250	K,	the	entropy	is	equal	to	its	entropy	at	298	K	plus	∆S	where	CV	,m	dT	dqrev	T	∆S	=	=	=	CV	,m	ln	f	T	T	Ti	∫	so	∫	S	=	154.84	J	K	−1	mol−1	+	[(20.786	−	8.3145)	J	K	−1	mol−1	]	×	ln	250	K	298	K	S	=	152.65	J	K	−1	mol−1	3A.8(b)	No	matter	how	the	change	occurred,	∆S	has	the	same
value	as	if	the	change	happened	by	reversible	heating	at	constant	pressure	(step	1)	followed	by	reversible	isothermal	compression	(step	2)	∆S	=	∆S1	+	∆S2	For	the	first	step	∆S1	=	∫	dqrev	=	T	∫	C	p,m	dT	T	()	=	C	p,m	ln	Tf	Ti	(135	+	273)	K	∆S1	=	(2.00	mol)	×	7	×	(8.3145	J	K	−1	mol−1	)	×	ln	=	18.3	J	K	−1	2	(25	+	273)	K	and	for	the	second	dqrev	qrev
=	∆S2	=	T	T	p	V	where	qrev	=	−w	=	p	dV	=	nRT	ln	f	=	nRT	ln	i	Vi	pf	∫	∫	so	∆S2	=	nR	ln	pi	=	(2.00	mol)	×	(8.3145	J	K	−1	mol−1	)	×	ln	1.50	atm	=	−25.6	J	K	−1	pf	7.00	atm	∆S	=	(18.3	−	25.6)	J	K	−1	=	−7.3	J	K	−1	3:2	The	heat	lost	in	step	2	was	more	than	the	heat	gained	in	step	1,	resulting	in	a	net	loss	of	entropy.	Or	the	ordering	represented	by
confining	the	sample	to	a	smaller	volume	in	step	2	overcame	the	disordering	represented	by	the	temperature	rise	in	step	1.	A	negative	entropy	change	is	allowed	for	a	system	as	long	as	an	increase	in	entropy	elsewhere	results	in	∆S	total	>	0	.	3A.9(b)	Since	the	masses	are	equal	and	the	heat	capacity	is	assumed	constant,	the	final	temperature	will	be
the	average	of	the	two	initial	temperatures,	1	Tf	=	(100	C	+	25	C)	=	62.	5		C	2	The	heat	capacity	of	each	block	is	C	=	mCs	where	Cs	is	the	specific	heat	capacity.	So,	∆H	(individual)	=mCs	∆T	=10.0	×	103	g	×	0.449	J	K	−1	g	−1	×	(±37.5	K)	=±168	kJ	These	two	enthalpy	changes	add	up	to	zero:	∆H	tot	=	0		æT	ö	∆S	=	mCs	ln	ç	f		;	100	C	=	373.2	K;	25	C
=	298.2	K;	62.5	C	=	335.7	K	è	Ti	ø	æ	335.7	ö	−1	∆S1=	(10.0	×	103	g)	×	(0.449	J	K	−1	g	−1	)	×	ln	ç	=	532	J	K	298	2	.	è	ø	335	7	.	æ	ö	−1	∆S	2	=(10.0	×	103	g)	×	(0.449	J	K	−1	g	−1	)	×	ln	ç		=−475	J	K	è	373.2	ø	∆S	total	=	∆S1	+	∆S	2	=	57	J	K	−1	3A.10(b)	æ	Vf	ö	æ	ö	21g	4.60	dm3	=	∆S	(gas)	nR	ln	ç=	×	(8.314	J	K	−1	mol−1	)	ln		[3A.14]	ç	−1		1.20	dm3	è
39.95g	mol	ø	(i)	è	Vi	ø	=	5.873	=	J	K	−1	5.9	J	K	−1	∆S	(surroundings)	=	−∆S	(gas)	=	−5.9	J	K	−1	[reversible]	∆S(total)	=	0	(ii)	∆S	(gas)	=	+5.9	J	K	−1	[S	is	a	state	function]	∆S(surroundings)	=	0	[no	change	in	surroundings]	∆S	(total)=	+5.9	J	K	−1	(iii)	qrev	=	0	so	∆S(gas)	=	0	∆S(surroundings)	=	0	[No	heat	is	transfered	to	the	surroundings]	∆S(total)	=
0	3A.11(b)	(i)	(ii)	∆	vap	H	35.27	×	103	J	mol−1	=	+104.58	J	K	−1	=	104.6	J	K	−1	(64.1	+	273.15)	K	Tb	If	vaporization	occurs	reversibly,	as	is	generally	assumed	∆	vap	S	=	=	∆Ssys	+	∆Ssur	=	0	so	∆Ssur	=	−104.6	J	K	−1	Comment.	This	calculation	has	been	based	on	the	assumption	that	the	heat	capacities	remain	constant	over	the	range	of
temperatures	involved	and	that	the	enthalpy	of	vaporization	at	298.15	K	given	in	Table	3A.2	can	be	applied	to	the	vaporization	at	373.15	K.	Neither	one	of	these	assumptions	are	strictly	valid.	Therefore,	the	calculated	value	is	only	approximate.	F12:3	3A.12(b)	∆S	nCp	(H	2	O,s)ln	=	n	=	Tf	Ti	+n	∆	fus	H	+	nCp	(H	2	O,l)ln	Tfus	Tf	Ti	+n	∆	vap	H	Tvap	+
nCp	(H	2	O,g)ln	Tf	Ti	15.0	g	0.832	mol	=	18.02	g	mol−1	=	∆S	0.832	mol	×	38.02	J	K	−1	+	0.832	mol	×	75.291	J	K	+	0.832	mol	×	mol	−1	−1	mol	40.657	kJ/mol	×	ln	−1	273.15	+	0.832	mol	×	6.008	kJ/mol	261.15	373.15	×	ln	−1	273.15	K	273.15	−1	+	0.832	mol	×	33.58	J	K	−1	mol	−1	×	ln	373.15	K	378.15	373.15	∆S	=	130.3	J	K	−1	Comment.	This
calculation	was	based	on	the	assumption	that	heat	capacities	were	constant	over	the	range	of	temperatures	involved.	This	assumption	is	not	strictly	valid.	Therefore	the	calculated	value	is	only	approximate.	Problems	3A.2	The	Otto	cycle	is	represented	in	Fig.	3.1.	Assume	one	mole	of	air.	Figure	3A.1	η=	|	w	|cycle	[3A.8]	|	q2	|	wcycle	=	w1	+	w3	=	∆U1
+	∆U	3	[q1	=	q3	=	0]	=	CV	(TB	−	TA	)	+	CV	(TD	−	TC	)	q2	=	∆U	2	=	CV	(TC	−	TB	)	|	TB	−	TA	+	TD	−	TC	|	æ	T	−T	ö	=	1−	ç	D	A		|	TC	−	TB	|	è	TC	−	TB	ø	We	know	that	η=	TA	æ	VB	ö	=	TB	çè	VA	ø	1/c	and	Since	VB	=	VC	and	VA	=	VD,	TD	æ	VC	ö	=	TC	çè	VD	ø	1/c	[2E.2a]	TT	TA	TD	=	,	or	TD	=	A	C	TB	TB	TC	3:4	Then	TATC	−	TA	1/	c	T	T	æV	ö	=	η=	1−	B	1	−	A
or	η	=	1	−	ç	B		TC	−	TB	TB	è	VA	ø	Given	that	Cp,m	=	7/2R,	we	have	CV,m	=	5/2R	[2D.11]	and	c	=	2	5	2/5	VA	1	For	10,	η	=	1−	0.47	=	=	VB	10	(	)	∆S1	=	∆S3	=	∆Ssur,1	=	∆Ssur,3	=	0	[adiabatic	reversible	steps]	æT	ö	∆S2	=	CV	,m	lnç	C		è	TB	ø	æT	ö	æ	p	ö	At	constant	volume	ç	C		=	ç	C		=	5.0	è	TB	ø	è	pB	ø	∆S	2	=	(	52	)	×	(8.314	J	K	−1	mol−1	)	×	(ln	5.0)=
+33J	K	−1	∆Ssur,2	=	−∆S2	=	−33J	K	−1	éT	T	ù	∆S4	=	−∆S2	ê	C	=	B	ú	=	−33J	K	−1	T	T	A	û	ë	D	∆Ssur,4	=	−∆S4	=	+33J	K	−1	3A.4	(a)	As	suggested,	relate	the	work	to	the	temperature-dependent	coefficient	of	performance	:	dw	=	dqc	c	C	p	dT	=	æ	T	ö	çT	−T	è	h	ø	=	Cp	Th	dT	−	dT	T	Integrating	yields	w	=	C	p	Th	∫	Tf	Ti	dT	+	T	∫	Tf	Ti	dT	=	C	p	Th	ln	æ	ö	Tf	T
−	(Tf	−	Ti	)	=	C	p	ç	Th	ln	i	−	Ti	+	Tf		Ti	Tf	è	ø	(b)	The	heat	capacity	is	Cp	=	(4.184	J	K–1	g–1)	×	(250	g)	=	1046	J	K–1,	so	the	work	associated	with	cooling	the	water	from	293	K	to	the	freezing	temperature	is	ö	æ	293	K	w	cooling	=	1046	J	K	−1	×	ç	293	K	×	ln	−	293	K	+	273	K		=	748	J	273	K	ø	è	The	refrigerator	must	also	remove	the	heat	of	fusion	at	the
freezing	temperature.	For	this	isothermal	process,	the	coefficient	of	performance	does	not	change,	so	q	æ	T	−	Tc	ö	∆	fus	H	w	freeze	=	c	=	=	∆	fus	H	ç	h		c	æ	Tc	ö	è	Tc	ø	çT	−T		è	h	cø	=	6.008	×	103	J	mol−1	×	æ	293	−	273	ö	250	g	=	6113	J	×ç	−1	è	273	ø	18.0	g	mol	The	total	work	is	w	total	=	w	cooling	+	w	freeze	=	(748	+	6113)	J	=	6.86	×	103	J	=	6.86	kJ
At	the	rate	of	100	W	=	100	J	s–1,	the	refrigerator	would	freeze	the	water	in	t=	6.86	×	103	J	=	68.6	s	100	J	s	−1	F12:5	3A.6	(a)	Because	entropy	is	a	state	function	∆	trs	S	(l	→	s,	−5	C)	may	be	determined	indirectly	from	the	following	cycle	∆	trs	S	(l	→	s,0°	C)	H	2	O(1,	0	C)	¾¾¾¾¾	→	H	2	O(s,	0	C)	∆S1	↑	↓	∆Ss		∆	trs	S	(l	→	s,	−	5°	C)	H	2	O(1,	−5	C)
¾¾¾¾¾¾	→	H	2	O(s,	−5	C)	Thus	∆	trs	S	(l	→	s,	−	5	C)	=	∆Sl	+	∆	trs	S	(l	→	s,	0	C)	+	∆Ss	,	where	C	p	,	m	(l)	ln	∆Sl	=	and	Tf	−5	C]	[3A.20;	θ	f	=	0	C,	θ	=	T	T	∆Ss	=	C	p,m	(s)	ln	Tf	∆Sl	+	∆Ss	=	−∆C	p	ln	Thus,	T	Tf	with	∆C	p	=	C	p,m	(l)	−	C	p,m	(s)	=	+37.3J	K	−1	mol−1	∆	trs	S(l	→	s,Tf	)	=	−∆	fus	H	[3A.17]	Tf	∆	trs	S(l	→	s,T	)	=	−∆	fus	H	T	−	∆C	p	ln	Tf	Tf
∆=	trs	S	(l	→	s,	−	5°C)	268	−6.01×	103	J	mol−1	−	(37.3J	K	−1	mol−1	)	×	ln	273	K	273	=	−21.3J	K	-1	mol-1	∆	fus	H	(T	)	T	∆	fus	H	(T	)	=	−∆H	l	+	∆	fus	H	(Tf	)	−	∆H	s	∆Ssur	=	∆H	l	+	∆H	s	=	C	p,m	(l)(Tf	−	T	)	+	C	p,m	(s)(T	−	Tf	)	=	∆Cp	(Tf	−	T	)	∆	fus	H	(T	)	=	∆	fus	H	(Tf	)	−	∆C	p	(Tf	−	T	)	Thus,	∆	fus	H	(T	)	∆	fus	H	(Tf	)	(T	−	Tf	)	=	+	∆C	p	T	T	T	−1	æ	268
−	273	ö	6.01kJ	mol	+	(37.3J	K	−1	mol−1	)	×	ç	∆Ssur	=	268	K	è	268	ø	∆Ssur	=	=	+21.7	J	K	-1	mol-1	∆S	total	=	∆Ssur	+	∆S	=	(21.7	−	21.3)	J	K	−1	mol−1	=	+0.4	J	K	−1	mol−1	Because	∆S	total	>	0	,	the	transition	l	→	s	is	spontaneous	at	–5°C.	(b)	A	similar	cycle	and	analysis	can	be	set	up	for	the	transition	liquid	→	vapour	at	95	C	.	However,	since	the
transformation	here	is	to	the	high	temperature	state	(vapour)	from	the	low	temperature	state	(liquid),	which	is	the	opposite	of	part	(a),	we	can	expect	that	the	analogous	equations	will	occur	with	a	change	of	sign.	T	∆	trs	S(1	→	g,	T	)	=	∆	trs	S(1	→	g,	Tb	)	+	∆C	p	ln	Tb	=	∆	trs	S(1	→	g,	T	)	=	∆	vap	H	Tb	+	∆C	p	ln	T	,	Tb	∆C	p	=	−	41.9	J	K	-1	mol-1	æ	368	ö
40.7	kJ	mol−1	−	(41.9	J	K	−1	mol−1	)	×	ln	ç	373	K	è	373	ø	=	+109.7	J	K	-1	mol-1	3:6	∆Ssur	=	−∆	vap	H	(T	)	=−	∆	vap	H	(Tb	)	−	∆C	p	(T	−	Tb	)	T	T	T	−1	æ	−40.7	kJ	mol	ö	æ	368	−	373	ö	−1	−1	=ç		−	(−41.9	J	K	mol	)	×	çè	368	ø	368	K	è	ø	=	−111.2	J	K	-1	mol-1	∆S	total	=	(109.7	−	111.2)	J	K	−1	mol−1	=	−1.5J	K	−1	mol−1	Since	∆S	total	<	0	,	the	reverse
transition,	g	→	l	,	is	spontaneous	at	95°C.	3A.8	(a)	q(total)	=	q(H	2	O)	+	q(Cu)	=	0,	hence	−	q(H	2	O)	=	q(Cu)	q(H	2	O)	=	n(−∆	vap	H	)	+	nC	p,m	(H	2	O,	l)	×	(θ	−	100°C)	where	θ	is	the	final	temperature	of	the	water	and	copper.	q(Cu)	=	mCs	(θ	−	0)	=	mCsθ	,	Cs	=	0.385J	K	−1g	−1	[Cs	=	Cp,m/M]	Setting	–q(H2O)	=	q(Cu)	allows	us	to	solve	for	θ.	n(∆
vap	H	)	−	nC	p,m	(H	2	O,	l)	×	(θ	−	100°C)	=	mCsθ	Solving	for	θ	yields:	n{∆	vap	H	+	C	p	,	m	(H	2	O,	l)	×	100°C}	θ=	mCs	+	nC	p	,	m	(H	2	O,	l)	(1.00	mol)	×	(40.656	×	103	J	mol−1	+	75.3	J°C−1	mol−1	×	100°C)	2.00	×	103	g	×	0.385	J°C−1	g	−1	+	1.00	mol	×	75.3	J°C−1	mol−1	=	57.0°C=	330.2	K	=	q(Cu)	=	(2.00	×	103	g)	×	(0.385J	K	−1	g	−1	)	×	(57.0
K)	=	4.39	×	104	J	=	43.9	kJ	q	(	H	2	O	)	=	−43.9	kJ	∆S(total)	=	∆S(H	2	O)	+	∆S(Cu)	S	(H	2	O)	∆=	−n∆	vap	H	æT	ö	[3A.17]	+	nC	p	,	m	lnç	f		[3A.20]	Tb	è	Ti	ø	(1.00	mol)	×	(40.656	×	103	J	mol−1	)	=	−	373.2	K	æ	330.2	K	ö	+(1.00	mol)	×	(75.3J	K	−1	mol−1	)	×	ln	ç		è	373.2	K	ø	=−108.9	J	K	−1	−	9.22	J	K	−1	=−118.1J	K	−1	∆S(Cu)	=	mCs	ln	Tf	æ	330.2	K	ö	=
(2.00	×	103	g)	×	(0.385J	K	−1	g	−1	)	×	ln	ç	è	273.2	K	ø	Ti	=	145.9	J	K	−1	∆S(total)	=	−118.1J	K	−1	+	145.9	J	K	−1	=	28	J	K	−1	This	process	is	spontaneous	since	∆S(surroundings)	(surroundings)	is	zero	and,	hence,	∆S(universe)	=	∆S(total)	>	0	(b)	The	volume	of	the	container	may	be	calculated	from	the	perfect	gas	law.	nRT	(1.00	mol)	×	(0.08206	dm
3	atm	K	−1	mol−1	)	×	(373.2	K)	V=	=	=	30.6	dm	3	1.00	atm	p	At	57°C	the	vapor	pressure	of	water	is	130	Torr	(Handbook	of	Chemistry	and	Physics,	81st	edition).	The	amount	of	water	vapor	present	at	equilibrium	is	then	F12:7	æ	1atm	ö	×	(30.6	dm3	)	(130	Torr)	×	ç	760	Torr	ø	pV	è	=	=	0.193mol	n=	RT	(0.08206	dm3	atm	K	−1	mol−1	)	×	(330.2	K)	This
is	a	substantial	fraction	of	the	original	amount	of	water	and	cannot	be	ignored.	Consequently	the	calculation	needs	to	be	redone	taking	into	account	the	fact	that	only	a	part,	nl,	of	the	vapor	condenses	into	a	liquid	while	the	remainder	(1.00	mol	–	nl)	remains	gaseous.	The	heat	flow	involving	water,	then,	becomes	q(H	2	O)	=	−n1∆	vap	H	+	n1C	p,m	(H	2
O,	l)∆T	(H	2	O)	+(1.00	mol	−	n1	)C	p,m	(H	2	O,	g)∆T	(H	2	O)	Because	nl	depends	on	the	equilibrium	temperature	through	pV	,	where	p	is	the	vapor	pressure	of	water,	we	will	have	two	unknowns	(p	and	T)	in	n1	=	1.00	mol	−	RT	the	equation	−q(H	2	O)	=	q(Cu)	.	There	are	two	ways	out	of	this	dilemma:	(1)	p	may	be	expressed	as	a	function	of	T	by	use	of
the	Clapeyron	equation,	or	(2)	by	use	of	successive	approximations.	Redoing	the	calculation	yields:	θ=	nl	∆	vap	H	+	nlC	p,m	(H	2	O,	l)	×	100°C	+	(1.00	−	nl	)C	p,m	(H	2	O,	g)	×	100°C	mCs	+	nC	p,m	(H	2	O,	l)	+	(1.00	−	nl	)C	p,m	(H	2	O,	g)	With	n1	=	(1.00	mol)	−	(0.193mol)	=	0.807	mol	(noting	that	Cp,m(H2O,g)	=	33.6	J	mol–1	K–1	[Table	2C.2])	θ	=
47.2°C.	At	this	temperature,	the	vapor	pressure	of	water	is	80.41	Torr,	corresponding	to	n1	=	(1.00	mol)	−	(0.123mol)	=	0.877	mol	This	leads	to	θ	=	50.8°C.	The	successive	approximations	eventually	converge	to	yield	a	value	of	θ	=	49.9=	C	323.1K	for	the	final	temperature.	(At	this	temperature,	the	vapor	pressure	is	0.123	bar.)	Using	this	value	of	the
final	temperature,	the	heat	transferred	and	the	various	entropies	are	calculated	as	in	part	(a).	q(Cu)	=	(2.00	×	103	g)	×	(0.385J	K	−1	g	−1	)	×	(49.9	K)	=	38.4	kJ	=	−q(H	2	O)	∆S(H	2	O)	=	−n∆	vap	H	Tb	∆S(Cu)	=	mCs	ln	æT	ö	+	nC	p,m	lnç	f		=	−119.8	J	K	−1	è	Ti	ø	Tf	=	129.2	J	K	−1	Ti	∆S(total)	=	−119.8	J	K	−1	+	129.2	J	K	−1	=	9	J	K	−1	3A.10	nC	p	,	m
ln	∆S	depends	on	only	the	initial	and	final	states,	so	we	can	use	∆S	=	Since	q	=	nC	p,m	(Tf	−	Ti	),	Tf	=	Ti	+	Tf	[3A.20]	Ti	I	2	Rt	q	[q	=	ItV	=	I	2	Rt]	=	Ti	+	nC	p,m	nC	p,m	æ	I	2	Rt	ö	That	is,	∆S	=	nC	p,m	ln	ç	1	+		nC	p,m	Ti	ø	è	Since	n=	500	g	=	7.87	mol	63.5	g	mol−1	æ	(1.00	A)	2	×	(1000	Ω)	×	(15.0	s)	ö	∆S	=	(7.87	mol)	×	(24.4	J	K	−1	mol−1	)	×	ln	ç1	+	
−1	è	(7.87)	×	(24.4	J	K	)	×	(293	K)	ø	(192	J	K	−1	)	×	(ln1.27)	=	=	+45.4	J	K	−1	3:8	[1	J	=	1	AVs	=	1	A	2	Ω	s]	For	the	second	experiment,	no	change	in	state	occurs	for	the	copper,	hence,	∆S(copper)	=	0	.	However,	for	the	water,	considered	as	a	large	heat	sink	q	I	2	Rt	(1.00	A)	2	×	(1000	Ω)	×	(15.0	s)	∆S	(water)	=	=	=	=	+51.2	J	K	−1	T	T	293	K	3A.12	Let
us	write	Newton’s	law	of	cooling	as	follows:	dT	=	−	A(T	−	Ts	)	dt	Where	A	is	a	constant	characteristic	of	the	system	and	TS	is	the	temperature	of	the	surroundings.	negative	sign	appears	because	we	assume	T	>	TS.	Separating	variables	The	dT	=	−	Adt	,	and	integrating,	we	obtain	T	−	TS	ln(T	−	TS	)	=	−	At	+	K	,	where	K	is	a	constant	of	integration.
Let	Ti	be	the	initial	temperature	of	the	system	when	t	=	0,	then	K	=	ln(Ti	−	TS	)	Introducing	this	expression	for	K	gives	æ	T	−	TS	ö	ln	ç	TS	+	(Ti	−	TS	)e	−	At	=	−	At	or	T	=	ç	T	−	TS		è	i	ø	dS	d	æ	Tö	d	=	=	(C	ln	T	)	ç	C	ln		dt	dt	è	Ti	ø	dt	From	the	above	expression	for	T,	we	obtain	ln	=	T	ln	TS	−	At	ln(Ti	−	TS	)	.	Substituting	ln	t	we	obtain	dS	=	−CA	ln(Ti	−
TS	)	,	where	now	Ti	can	be	interpreted	as	any	temperature	T	during	the	dt	course	of	the	cooling	process.	3B	The	measurement	of	entropy	Solutions	to	exercises	3B.1(b)	Use	Sm	=	R	ln	s,	where	s	is	the	number	of	orientations	of	about	equal	energy	that	the	molecule	can	adopt.	Draw	up	the	following	table:	n:	s	0	1	1	6	2	3	4	o	m	p	a	b	c	o	m	p	6	6	3	6	6	2	6
6	3	Sm/R	0	1.8	1.8	1.8	1.1	1.8	1.8	0.7	6	6	1	1.8	1.8	1.1	1.8	where	a	is	the	1,2,3	isomer,	b	the	1,2,4	isomer,	and	c	the	1,3,5	isomer.	F12:9	5	0	3B.2(b)	∆	r	S	O	=	SmO	(Zn	2+	,aq)	+	SmO	(Cu,s)	−	SmO	(Zn,s)	−	SmO	(Cu	2+	,aq)	(i)	=	éë	−112.1	+	33.15	−	41.63	+	99.6	ùû	J	K	−1	mol−1	=	−21.0	J	K	−1	mol−1	∆	r	S	O	=	12SmO	(CO	2	,	g)	+	11SmO	(H	2	O,	l)	−
SmO	(C12	H	22	O11	,s)	−	12SmO	(O	2	,	g)	=	éë(12	×	213.74)	+	(11	×	69.91)	−	360.2	−	(12	×	205.14)	ùû	J	K	−1	mol−1	(ii)	=	+512.0	J	K	−1	mol−1	Solutions	to	problems	3B.2	C	p	,m	dT	[3A.19]	T	0	From	the	data,	draw	up	the	following	table	S=	S	m	(0)	+	m	(T	)	T/K	C	p	,m	T	/	(J	K–2	mol–1)	T/K	C	p	,m	T	–2	–1	/	(J	K	mol	)	∫	T	10	0.28	15	0.47	20	0.540	25
0.564	30	0.550	50	0.428	70	0.333	100	0.245	150	0.169	200	0.129	250	0.105	298	0.089	Plot	Cp,m	/	T	against	T	(Fig.	3B.1).	This	has	been	done	on	two	scales.	The	region	0	to	10	K	has	been	constructed	using	Cp,m	=	aT3,	fitted	to	the	point	at	T	=	10	K,	at	which	Cp,m	=	2.8	J	K–1	mol–1,	so	a	=	2.8	×	10−3	J	K	−4	mol−1	.	The	area	can	be	determined
(primitively)	by	counting	squares.	Area	A	=	38.28	J	K–1	mol–1.	Area	B	up	to	0°C	=	25.60	J	K–1	mol–1;	area	B	up	to	25°C	=	27.80	J	K–1	mol–1.	Hence	Figure	3B.1	3B.4	(a)	Sm	(273K)	=	Sm	(0)	+	63.88	J	K	−1	mol−1	(b)	Sm	(298	K)	=	Sm	(0)	+	66.08	J	K	−1	mol−1	Sm	(T	)	=	Sm	(0)	+	∫	T	0	C	p,m	dT	T	[3A.19]	3:10	Perform	a	graphical	integration	by
plotting	C	p,m	/	T	against	T	and	determining	the	area	under	the	curve.	Draw	up	the	following	table.	(The	last	two	columns	come	from	determining	areas	under	the	curves	described	below.)	T/K	0.00	10.00	20.00	30.00	40.00	50.00	60.00	70.00	80.00	90.00	100.00	110.00	150.00	160.00	170.00	180.00	190.00	200.00	C	p,m	C	p,m	T	SmO	−	SmO	(0)	H	mO
−	H	mO	(0)	J	K	−1	mol−1	0.00	2.09	14.43	36.44	62.55	87.03	111.00	131.40	149.40	165.30	179.60	192.80	237.60	247.30	256.50	265.10	273.00	280.30	J	K	−2	mol−1	0.00	0.21	0.72	1.21	1.56	1.74	1.85	1.88	1.87	1.84	1.80	1.75	1.58	1.55	1.51	1.47	1.44	1.40	J	K	−1	mol−1	kJ	mol−1	0.00	0.80	5.61	15.60	29.83	46.56	64.62	83.29	102.07	120.60	138.72
156.42	222.91	238.54	253.79	268.68	283.21	297.38	0.00	0.01	0.09	0.34	0.85	1.61	2.62	3.84	5.26	6.84	8.57	10.44	19.09	21.52	24.05	26.66	29.35	32.13	Plot	Cp,m	against	T	(Fig.	3B.2(a)).	Extrapolate	to	T	=	0	using	Cp,m	=	aT3	fitted	to	the	point	at	T	=	10	K,	which	gives	a	=	2.09	mJ	K–2	mol–1.	Determine	the	area	under	the	graph	up	to	each	T	and	plot
Sm	against	T	(Fig.	3B.2(b)).	Figure	3B.2	(a)	Fig.	3.3(a)	2.0	(Cp/T)(J/K^2·mol)	1.8	1.6	1.4	1.2	1.0	0.8	0.6	0.4	0.2	0.0	0	50	100	150	T/K	F12:11	200	(b)	Fig.	3.3(b)	[S(T)-S(0)]/(J/K·mol)	300	250	200	150	100	50	0	0	50	100	150	200	T/K	The	molar	enthalpy	is	determined	in	a	similar	manner	from	a	plot	of	Cp,m	against	T	by	determining	the	area	under	the
curve	(Fig.	3.4)	H	mO	(200	K)	−	H	mO	(0)	=	∫	200	K	0	C	p,m	dT	=	32.1	kJ	mol-1	Figure	3B.3	Fig.	3.4	300	Cp/(J/K·mol)	250	200	150	100	50	0	0	50	100	150	200	T/K	3B.6	The	entropy	at	200	K	is	calculated	from	Sm	O	(200	K)	=	Sm	O	(100	K)	+	∫	200	K	C	p,m	dT	100	K	T	The	integrand	may	be	evaluated	at	each	of	the	data	points;	the	transformed	data
appear	below.	The	numerical	integration	can	be	carried	out	by	a	standard	procedure	such	as	the	trapezoid	rule	(taking	the	integral	within	any	interval	as	the	mean	value	of	the	integrand	times	the	length	of	the	interval).	Programs	for	performing	this	integration	are	readily	available	for	personal	computers.	Many	graphing	calculators	will	also	perform
this	numerical	integration.	T/K	C	p,m	/	(J	K	−1	mol−1	)	C	p,m	T	(J	K	−2	mol−1	)	100	23.00	120	23.74	140	24.25	150	24.44	160	24.61	180	24.89	200	25.11	0.230	0.1978	0.1732	0.1629	0.1538	0.1383	0.1256	Integration	by	the	trapezoid	rule	yields	Sm	O	(200	K)	=	(29.79	+	16.81)	J	K	−1	mol−1	=	46.60	J	K	−1	mol−1	3:12	Taking	Cp,m	constant	yields	Sm
O	(200	K)	=	Sm	O	(100	K)	+	C	p,m	ln	(200	K	/	100	K)	=	[29.79	+	24.44	ln(200	/	100	K)]	J	K	−1	mol−1	=	46.60	J	K	−1	mol−1	The	difference	is	slight.	3B.8	so	S	=	k	ln	W	[also	see	Exercises	3B.1(a)	and	(b)]	S	=	k	ln	4	N	=	Nk	ln	4	=	(5	×	108	)	×	(1.38	×10−23	J	K	−1	)	×	ln	4	=	9.57	×10−15	J	K	−1	Question.	Is	this	a	large	residual	entropy?	The	answer
depends	on	what	comparison	is	made.	Multiply	the	answer	by	Avogadro’s	number	to	obtain	the	molar	residual	entropy,	5.76×109	J	K–1	mol–1,	surely	a	large	number—but	then	DNA	is	a	macromolecule.	The	residual	entropy	per	mole	of	base	pairs	may	be	a	more	reasonable	quantity	to	compare	to	molar	residual	entropies	of	small	molecules.	To	obtain
that	answer,	divide	the	molecule’s	entropy	by	the	number	of	base	pairs	before	multiplying	by	NA.	The	result	is	11.5	J	K–1	mol–1,	a	quantity	more	in	line	with	examples	discussed	in	Exercises	3B.1(a)	and	(b).	3C	Concentrating	on	the	system	Answers	to	discussion	questions	3C.2	All	of	the	thermodynamic	properties	of	a	system	that	we	have
encountered,	U,	H,	S,	A,	and	G	can	be	used	as	the	criteria	for	the	spontaneity	of	a	process	under	specific	conditions.	The	criteria	are	derived	directly	from	the	fundamental	relation	of	thermodynamics	which	is	a	combination	of	the	first	and	second	laws,	namely	−dU	−	pext	dV	+	dwnon-pV	+	TdS	≥	0	The	inequality	sign	gives	the	criteria	for	the
spontaneity	of	a	process,	the	equality	gives	the	criteria	for	equilibrium.	The	specific	conditions	we	are	interested	in	and	the	criteria	that	follow	from	inserting	these	conditions	into	the	fundamental	relation	are	the	following:	(1)	Constant	U	and	V,	no	work	at	all	dSU	,V	≥	0	(2)	Constant	S	and	V,	no	work	at	all	dU	S	,V	≤	0	(3)	Constant	S	and	p,	no	work	at
all	dH	S	,	p	≤	0	(4)	Constant	T	dAT	≤	dw	(5)	Constant	T	and	V,	only	non-pV	work	dAT	,V	≤	dwnon-pV	(6)	Constant	T	and	V,	no	work	at	all	dAT	,V	≤	0	(7)	Constant	T	and	p,	p	=	pext	dGT	,	p	≤	dwnon-pV	(8)	Constant	T	and	p,	no	non-pV	work	dGT	,	p	≤	0	Exercises	F12:13	3C.1(b)	(i)	∆	r	H	O	=	∆	f	H	O	(Zn	2+	,aq)	−	∆	f	H	O	(Cu	2+	,aq)	=	−153.89	−	64.77
kJ	mol−1	=	−218.66	kJ	mol−1	∆	r	G	O	=	−218.66	kJ	mol−1	−	(298.15	K)	×	(−21.0	J	K	−1	mol−1	)	=	−212.40	kJ	mol−1	(ii)	∆	r	H	O	=	∆	c	H	O	=	−5645kJ	mol−1	∆	r	G	O	=	−5645kJ	mol−1	−	(298.15	K)	×	(512.0	J	K	−1	mol−1	)	=	−5798	kJ	mol−1	3C.2(b)	CO(g)	+	CH	3	CH	2	OH(l)	→	CH	3	CH	2	COOH(l)	∆r	H	O	=	∑	ν∆	H	f	O	−	Products	∑	ν∆	H	O	f	[2C.5]
Reactants	=−510.7	kJ	mol−1	−	(−277.69	kJ	mol−1	)	−	(−110.53kJ	mol−1	)	=	−122.5	kJ	mol−1	O	∆=	rS	∑	νS	O	m	−	Products	∑	νS	O	m	[3B.2]	Reactants	=	191.0	J	K	−1	mol−1	−	160.7	J	K	-1	mol−1	−	197.67	J	K	−1	mol−1	=	−167.4	J	K	−1	mol−1	∆	r	G	O	=∆	r	H	O	−	T	∆	r	S	O	=−122.5	kJ	mol−1	−	(298	K)	×	(−167.4	J	K	−1	mol−1	)	=	−72.6	kJ	mol−1
3C.3(b)	C3	H	8	(g)	+	5O	2	(g)	→	3CO	2	(g)	+	4H	2	O(l)	∆	r	G	O	=	3∆	f	G	O	(CO	2	,	g)	+	4∆	f	G	O	(	H	2	O,	l)	−	∆	f	G	O	(C3	H	8	,	g)	−	0	=	3(−394.36	kJ	mol−1	)	+	4(−237.13kJ	mol−1	)	−	1(−23.49	kJ	mol−1	)	=	−2108.11kJ	mol−1	The	maximum	non-expansion	work	is	2108.11kJ	mol−1	since	wadd	=	∆G	3C.4(b)	(a)	(b)	∆	r	G	O	=	∆	f	G	O	(Zn	2+	,aq)	−	∆	f	G
O	(Cu	2+	,aq)	=	−147.06	−	65.49	kJ	mol-1	=	−212.55	kJ	mol−1	∆	r	G	O	=	12∆	f	G	O	(CO	2	,	g)	+	11∆	f	G	O	(H	2	O,	l)	−	∆	f	G	O	(C12	H	22	O11	,s)	−	12∆	f	G	O	(O	2	,	g)	=	éë12	×	(−394.36)	+	11	×	(−237.13)	−	(−1543)	−	12	×	0	ùû	kJ	mol−1	=	−5798	kJ	mol−1	Comment.	In	each	case	these	values	of	∆	r	G	O	agree	closely	with	the	calculated	values	in
Exercise	3C.1(b).	3C.5(b)	The	formation	reaction	of	glycine	is	1	2	5	2	2C(gr)	+	O	2	(g)	+	N	2	(g)	+	H	2	(g)	→	NH	2	CH	2	COOH(s)	The	combustion	reaction	is	5	2	1	2	NH	2	CH	2	COOH(s)	+	72	O	2	(g)	→	2CO	2	(g)	+	H	2	O(1)	+	N	2	(g)	3:14	5	2	∆	c	H	=	2∆	f	H	O	(CO	2	,	g)	+	∆	f	H	O	(H	2	O,1)	−	∆	f	H	O	(NH	2	CH	2	COOH(s))	5	2	∆	f	H	O	(NH	2	CH	2
COOH(s))	=	2∆	f	H	O	(CO	2	,	g)	+	∆	f	H	O	(H	2	O,1)	−	∆	c	H	(NH	2	CH	2	COOH(s))	5	2	=−2	×	393.51	kJ	mol−1	+	(	)	×	(−285.83	kJ	mol−1	)	−	(−969	kJ	mol−1	)	=	−532.6	kJ	mol−1	=	∆	f	S	O	S	mO	(NH	2	CH	2	COOH(s))	−	2	×	S	mO	(C,	gr)	−	S	mO	(O	2	,	g)	−	1	5	O	O	×	S	m	(N	2	,	g)	−	×	S	m	(H	2	,	g)	2	2	=	103.5	J	K	−1	mol−1	−	2	×	5.740	J	K	−1	mol−1
−	(205.138	J	K	−1	mol−1	)	−	1	−1	×	191.61J	K	2	mol−1	−	5	−1	×	(130.684	J	K	2	mol−1	)	=	−535.63J	K	−1	mol−1	∆f	G	O	=	∆f	H	O	−	T	∆f	S	O	=−532.6	kJ	mol−1	−	(298.15	K)	×	(	−	535.63	J	K	−1	mol−1	)	=	−373kJ	mol−1	Solutions	to	problems	3C.2	Begin	with	the	partition	function	of	an	oscillator	[See	Chapter	15].	θV	1	,	=	=	q	x	=	hcv=	β	ωβ	−x	T
1−	e	The	molar	internal	energy,	molar	entropy,	and	molar	Helmholtz	energy	are	obtained	from	the	partition	function	as	follows:	U	−	U	(0)	=	−	S=	Nω	e	−	x	Nω	N	æ	∂q	ö	d	=	x	=	−	N	(1	−	e−	x	)	(1	−	e−	x	)−1	=	ç		−x	q	è	∂β	ø	V	dβ	1−	e	e	−1	U	−	U	(0)	Nkxe	−	x	−	Nk	ln(1	−	e	−	x	)	+	nR	ln	q	=	−x	T	1−	e	ö	æ	x	−	ln(1	−	e	−	x	)	=	Nk	ç	x	ø	è	e	−1	A	−	A(0)	=
G	−	G(0)	=	−nRT	ln	q	=	NkT	ln(1	−	e	−	x	)	The	functions	are	plotted	in	Fig.	3C.1.	F12:15	Figure	3C.1	3D	Combining	the	First	and	Second	Laws	Answers	to	discussion	questions	3D.2	The	relation	(∂G	/	∂p)T	=	V	,	eqn	3D.8,	shows	that	the	Gibbs	function	of	a	system	increases	with	p	at	constant	T	in	proportion	to	the	magnitude	of	its	volume.	This	makes
good	sense	when	one	considers	the	definition	of	G,	which	is	G	=	U	+	pV	−	TS	.	Hence,	G	is	expected	to	increase	with	p	in	proportion	to	V	when	T	is	constant.	Solutions	to	exercises	æp	ö	æV	ö	=	∆G	nRT=	lnç	f		[3D.14]	nRT	lnç	i		[Boyle’s	law]	3D.1(b)	p	è	iø	è	Vf	ø	æ	52	ö	∆G	=(	6.0	×10−3	mol	)	×	(	8.314	J	K	−1	mol−1	)	×	(	298	K	)	×	ln	ç		=−13	J	è	122	ø
3D.2(b)	æ	∂Gf	ö	æ	∂Gi	ö	æ	∂G	ö	ç		=−	S	[3D.8];	hence	ç		=−	Sf	,	and	ç		=−	Si	è	∂T	ø	p	è	∂T	ø	p	è	∂T	ø	p	æ	∂G	ö	æ	∂G	ö	æ	∂	(Gf	−	Gi	)	ö	∆S	=Sf	−	Si	=−ç	f		+	ç	i		=−ç		T	T	∂	∂	∂T	è	øp	è	øp	è	øp	(	)	=	−	∂∆G	∂T	=	p	(	=	−	∂	−73.1J	+	42.8	J	×	T	K	∂T	)	−42.8	J	K	−1	3D.3(b)	We	will	assume	that	the	volume	and	molar	volume	of	water	changes	little	over	the	range	of
pressures	given	and	that,	therefore,	equation	3D.13	which	applies	to	incompressible	substances	can	be	used	to	solve	this	exercise.	The	change	in	Gibbs	energy	for	this	sample	is	then	given	by	∆G	=	nVm	∆p	[3D.13]	=	V	∆p	3:16	æ	1m3	ö	∆G	=(100	cm3	)	×	ç	6	×	400	kPa	=40	Pa	m3	=+40	J	3		10	cm	è	ø	In	order	to	calculate	the	change	in	Gibbs	energy	per
mole	we	calculate	the	molar	volume	M	18.02	g	mol	−1	10	−6	m	3	=	×	=	Vm	=	1.81	×	10	−5	m	3	mol	−1	,then	−3	3	ρ	(density)	0.997	g	cm	cm	∆Gm	=Vm	∆p	[3D.13]	=1.81×	10−5	m3	mol−1	×	400	kPa	×	103	Pa	=	7.2	J	mol−1	kPa	æp	ö	æ	100.0	kPa	ö	∆Gm	=RT	ln	ç	f		=(8.314	J	K	−1	mol−1	)	×	(500	K	)	×	ln	ç		è	50.0	kPa	ø	è	pi	ø	3D.4(b)	=	+2.88	kJ	mol−1
Solutions	to	problems	3D.2	The	Gibbs–Helmholtz	equation	[3D.9]	may	be	recast	into	an	analogous	equation	involving	∆G	and	∆H	,	since	æ	∂∆G	ö	æ	∂Gf	ö	æ	∂Gi	ö	çè	∂T	ø	=	çè	∂T	ø	−	çè	∂T	ø	p	p	p	and	∆H	=	H	f	−	H	i	Thus,	æ	∂	∆rG	O	ö	∆r	H	O	=	−	ç		T2	è	∂T	T	ø	p	æ	∆	G	O	ö	æ	∂	∆rG	O	ö	∆r	H	O	=	dT[constant	pressure]	=	−	dç	r	dT		ç		T2	è	T	ø	è	∂T	T	ø	p	æ	∆	GO	ö	∆ç	r
=−	è	T	ø	T	∆	r	H	O	dT	Tc	T2	∫	≈	−∆	r	H	O	Therefore,	and	so	∫	T	Tc	dT	=	∆	H	O	r	T2	æ1	1ö	O	ç	T	−	T		[∆	r	H	assumed	constant]	è	ø	c	æ	ö	∆	r	G	O	(T	)	∆	r	G	O	(Tc	)	−	≈	∆r	H	O	ç	1	−	1		Tc	T	è	T	Tc	ø	æ	ö	∆	r	G	O	(T	)	=	T	∆	r	G	O	(Tc	)	+	ç	1	−	T		∆	r	H	O	(Tc	)	Tc	è	Tc	ø	=	τ∆	r	G	O	(Tc	)	+	(1	−	τ	)∆	r	H	O	(Tc	)	where	τ	=	T	Tc	For	the	reaction	N	2	(g)	+	3H	2	(g)	→
2NH	3	(g)	∆	r	G	Ο	=	2∆	f	G	Ο	(NH	3	,	g)	(a)	so	At	500	K,	τ	=	500	=	1.678	,	298	∆	r	G	O	(500	K)	=	{(1.678)	×	2	×	(−16.45)	+	(1	−	1.678)	×	2	×	(−46.11)}kJ	mol−1	=	−7	kJ	mol−1	F12:17	(b)	so	3D.4	At	1000	K,	τ	=	1000	=	3.356	,	298	∆	r	G	O	(1000	K)	=	{(3.356)	×	2	×	(−16.45)	+	(1	−	3.356)	×	2	×	(−46.11)}kJ	mol−1	=	+107	kJ	mol−1	æ	∂S	ö	=	æ	∂p	ö
[Table	3D.1]	è	∂V	ø	T	çè	∂T	ø	V	(a)	For	a	van	der	Waals	gas	p=	nRT	n2	a	RT	a	−	2	=	−	V	−	nb	V	Vm	−	b	Vm	2	æ	∂p	ö	R	Hence,	æ	∂S	ö	=	ç	=	è	∂V	ø	T	è	∂T	ø	Vm	−	b	V	(b)	For	a	Dieterici	gas	p=	RTe	−	a/RTVm	Vm	−b	æ	a	ö	−	a/	RVmT	R	ç1	+	e	RVm	T	ø	æ	∂S	ö	=	æ	∂p	ö	=	è	è	∂V	ø	T	çè	∂T	ø	Vm	−	b	V	For	an	isothermal	expansion,	∆S	=	∫	Vf	dS	=	Vi	∫	Vf	Vi	æ	∂S	ö	dV	è
∂V	ø	T	so	we	can	simply	compare	æ	∂S	ö	expressions	for	the	three	gases.	For	a	perfect	gas,	è	∂V	ø	T	p=	æ	∂S	ö	=	æ	∂p	ö	=	R	è	∂V	ø	T	çè	∂T	ø	Vm	V	nRT	RT	so	=	V	Vm	æ	∂S	ö	is	certainly	greater	for	a	van	der	Waals	gas	than	for	a	perfect	gas,	for	the	denominator	is	è	∂V	ø	T	smaller	for	the	van	der	Waals	gas.	To	compare	the	van	der	Waals	gas	to	the	Dieterici	gas,
we	assume	that	both	have	the	same	parameter	b.	(That	is	reasonable,	for	b	is	an	excluded	volume	in	both	equations	of	state.)	In	that	case,	æ	a	ö	−	a/	RVmT	e	R	ç1	+	RVm	T	ø	æ	è	a	ö	−	a/	RVmT	æ	∂S	ö	e	=	æ	∂S	ö	=	1+	ç	è	∂V	ø	T	,Die	è	ø	∂V	T	,vdW	è	Vm	−	b	RVm	T	ø	Now	notice	that	the	additional	factor	in	æ	∂S	ö	has	the	form	(1+x)e–x,	where	x	>	0.	This	factor
is	è	∂V	ø	T	,Die	always	less	than	1.	Clearly	(1+x)e–x	<	1	for	large	x,	for	then	the	exponential	dominates.	But	(1+x)e–x	<	1	even	for	small	x,	as	can	be	seen	by	using	the	power	series	expansion	for	the	exponential:	(1+x)(1–	To	summarize,	for	isothermal	expansions:	x+x2/2+...)	=	1	–	x2/2	+	...	So	æ	∂S	ö	<	æ	∂S	ö	è	∂V	ø	T	,Die	è	∂V	ø	T	,vdW	∆S	vdW	>	∆S	Die
and	∆S	vdW	>	∆S	perfect	The	comparison	between	a	perfect	gas	and	a	Dieterici	gas	depends	on	particular	values	of	the	constants	a	and	b	and	on	the	physical	conditions.	3D.6	(a)	(	V	)	(	∂T	)	1	×	∂V	;	α=	p	(	)	æ	è	ö	øT	κT	=	−	1	×	ç	∂V		V	∂p	3:18	(1)	æ	∂S	ö	æ	∂p	ö	çè	∂V	ø	=	çè	∂T	ø	[Maxwell	relation]	T	V	(	)	(	)	æ	∂p	ö	æ	∂p	ö	[Euler	chain	relation,	Mathematical
Background	2]	−	∂V	ç	ç		=	∂T	pè	∂V	øT	è	∂T	øV	∂V	∂T	p	[reciprocal	identity,	Mathematical	Background	2]	=	−	æ	∂V	ö	ç	∂p		è	øT	1	∂V	V	∂T	p	α	=	−	=	+	κT	1	æ	∂V	ö	V	çè	∂p	ø	T	(	)(	)	(	)	(	∂∂VS	)	p	æ	ö	=	ç	∂T		[Maxwell	relation]	è	∂p	ø	S	∂S	ö	∂p	øT	æ	∂T	ö	æ	ö	[reciprocal]	−	−	∂T	ç	∂S		[Euler	chain]	=	ç		=	∂S	pè	∂p	øT	∂S	ö	è	∂p	ø	S	∂T	ø	p	æ	ç	çç	è	æ	ç	çç	è	(	)	First	treat	the
numerator:	æ	∂S	ö	−	∂V	[Maxwell	relation]	=	−αV	ç		=	∂T	p	è	∂p	øT	(	)	As	for	the	denominator,	at	constant	p	æ	∂S	ö	dS	=	ç		dT	and	è	∂T	ø	p	(	)	Therefore,	∂S	∂T	(2)	=	p	Cp	T	dS	=	(	∂∂VS	)	and	dqrev	dH	C	p	dT	=	=	T	T	T	=	p	[dq	p	=	dH	]	α	TV	Cp	æ	∂T	ö	æ	∂p	ö	çè	∂S	ø	=	−çè	∂V	ø	[Maxwell	relation]	S	V	1	æ	∂T	ö	[Euler	chain]	=	−ç	=		è	∂V	ø	S	æ	∂S	ö	æ	∂V	ö	ç		ç		è	∂T
øV	è	∂S	øT	(	∂∂VS	)	(	∂∂TS	)	T	[reciprocal]	V	(	)	(	)(	)	æ	∂p	ö	∂V	æ	∂p	ö	−ç		ç	∂T		è	∂V	øT	∂T	p	è	øV	[Maxwell	relation]	[Euler	chain	relation]	=	∂S	∂U	∂S	∂U	∂U	V	∂T	V	∂U	V	∂T	V	=	(	)(	)	−(	∂V	)	(	∂U	)	∂T	∂S	=	æ	∂V	ö	∂U	ç	∂p		(	∂T	)	è	ø	p	V	identity,	twice]	[reciprocal=	ù	α	T	éæ	∂U	ö	êç	=		Tú	κ	T	CV	êè	∂S	øV	úû	ë	V	T	∂T	C	(=	(	∂∂UT	)	∂V	)	∂T	∂U	−1	[Euler	chain	relation]	µ	C
(=	=	∂V	)	(	∂T	)	∂V	(	∂U	)	æ	∂p	ö	=	−(	∂U	)	[reciprocal	identity]	=	p	−	T	ç		[3D.6]	∂V	è	∂T	ø	µJ	=	(b)	V	U	J	V	V	U	V	T	T	V	F12:19	æ	∂p	ö	−1	[Euler	chain]	=	çè	∂T	ø	=	æ	ö	∂T	æ	∂V	ö	V	è	∂V	ø	pçè	∂p	ø	T	−æ	∂V	ö	è	∂T	ø	p	æ	∂V	ö	çè	∂p	ø	T	=	α	κT	Therefore,	µJ	CV	=	p	−	α	T	κT	æ	∂p	ö	3D.8=	π	T	T	ç		−	p	[3D.6]	è	∂T	øV	−kT	ln	Q	[Chapter	15]	A=	æ	∂A	ö	é	∂	ln	Q	ù	p=	kT	ê	−ç		=	ú
è	∂V	øT	ë	∂V	ûT	qN	NkT	æ	∂q	ö	=	then	p	ç		N!	q	è	∂V	øT	Substitute	this	expression	for	p	into	eqn.	3D.6.	We	obtain	after	differentiating	p	with	respect	to	T	at	constant	V	=	Q	NkT	2	∂	æ	∂q	ö	ç		q	∂T	è	∂V	øT	πT	=	3D.10	The	Gibbs–Helmholtz	equation	is	∂	æ	∆G	ö	∆H	=−	2	ç		∂T	è	T	ø	T	so	for	a	small	temperature	change	æ	∆	G	O	ö	∆r	H	O	∆	çç	r		=	2	∆T	and	è	T	ø	T
so	∫	d	∆rG	T	O	=−	∫	Ο	Ο	=	∆	r	G220	∆	r	G190	∆	r	G2	T2	O	=	∆	r	G1	T1	O	−	∆r	H	T2	O	∆T	∆	r	G190	O	∆	r	G220	O	∆r	H	O	d	T	and	=	+	∆r	H	O	T2	T190	T220	T190	+	∆r	H	O	T220	æ	1	1	ö	çT	−	T		è	190	220	ø	æ	T190	ö	ç1	−	T		è	220	ø	For	the	monohydrate	æ	190	K	ö	æ	190	K	ö	O	,	+	(127	kJ	mol−1	)	×	ç	1	−	=	(46.2	kJ	mol−1	)	×	ç	∆	r	G190		220	K	ø	è	è	220	K	ø	O
∆	r	G190	=	57.2	kJ	mol−1	For	the	dihydrate	æ	190	K	ö	æ	190	K	ö	Ο	+	(188	kJ	mol−1	)	×	ç	1	−	,	=	(69.4	kJ	mol−1	)	×	ç	∆	r	G190		220	K	ø	è	220	K	ø	è	Ο	∆	r	G190	=	85.6	kJ	mol−1	For	the	trihydrate	æ	190	K	ö	æ	190	K	ö	O	+	(237	kJ	mol−1	)	×	ç	1	−	,	=	(93.2	kJ	mol−1	)	×	ç	∆	r	G190	220	K	ø	è	220	K	ø	è	O	∆	r	G190	=	112.8	kJ	mol−1	3:20	Integrated	activities
3.2	For	a	thorough	discussion	of	the	relationship	between	the	thermodynamic	and	statistical	definitions	of	entropy,	see	Section	3A.	We	will	not	repeat	all	of	that	discussion	here	and	will	merely	summarize	the	main	points.	dq	The	thermodynamic	entropy	is	defined	in	terms	of	the	quantity	dS	=	rev	where	dqrev	is	the	T	infinitesimal	quantity	of	energy
supplied	as	heat	to	the	system	reversibly	at	a	temperature	T.	The	statistical	entropy	is	defined	in	terms	of	the	Boltzmann	formula	for	the	entropy:	S	=	k	ln	W	where	k	is	the	Boltzmann	constant	and	W	is	the	number	of	microstates,	the	total	number	of	ways	in	which	the	molecules	of	the	system	can	be	arranged	to	achieve	the	same	total	energy	of	the
system.	These	two	definitions	turn	out	to	be	equivalent	provided	the	thermodynamic	entropy	is	taken	to	be	zero	at	T	=	0.	The	concept	of	the	number	of	microstates	makes	quantitative	the	ill-defined	qualitative	concepts	of	‘disorder’	and	‘dispersal	of	matter	and	energy’	that	are	used	widely	to	introduce	the	concept	of	entropy:	a	more	‘disorderly’
distribution	of	energy	and	matter	corresponds	to	a	greater	number	of	microstates	associated	with	the	same	total	energy.	The	more	molecules	that	can	participate	in	the	distribution	of	energy,	the	more	microstates	there	are	for	a	given	total	energy	and	the	greater	the	entropy	than	when	the	energy	is	confined	to	a	smaller	number	of	molecules.	The
molecular	interpretation	of	entropy	given	by	the	Boltzmann	formula	also	suggests	the	thermodynamic	definition.	At	high	temperatures	where	the	molecules	of	a	system	can	occupy	a	large	number	of	available	energy	levels,	a	small	additional	transfer	of	energy	as	heat	will	cause	only	a	small	change	in	the	number	of	accessible	energy	levels,	whereas	at
low	temperatures	the	transfer	of	the	same	quantity	of	heat	will	increase	the	number	of	accessible	energy	levels	and	microstates	significantly.	Hence,	the	change	in	entropy	upon	heating	will	be	greater	when	the	energy	is	transferred	to	a	cold	body	than	when	it	is	transferred	to	a	hot	body.	This	argument	suggests	that	the	change	in	entropy	should	be
inversely	proportional	to	the	temperature	at	which	the	transfer	takes	place	as	in	indicated	in	the	thermodynamic	definition.	F12:21	4	Physical	transformations	of	pure	substances	4A	Phase	diagrams	of	pure	substances	Answers	to	discussion	questions	4A.2	Mathematically	we	can	trace	the	change	in	chemical	potential	when	pressure	is	changed	to	the
pV	term	within	the	Gibbs	energy	(part	of	the	definition	of	enthalpy);	the	product	changes	when	the	pressure	changes.	Physically,	an	incompressible	system	does	not	store	energy	like	a	spring	(or	like	a	highly	compressible	gas);	however,	it	can	transmit	energy	is	it	does	in	a	hydraulic	cylinder.	Furthermore,	an	incompressible	system	under	pressure	is
under	stress	at	a	molecular	level.	Its	bonds	or	intermolecular	repulsive	forces	resist	external	forces	without	contraction.	Finally,	one	can	observe	changes	in	phases	in	equilibrium	with	incompressible	liquids	(the	pressure	of	their	vapours,	for	example)	when	pressure	is	applied	to	the	liquid;	see	Topic	4B.1(c).	4A.4	Figure	4A.1	Refer	to	Figure	4A.1.
Starting	at	point	A	and	continuing	clockwise	on	path	p(T)	toward	point	B,	we	see	a	gaseous	phase	only	within	the	container	with	water	at	pressures	and	temperatures	p(T).	Upon	reaching	point	B	on	the	vapour	pressure	curve,	liquid	appears	on	the	bottom	of	the	container	and	a	phase	boundary	or	meniscus	is	evident	between	the	liquid	and	less	dense
gas	above	it.	The	liquid	and	gaseous	phases	are	at	equilibrium	at	this	point.	Proceeding	clockwise	away	from	the	vapour	pressure	curve	the	meniscus	disappears	and	the	system	becomes	wholly	liquid.	Continuing	along	p(T)	to	point	C	at	the	critical	temperature	no	abrupt	changes	are	observed	in	the	isotropic	fluid.	Before	point	C	is	reached,	it	is
possible	to	return	to	the	vapour	pressure	curve	and	a	liquid-gas	equilibrium	by	reducing	the	pressure	isothermally.	Continuing	clockwise	from	point	C	along	path	p(T)	back	to	point	A,	no	phase	boundary	is	observed	even	though	we	now	consider	the	water	to	have	returned	to	the	gaseous	state.	Additionally,	if	the	pressure	is	isothermally	reduced	at	any
point	after	point	C,	it	is	impossible	to	return	to	a	liquid-gas	equilibrium.	When	the	path	p(T)	is	chosen	to	be	very	close	to	the	critical	point,	the	water	appears	opaque.	At	near	critical	conditions,	densities	and	refractive	indices	of	both	the	liquid	and	gas	phases	are	nearly	identical.	Furthermore,	molecular	fluctuations	cause	spatial	variations	of	densities
and	refractive	indices	on	a	scale	large	enough	to	strongly	scatter	visible	light.	This	is	called	critical	opalescence.	Solutions	to	Exercises	4A.1(b)	The	phase	rule	(eqn	4A.1)	relates	the	number	of	phases	(P),	components	(C),	and	degrees	of	freedom	(F)	of	a	thermodynamic	system:	1	F=C–P+2.	Restricting	to	pure	substances	(C=1)	and	rearranging	for
phases	gives	P=3–F.	Areas	in	the	phase	diagram	have	two	degrees	of	freedom;	one	can	vary	pressure	and	temperature	independently	(within	limits)	and	stay	within	the	area.	Thus,	F	=	2	and	P	=	1	in	areas.	Lines	have	one	degree	of	freedom;	one	can	vary	pressure	or	temperature,	but	to	stay	on	the	line	the	value	of	the	other	is	determined	by	the	line.
Thus,	F	=	1	and	P	=	2	on	lines.	Points	on	the	phase	diagram	have	zero	degrees	of	freedom;	one	can	vary	neither	pressure	nor	temperature	and	on	a	given	point.	Thus,	F	=	0	and	P	=	3	on	points.	(a)	is	in	an	area,	so	there	is	a	single	phase.	(b)	and	(c)	are	points,	so	there	are	three	phases	present.	(d)	is	on	a	line,	so	there	are	two	phases	present.	4A.2(b)
For	pure	substances	(one-component	systems),	the	chemical	potential	is	the	molar	Gibbs	energy:	dG	=	(µ2	–	µ1)dn	so	∆G	=	(µ2	–	µ1)n	=	(–8.3	kJ	mol–1)(0.15×10–3	mol)	=	+1.2×10–3	kJ	=	1.2	J.	4A.3(b)	Use	the	phase	rule	(eqn	4A.1)	F=C–P+2	to	solve	for	the	number	of	phases:	P=C–F+2=4–F+2=6–F≤	6	.	The	maximum	number	of	phases	in	equilibrium
occurs	when	the	number	of	degrees	of	freedom	is	at	a	minimum,	namely	zero;	that	number	is	six.	4B	Phase	diagrams	of	pure	substances	Answers	to	discussion	questions	4B.2	See	Topic	4B.1(b).	The	mathematical	reason	can	be	seen	in	eqn	4B.2,	æ	∂µ	ö	çè	∂p	ø	=	Vm	T	Because	Vm	>	0	for	all	pure	substances,	the	slope	of	the	change	in	chemical	potential
with	respect	to	change	in	pressure	is	positive:	chemical	potential	increases	with	increasing	pressure.	See	also	the	answer	to	Discussion	question	4A.2,	which	addresses	why	the	chemical	potential	changes	even	in	incompressible	substances.	4B.4	See	Topic	4B.3	for	classification	of	phase	transitions.	First-order	phase	transitions	show	discontinuities	in
the	first	derivative	of	the	Gibbs	energy	with	respect	to	temperature.	They	are	recognized	by	finite	discontinuities	in	plots	of	H,	U,	S,	and	V	against	temperature	and	by	an	infinite	discontinuity	in	Cp.	Second-order	phase	transitions	show	discontinuities	in	the	second	derivatives	of	the	Gibbs	energy	with	respect	to	temperature,	but	the	first	derivatives
are	continuous.	The	second-order	transitions	are	recognized	by	kinks	in	plots	of	H,	U,	S,	and	V	against	temperature,	but	most	easily	by	a	finite	discontinuity	in	a	plot	of	Cp	against	temperature.	A	λ-transition	shows	characteristics	of	both	first	and	second-order	transitions	and,	hence,	is	difficult	to	classify	by	the	Ehrenfest	scheme.	It	resembles	a	first-
order	transition	in	a	plot	of	Cp	against	T,	but	appears	to	be	a	higher-order	transition	with	respect	to	other	properties.	At	the	molecular	level	first-order	transitions	are	associated	with	discontinuous	changes	in	the	interaction	energies	between	the	atoms	or	molecules	constituting	the	system	and	in	the	volume	they	occupy.	One	kind	of	second-order
transition	may	involve	only	a	continuous	change	in	the	arrangement	of	the	atoms	from	one	crystal	structure	(symmetry)	to	another	while	preserving	their	orderly	arrangement.	In	one	kind	of	λ-transition,	called	an	orderdisorder	transition,	randomness	is	introduced	into	the	atomic	arrangement.	See	Figures	4B.9	through	4B.12	of	the	text.	Solutions	to
Exercises	4B.1(b)	The	difference	between	the	definition	of	normal	and	standard	transition	temperatures	is	the	pressure	at	which	the	transition	takes	place:	normal	refers	to	exactly	1	atm	(101325	Pa),	2	while	standard	refers	to	exactly	1	bar	(exactly	105	Pa).	At	the	standard	boiling	temperature	and	pressure,	the	liquid	and	gas	phases	are	in
equilibrium,	so	their	chemical	potentials	are	equal:	µliquid(Tstd,pstd)	=	µgas(Tstd,pstd)	The	same	can	be	said	at	the	normal	boiling	temperature	and	pressure:	µliquid(Tnorm,pnorm)	=	µgas(Tnorm,pnorm)	Equations	4B.1	and	4B.2	show	how	the	chemical	potential	changes	with	temperature	and	pressure,	so	for	small	changes	we	can	write	æ	∂µ	ö	æ	∂µ	ö
dµ	=	ç		dT	+	ç		dp	=	−Sm	dT	+	Vm	dp	è	∂p	ø	T	è	∂T	ø	p	Assuming	that	the	differences	between	standard	and	normal	boiling	point	are	small	enough,	we	can	equate	the	differences	in	the	chemical	potentials	of	the	two	phases:	∆µgas	=	–Sm,gas∆T	+	Vm,gas∆p	=	–Sm,liquid∆T	+	Vm,liquid∆p	=	∆µliquid	,	where	∆p	is	defined	as	pnorm–pstd.	Rearrange	to
isolate	∆T:	(Sm,liquid–Sm,gas)∆T	=	(Vm,liquid–Vm,gas)∆p	,	(–∆vapS)∆T	=	(Vm,liquid–Vm,gas)∆p	≈	–Vm,gas∆p	Use	the	ideal	gas	law	to	find	the	molar	volume	of	the	gas.	Also,	we	need	to	find	∆vapS	or	to	use	Trouton’s	rule	(eqn	3A.17):	Vm,gas	∆p	RT	∆p	RTb2	∆p	(8.3145	J	K	−1	mol−1	)(373	K)2	(1325	Pa)	=	=	=	∆T	≈	p∆	vap	S	p∆	vap	H	∆	vap	S	(105	Pa)
(40.656	×	103	J)	=	0.38	K	That	is,	the	normal	boiling	temperature	is	0.38	K	higher	than	the	standard	boiling	temperature.	4B.2(b)	Equation	4B.1	shows	how	the	chemical	potential	changes	with	temperature	æ	∂µ	ö	dµ	=	ç		dT	=	−Sm	dT	è	∂T	ø	p	so	∆µ	=	−	∫	Sm	dT	=	−Sm	∆T	=	−53	J	K	−1	mol−1	×	(1000	−	100)	K	=	4.8	×	104	J	mol−1	=	48	kJ	mol−1
4B.3(b)	Equation	4B.2	shows	how	the	chemical	potential	changes	with	pressure	æ	∂µ	ö	M	dµ	=	ç		dp	=	Vm	dp	=	dp	ρ	è	∂p	ø	T	so	∆µ	=	∫	M	ρ	dp	=	M	ρ	∆p	=	78.11	g	mol−1	1	m3	×	(10	×	106	−	100	×	103	)	Pa	×	6	−3	0.879	g	cm	10	cm	3	=	8.8	×	102	J	mol−1	=	0.088	kJ	mol−1	Note:	we	assumed	that	the	sample	is	incompressible.	4B.4(b)	The	effect	on
vapour	pressure	of	a	change	in	applied	external	pressure	on	a	liquid	is	given	by	eqn	4B.3:	.	p	=	p	*e	m	For	liquid	naphthalene,	the	molar	volume	is	V	(l)∆P/	RT	Vm	=	4B.5(b)	M	=	ρ	118.16	g	mol−1	=	122.8	cm	3	mol−1	−3	0.962	g	cm	so	Vm	(l)∆P	122.8	cm	3	mol−1	×	(15	×	106	−	1.0	×	105	)	Pa	1	m3	=	×	=	0.598	RT	106	cm	3	8.3145	J	K	−1	mol−1	×
368	K	and	p	=	p	*e	Vm	(l)∆P/	RT	=	(2.0	kPa)e0.598	=	3.6	kPa	.	Use	the	Clapeyron	equation	(eqn	4B.5a)	dp	∆	trs	S	=	dT	∆	trsV	3	Assume	that	∆fusS	and	∆fusT	are	independent	of	temperature:	æ	dp	ö	∆p	∆	fus	S	=	∆	fusV	×	ç		≈	∆	fusV	×	è	dT	ø	∆T	∆	fus	S	=	(152.6	cm	3	mol−1	−	142.0	cm	3	mol−1	)	×	(1.2	×	106	Pa	−	1.01	×	105	Pa)	429.26	K	−	427.15	K	æ
1m	3	ö	=	(10.6	cm	3	mol−1	)	×	ç	6	3		×	(5.21	×	105	Pa	K	−1	)	è	10	cm	ø	=	5.52	Pa	m	3	K	−1	mol−1	=	+5.5J	K	−1	mol−1	At	the	melting	temperature	∆	fus	H	=	Tf	∆	fus	S	=	(427.15	K)	×	(5.52	J	K	−1	mol−1	)	=	+2.4	kJ	mol−1	4B.6(b)	On	the	assumption	that	the	vapour	is	a	perfect	gas	and	that	∆vapH	is	independent	of	temperature,	we	may	write	[4B.11]
æ	∆	vap	H	ö	æ	1	1	ö	p∗	×	,	ln	−	=χ	p	=	p	∗e	−	χ	,	χ	=	ç		ç	∗	p	è	R	ø	èT	T	ø	p∗	R	1	1	ln	=	∗+	∆	vap	H	T	T	p	æ	58.0	ö	1	8.3145J	K	−1	mol−1	=	3.378	×	10−3	K	−1	×	ln	ç	+	3	−1	293.2	K	32.7	×	10	J	mol	è	66.0	ø	=	Hence	T	=	4B.7(b)	1	=	296	K	=	23°C	3.378	×	10−3	K	−1	Integrating	the	Clausius-Clapeyron	eqation	(4B.10)	yields	an	expression	for	ln	p:	∆	vap	H
∫	d	ln	p	=	∫	RT	2	dT	∆	vap	H	so	ln	p	=	constant	−	RT	Therefore,	∆	vap	H	=	3036.8	K	×	R	=	8.3145	J	K	−1	mol−1	×	(3036.8	K)	=	+25.25kJ	mol−1	4B.8(b)	(i)	The	indefinitely	integrated	form	of	eqn	4B.10	is	used	as	in	Exercise	4B.7(b).	∆	vap	H	∆	vap	H	ln	p	=	constant	−	,	or	log	p	=	constant	−	RT	2.303	RT	Thus	∆	vap	H	=	1625	K	×	R	×	2.303	=	1625	K
×	8.3145	J	K	−1	mol−1	×	2.303	=	31.11kJ	mol−1	(ii)	The	normal	boiling	point	corresponds	to	p	=	1.000	atm	=	760	Torr,	1625	K	so	log	760	=	8.750	−	T	1625	K	and	T	=	=	276.9	K	8.750	−	log	760	4B.9(b)	∆T	≈	≈	∆	fusV	×	∆p	[4B.5a	and	Exercise	4B.5(a)]	∆	fus	S	Tf	∆	fusV	T	M	∆p	æ	ö	×	∆p	=	f	×	∆	ç	1		[Vm	=	M	/	ρ]	è	ρø	∆	fus	H	∆	fus	H	Normal	freezing
point	is	Tf	=	(273.15	–	3.65)	K	=	269.50	K	at	a	pressure	of	1	atm,	which	is	about	0.1	MPa.	Thus,	to	the	nearest	MPa,	∆p	=	100	MPa	=	1.00×108	Pa	4	∆T	≈	ö	1	1	269.50	K	×	46.1	g	mol−1	×	(1.00	×	108	Pa)	æ	×ç	−	3	−1	−3	−3		è	0.789	g	cm	0.801g	cm	ø	8.68	×	10	J	mol	≈	2.7	K	Therefore,	at	100	MPa,	Tf	=	(269.50+2.7)	K	=	272.2	K	or	–1.0°C.	4B.10(b)
The	rate	of	loss	of	mass	of	water	may	be	expressed	as	dm	d	q	=	(nM	)	where	n	=	dt	dt	∆	vap	H	Thus	dn	dq	dt	(0.87	×	103	W	m	−2	)	×	(104	m	2	)	=	=	=	200	mol	s	−1	dt	∆	vap	H	44.0	×	103	J	mol−1	and	dm	=	(200	mol	s	−1	)	×	(18.02	g	mol−1	)	=	3.6	kg	s	−1	dt	4B.11(b)	The	equilibrium	vapour	pressure	of	ice	at	–5°C	is	0.40	kPa	Therefore,	the	frost
would	sublime.	A	partial	pressure	of	0.40	kPa	or	more	would	ensure	that	the	frost	remains.	4B.12(b)	(i)	According	to	Trouton’s	rule	(eqn	3A.17)	∆	vap	H	≈	85J	K	−1	mol−1	×	Tb	=	85J	K	−1	mol−1	×	342.2	K	=	29.1	kJ	mol−1	(ii)	Use	the	integrated	form	of	the	Clausius–Clapeyron	equation	(eqn	4B.11)	rearranged	to	æ	p	ö	∆	vap	H	æ	1	1	ö	×ç	−		ln	ç	2		=	R
è	T1	T2	ø	è	p1	ø	At	T1	=	342.2	K,	p1	=	1.000	atm	[normal	boiling	point];	thus	at	25°C	æ	ö	æ	2.91	×	104	J	mol−1	ö	æ	p2	1	ö	1	ln	ç	−	=	−1.51	×ç		=ç	−1	−1		298.2	K	ø	342.2	K	1.000	atm	è	è	ø	è	8.3145	J	K	mol	ø	p2	=	e–1.51	atm	=	0.22	atm	.	æ	ö	æ	2.91	×	104	J	mol−1	ö	æ	p2	1	ö	1	At	60°C,	ln	ç	=ç	−	×ç			=	−0.276	−1	−1		è	1.000	atm	ø	è	8.3145	J	K	mol	ø	è	342.2	K
333.2	K	ø	and	p2	=	e–0.276	atm	=	0.76	atm	.	and	4B.13(b)	∆T	=	Tf	(10	MPa)	−	Tf	(0.1MPa)	=	Tf	∆pM	æ	1	ö	[Exercise	4B.9(b)]	∆	∆	fus	H	çè	ρ	ø	æ	(273.15	K)	×	9.9	×	106	Pa	×	18.0	g	mol−1	ö	∆T	=	ç		6.01	×	103	J	mol−1	è	ø	æ	ö	1	1	×ç	=	−0.74	K	−	−3		−3	è	0.998	g	cm	0.915	g	cm	ø	Tf(10	MPa)	=	(273.15	–	0.74)	K	=	272.41	K.	4B.14(b)	∆vapH	=	∆vapU	+
∆vap(pV)	=	43.5	kJ	mol–1	∆vap(pV)	=	p∆vapV	=	p(Vgas	–	Vliq)	≈	pVgas	=	RT	[perfect	gas]	∆vap(pV)	≈	(8.3145	J	K–1	mol–1)	×	(352	K)	=	2.93×103	J	mol–1	∆	vap	(	pV	)	2.93kJ	mol−1	Fraction	=	=	=	0.0673	=	6.73per	cent	∆	vap	H	43.5kJ	mol−1	Solutions	to	problems	4B.2	Use	the	definite	integral	form	of	the	Clausius–Clapeyron	equation	[Exercise
4B.12(b)].	æ	p	ö	∆	vap	H	æ	1	1	ö	×ç	−		lnç	2		=	R	è	T1	T2	ø	è	p1	ø	At	T1	=	(273.15	–	29.2)	K	=	244.0	K	(normal	boiling	point),	p1	=	1.000	atm;	thus	at	40°C	5	æ	ö	æ	20.25	×	103	J	mol−1	ö	æ	p2	1	1	ö	=	2.205	ln	ç	−			=ç		×ç	è	1.000	atm	ø	è	8.3145	J	K	−1	mol−1	ø	è	244.0	K	313.2	K	ø	and	p2	=	1.000	atm	×	e2.205	=	9.07	atm	Comment.	Three	significant	figures
are	not	really	warranted	in	this	answer	because	of	the	approximations	employed.	4B.4	(a)	−∆	fus	H	æ	∂µ	(l)	ö	æ	∂µ	(s)	ö	[4B.12]	çè	∂T	ø	−	çè	∂T	ø	=	−Sm	(l)	+	Sm	(s)	=	−∆	fus	S	=	T	f	p	p	=	(b)	−6.01	×	103	J	mol−1	=	−22.0	J	K	−1mol−1	273.15	K	−∆	vap	H	æ	∂µ	(g)	ö	æ	∂µ	(l)	ö	çè	∂T	ø	−	çè	∂T	ø	=	−Sm	(g)	+	Sm	(l)	=	−∆	vap	S	=	T	b	p	p	−40.6	×	103	J	mol−1	=
−108.8	J	K	−1	mol−1	373.15	K	µ(l,–5°C)	–	µ(s,–5°C)	=	µ(l,–5°C)	–	µ(l,0°C)	–	{µ(s,–5°C)	–	µ(s,0°C)}	(c)	because	µ(l,0°C)	=	µ(s,0°C)	µ(l,–5°C)	–	µ(s,–5°C)	=	∆µ(l)	–	∆µ(s)	Thus	where	∆µ	is	the	difference	in	chemical	potential	of	a	given	phase	at	–5°C	compared	to	that	at	normal	freezing	temperature.	æ	∂µ	ö	∆µ	≈	ç		∆T	=	−Sm	∆T	[4B.1]	è	∂T	ø	p	=	so	{µ(l,–
5°C)	–	µ(l,0°C)}	–{	µ(s,–5°C)–	µ(s,0°C)}	=	–∆fusS	∆T	µ	(l,	−5°C)	−	µ	(s,	−5°C)	=	−(+22.0	J	K	−1	mol−1	)	×	(−5	K)	=	+110	J	mol−1	Since	µ(l,–5°C)	>	µ(s,–5°C),	there	is	a	thermodynamic	tendency	to	freeze.	∆	H	dp	∆	fus	S	[4B.6]	[4B.5a]	=	fus	=	dT	∆	fusV	T	∆	fusV	4B.6	T	∆	fusV	dp	.	∆	fus	H	Integrate	both	sides:	Thus	dT	=	∆T	=	Now	so	∫	Tf,bot	Tf,top	dT
=	∫	p	bot	p	top	Tm	∆	fusV	T	∆	V	d	p	=	m	fus	∆p	[assuming	the	integrand	is	constant]	∆	fus	H	∆	fus	H	∆p	=	pbot	–	ptop	=	ρgh	;	T	ρ	gh∆	fusV	∆T	=	m	∆	fus	H	(234.3K)	×	(13.6	g	cm	−3	)	×	(9.81m	s	−2	)	×	(10.0	m)	×	(0.517	cm	3	mol−1	)	1	kg	×	3	10	g	2.292	×	103	J	mol-1	=	0.071	K	=	Therefore,	the	freezing	point	changes	to	234.4	K	4B.8	Integrating	the
Clausius-Clapeyron	eqation	[4B.10]	yields	an	expression	for	ln	p:	∆	vap	H	ln	p	=	constant	−	RT	Therefore,	plot	ln	p	against	1/T	and	identify	–∆vapH/R	as	the	slope	of	the	plot.	Construct	the	following	table	0	20	40	50	70	80	90	100	θ	/°C	T/K	273	293	313	323	343	353	363	373	1000	K	/	T	3.66	3.41	3.19	3.10	2.92	2.83	2.75	2.68	ln	(p	/	kPa)	0.652	1.85	2.87
3.32	4.13	4.49	4.83	5.14	6	Figure	4B.1	The	points	are	plotted	in	Figure	4B.1.	The	slope	is	–4569	K,	so	−∆	vap	H	=	−4569	K,	or	∆	vap	H	=	+38.0	kJ	mol-1	R	The	normal	boiling	point	occurs	at	p	=	1	atm	=	101.3	kPa,	or	at	ln(p/kPa)	=	4.618,	which	from	the	figure	corresponds	to	1000	K/T	=	2.80.	Therefore,	Tb	=	357	K	(84°C)	The	accepted	value	is	83°C.
4B.10	The	slope	of	the	solid–vapour	coexistence	curve	is	given	by	∆	H	dp	dp	=	sub	[analogous	to	4B.9]	so	∆	sub	H	=	T	∆	subV	dT	T	∆	subV	dT	Figure	4B.2	The	slope	can	be	obtained	by	differentiating	an	equation	fit	to	the	coexistence	curve	(Figure	4B.2).	Fit	the	data	to	an	exponential	function	or	take	natural	logarithms	of	the	pressures	and	make	a
linear	fit	to	the	transformed	data.	The	fit	equation	is	p/Pa	=	2.659×10–10	e0.1687T/K	7	dp	=	(2.659	×	10−10	Pa)	×	(0.1687	K	−1	)	×	e0.1687T	/K	=	4.41Pa	K	−1	at	150	K.	dT	The	change	in	volume	is	essentially	the	volume	of	the	vapour	(8.3145	J	K	−1	mol−1	)	×	(150	K)	Vm	=	RT	=	=	47.7	m	3	p	(2.659	×	10−10	Pa)	×	e0.1687×150	so	So	4B.12	∆	sub
H	Ο	=	(150	K)	×	(47.7	m	3	)	×	4.41Pa	K	−1	=	3.16	×	104	J	mol−1	=	31.6	kJ	mol−1	dH	=	CpdT	+	V	dp	implies	d∆H	=	∆CpdT	+	∆V	dp	,	where	∆	signifies	a	difference	between	phases.	Along	a	phase	boundary	dp	and	dT	are	related	by	dp	∆H	[4B.6	or	4B.9]	=	dT	T	∆V	Therefore,	æ	æ	d∆H	∆H	ö	∆H	ö	∆H	dT	=	ç	∆C	p	+	dT	and	d∆H	=	ç	∆C	p	+	∆V	×	=	∆C	p	+
dT	T	∆V	ø	T	ø	T	è	è	Then,	since	d	æ	∆H	ö	1	d∆H	∆H	1	æ	d∆H	∆H	ö	=	−	2	=	ç	−	dT	çè	T	ø	T	dT	T	è	dT	T	ø	T	substituting	the	first	result	gives	d	æ	∆H	ö	∆C	p	=	dT	çè	T	ø	T	Therefore,	(	)	∆C	p	dT	d	∆H	=	=	∆C	p	d	In	T	T	T	4B.14	Equation	4B.3	gives	the	vapour	pressure	of	a	liquid	under	an	additional	applied	pressure	∆P:	p	=	p	*e	m	The	applied	pressure	is	the
hydrostatic	pressure	of	the	liquid	overlying	the	depth	d:	∆P	=	ρgd	The	molar	volume	of	the	liquid	is	Vm(l)	=	M	/	ρ	Substituting	into	eqn.	4B.3	yields	p	=	p*eMgd/RT	For	a	10-m	column	of	water	at	25°C,	V	(l)∆P/	RT	Mgd	(18.02	×	10−3	kg	mol−1	)	×	(9.81	m	s	−2	)	×	(10	m)	=	=	7.1	×	10−4	RT	(8.3145	J	K	−1	mol−1	)	×	(298	K)	so	−4	p	=	e7.1×10	≈	1	+
7.1	×	10−4	*	p	That	is,	the	fractional	increase	in	vapor	pressure	is	7.1×10–4	or	0.071	per	cent.	4B.16	In	each	phase	the	slopes	of	curves	of	chemical	potential	plotted	against	temperature	are	æ	∂µ	ö	çè	∂T	ø	=	−Sm	[4.1]	p	The	curvatures	of	the	graphs	are	given	by	æ	∂Sm	ö	æ	∂2	µ	ö	çè	∂T	2	ø	=	−çè	∂T	ø	p	p	To	evaluate	this	derivative,	consider	dS	at	constant
p:	C	p,m	æ	∂S	ö	æ	∂2	µ	ö	dq	dH	C	p	dT	so	dS	=	rev	=	=	=	−ç	m		=	−	ç	2	T	T	T	T	è	∂T	ø	è	∂T	ø	p	p	Since	Cp,m	is	necessarily	positive,	the	curvatures	in	all	states	of	matter	are	necessarily	negative.	Cp,m	is	often	largest	for	the	liquid	state,	though	not	always.	In	any	event,	it	is	the	8	ratio	Cp,m/T	that	determines	the	magnitude	of	the	curvature,	so	no	general
answer	can	be	given	for	the	state	with	the	greatest	curvature.	It	depends	upon	the	substance.	4B.18	S	=	S(T,p)	æ	∂S	ö	æ	∂S	ö	dS	=	ç		dT	+	ç		dp	è	∂T	ø	p	è	∂p	ø	T	æ	∂V	ö	æ	∂S	ö	çè	∂p	ø	=	−çè	∂T	ø	[Table	3D.1]	=	−αVm	p	T	Cp	æ	∂S	ö	çè	∂T	ø	=	T	[Problem	4B.16]	p	dqrev	=	T	dS	=	C	p	dT	−	T	æ	∂V	ö	dp	è	∂T	ø	p	∆	H	æ	∂q	ö	æ	∂p	ö	CS	=	ç		=	C	p	−	TV	α	ç		=	C	p	−	αV	×
trs	[4B.6]	∆	trsV	è	∂T	ø	S	è	∂T	ø	S	Integrated	activities	4.2	(a)	The	phase	diagram	is	shown	in	Figure	I4.1.	Figure	I4.1	(b)	The	standard	melting	point	is	the	temperature	at	which	solid	and	liquid	are	in	equilibrium	at	1	bar.	That	temperature	can	be	found	by	solving	the	equation	of	the	solid–liquid	coexistence	curve	for	the	temperature:	1	=	p3/bar	+
1000(5.60+11.727x)x	.	Put	the	equation	into	standard	form:	11727x2	+	5600x	+	(4.362×10–7	–1)	=	0	The	quadratic	formula	yields	(	×11727	−1	±	1	+	45600	−5600	±	{(5600)	2	−	4	×	11727	×	(–1)}	2	=	x	=	11727	2	×	11727	2	×	(	5600	)	1/	2	)	1/	2	{	}	The	square	root	is	rewritten	to	make	it	clear	that	the	square	root	is	of	the	form	1	+	a	(	)	12	,	with	a
=	1	;	thus	the	numerator	is	approximately	−1	+	1	+	12	a	=	12	a	,	and	the	whole	expression		reduces	to	x	≈	1/5600	=	1.79×10–4	.	Thus,	the	melting	point	is	T	=	(1+x)T3	=	(1.000179)	×	(178.15	K)	=	178.18	K.	(c)	The	standard	boiling	point	is	the	temperature	at	which	the	liquid	and	vapour	are	in	equilibrium	at	1	bar.	That	temperature	can	be	found	by
solving	the	equation	of	the	liquid–	vapour	coexistence	curve	for	the	temperature.	This	equation	is	too	complicated	to	solve	9	analytically,	but	not	difficult	to	solve	numerically	with	a	spreadsheet.	The	calculated	answer	is	y	=	0.6459,	so	T	=	0.6459	×	593.95	K	=	383.6	K	.	(d)	The	slope	of	the	liquid–vapour	coexistence	curve	is	given	by	∆	vap	H	dp	dp	=
[4B.9]	so	∆	vap	H	=	T	∆	vapV	dT	T	∆	vapV	dT	The	slope	can	be	obtained	by	differentiating	the	equation	for	the	coexistence	curve.	d	ln	p	dy	d	ln	p	dp	=p	=p	dy	dT	dT	dT	ö	dp	æ	10.413	=ç	−	15.996	+	2(14.015)	y	−	3(5.0120)	y	2	−	(1.70)	×	(4.7224)	×	(1	−	y)0.70		2	dT	è	y	ø	æ	pö	×ç		è	Tc	ø	Substituting	the	value	of	y	at	the	boiling	point	yields,	dp	=	2.848	×
10−2	bar	K	−1	=	2.848	kPa	K	−1	dT	æ	(30.3	−	0.12)	dm	3	mol−1	ö	−1	−1	and	∆	vap	H	=	(383.6	K)	×	ç		×	(2.848	kPa	K	)	=	33.0	kJ	mol	1000	dm	3	m	−3	è	ø	4.4	(a)	The	phase	boundary	is	plotted	in	Figure	I4.2.	Figure	I4.2	(b)	The	standard	boiling	point	is	the	temperature	at	which	the	liquid	is	in	equilibrium	with	the	standard	pressure	of	1	bar	(0.1	MPa).
Interpolation	of	the	plotted	points	gives	Tb	=	112	K.	(c)	The	slope	of	the	liquid–vapor	coexistence	curve	is	given	by	∆	vap	H	dp	dp	[4B.9]	so	∆	vap	H	=	(T	∆	vapV	)	=	dT	dT	T	∆	vapV	The	slope	can	be	obtained	graphically	or	by	fitting	the	points	nearest	the	boiling	point.	Then	dp	=	8.14	×	10−3	MPa	K	−1	dT	æ	(8.89	−	0.0380)	dm	3	mol−1	ö	−1	−1	so	∆
vap	H	=	(112	K)	×	ç	ø	×	(8.14	kPa	K	)	=	8.07	kJ	mol	è	1000	dm	3	m	−3	10	5	Simple	mixtures	5A	The	thermodynamic	description	of	mixtures	Answers	to	discussion	questions	5A.2	As	noted	in	Topic	5A.1(b),	dG	=	dwadd,max	(where	wadd	stands	for	additional	(non-expansion)	work)	for	systems	at	constant	temperature	and	pressure.	Therefore	[5A.8]
dwadd,max	=	μAdnA	+	μBdnB	+	...	Thus	non-expansion	work	can	arise	from	the	changing	composition	of	a	system.	Physically,	it	should	not	be	surprising	that	at	least	energy	can	be	changed	by	changing	composition,	by	a	chemical	reaction	transforming	a	species	into	one	that	is	more	or	less	favored	energetically.	In	an	electrochemical	cell,	where	the
reaction	takes	place	at	two	distinct	sites,	the	electrical	work	of	transporting	charge	between	the	electrodes	can	be	traced	to	changes	in	composition	as	products	are	formed	from	reactants.	5A.4	See	Topic	5A.3(a).	In	both	cases,	the	vapor	pressure	of	a	component	in	a	solution	is	proportional	to	its	concentration	(mole	fraction)	in	the	solution,	at	least	in
the	limit	of	low	concentration:	p	J	∝	xJ	If	the	proportionality	constant	is	the	component’s	vapor	pressure	as	a	pure	substance,	then	Raoult’s	law	is	a	good	approximation	[5A.21].	Substitution	of	Raoult’s	law	into	eqn	5A.20	for	the	chemical	potential	yields	eqn	5A.22:	µA	=	µA*	+	RT	ln	xA	If	Raoult’s	law	applies	to	both	or	all	components	of	a	mixture	over
a	large	range	of	composition,	then	we	call	the	solution	ideal.	If,	on	the	other	hand,	only	the	solvent	obeys	Raoult’s	law,	and	it	may	only	obey	it	in	the	limit	of	mole	fractions	close	to	1,	we	call	the	solution	ideal-dilute	if	the	solutes	obey	Henry’s	law	[5A.23].	Substitution	of	Henry’s	law	into	eqn	5A.20	for	solutes	yields	eqn	5E.8:	K	where	µ	BO	=	µ	B*	+	RT
ln	*B	[5E.7]	µB	=	µBO	+	RT	ln	xB	pB	Solutions	to	exercises	5A.1(b)	The	partial	molar	volume	is	æ	∂V	ö	æ	dv	ö	æ	dV	ö	æ	dx	ö	[5A.1]	=	ç		ç	VJ	=	ç		è	dx	ø	è	dv	ø	çè	dnJ	ø	è	∂nJ	ø	p,T	,n′	Right	away	we	see	that	VA	=	0	because	V	is	independent	of	nA	[dx/dnA	=	0]	æ	cm3	ö	VB	=	(–22.5749	+	2	×	0.56892	x	+	3	×	0.01023	x	2	+	4	×	0.00234	x	3	)	ç		è	mol	ø	=	(–22.5749
+	1.13784	x	+	0.03069	x	2	+	0.00936	x	3	)	cm3	mol−1	5A.2(b)	Let	A	stand	for	water	and	B	for	MgSO4(aq)	æ	∂V	ö	æ	dv	ö	æ	dV	ö	æ	∂x	ö	[5A.1]	=	ç		ç	VJ	=	ç		è	dx	ø	è	dv	ø	çè	∂nJ	ø	n′	è	∂nJ	ø	p,T	,n′	Now	x	=	and	nB	b	=	O	b	nA	M	A	b	O	æ	∂x	ö	1	ç		=	O	∂	n	n	M	è	B	ø	nA	A	Ab	so	VB	=	2	×	34.69	×	(x	−	0.070)	cm	3	nA	M	A	b	O	Evaluate	this	expression	for	b	=	0.050
mol	kg–1	(x	=	0.050),	recalling	that	the	original	expression	for	v	applies	for	1.000	kg	of	water	(i.e.,	for	nAMA	=	1.000	kg).	The	result	is	VB	=	–1.4	cm3	mol–1	.	The	total	volume	consisting	of	0.050	mol	of	MgSO4	and	1.000	kg	(55.49	mol)	water	is	V	=	1001.21	+	34.69	×	(0.050–0.070)2	=	1001.23	cm3	.	1	The	total	volume	is	also	equal	to	V	=	VAnA	+
VBnB	[5A.3]	.	V	−	VB	nB	1001.21	cm	3	−	(−1.4	cm	3	)	×	(0.050	mol)	Therefore,	VA	=	=	=	18.04	cm	3	mol−1	55.49	mol	nA	Question.	VA	is	essentially	the	same	as	the	molar	volume	of	pure	water,	but	clearly	VB	is	not	even	approximately	the	molar	volume	of	pure	solid	MgSO4.	What	meaning	can	be	ascribed	to	a	negative	partial	molar	volume?	5A.3(b)
Use	the	Gibbs-Duhem	equation	[5A.13],	replacing	infinitesimal	changes	in	chemical	potential	(dµJ)	with	small	finite	changes	(δµJ)	n	0.22nB	δµ	B	≈	−	A	δµA	=	−	×	(−15	J	mol−1	)	=	+3.3	J	mol−1	nB	nB	5A.4(b)	The	Gibbs	energy	of	mixing	perfect	gases	is	∆mixG	=	nRT(xA	ln	xA	+	xB	ln	xB)	[5A.16]	=	pV(xA	ln	xA	+	xB	ln	xB)	[perfect	gas	law]	Because	the
compartments	are	of	equal	size,	each	contains	half	of	the	gas;	therefore,	(	pV	)	×	1	ln	1	+	1	ln	1	=	∆	mix	G	=	−	pV	ln	2	2	2	2	2	æ	1m3	ö	−17.3	Pa	m3	=	−17.3	J	=	−(100	×	103	Pa)	×	(250	cm3	)	ç	6	×	ln	2	=	3		10	cm	è	ø	)	(	∆	mix	S	=	−nR(xA	ln	xA	+	xB	ln	xB	)	[5A.17]	=	5A.5(b)	−∆	mix	G	+17.3	J	=	=	+0.635	J	K	−1	273	K	T	∆	mix	S	=	−nR∑	xJ	ln	xJ	[5A.17]
J	We	need	mole	fractions:	n	xJ	=	J	∑	nJ	J	Since	we	have	mass	percentages,	100.0	g	is	a	convenient	sample	size.	The	amounts	of	each	component	are	1	mol	=	2.696	mol	nN	=	75.52	g	×	2	2	×	14.007	g	nO	=	23.15	g	×	2	nAr	=	1.28	g	×	1	mol	=	0.7235	mol	2	×	15.999	g	1	mol	=	0.0320	mol	39.95	g	nCO	=	0.046	g	×	2	1	mol	=	0.00105	mol	(12.011+	2	×
15.999)	g	The	mole	fractions	are	nN	2.696	mol	2	=	0.7809	=	xN	=	2	(2.696	+	0.7235	+	0.0320	+	0.00105)	mol	nN	+	nO	+	nAr	+	nCO	2	2	2	Similarly,	xO	=	0.2096	,	xAr	=	0.00928,	and	xCO	=	0.00030	.	2	2	Once	we	have	mole	fractions,	the	convenient	sample	size	is	for	a	total	of	one	mole	of	gas:	∆	mix	S	=	−	R∑	xJ	ln	xJ	=	−	R{(0.7809ln0.7809)	+
(0.2096ln0.2096)	J	+(0.00928ln0.00928)	+	(0.00030ln0.00030)}	=	0.5665R	=	+4.710	J	K	−1	mol−1	From	the	data	in	Exercise	5A.5(a),	the	entropy	of	mixing	was	∆	mix	S	=	−	R∑	xJ	ln	xJ	J	=	−	R{(0.781ln0.781)	+	(0.210ln0.210)	+	(0.0094ln0.0094)}	=	0.565R	=	+4.70	J	K	−1	mol−1	2	So	the	difference	is	Δ	mix	S	(b)	–	Δ	mix	S	(a)	=	0.0015	R	=	+0.012	J
K	−1	mol−1	Comment.	We	can	readily	see	that	the	data	in	this	exercise	(b)	includes	the	CO2	term,	which	contributes	–R(0.00030	ln	0.00030)	=	0.0025R	to	the	entropy	of	mixing—more	than	the	total	difference.	The	fact	that	the	mole	fractions	of	the	other	components	are	slightly	smaller	in	part	(b)	to	make	room	for	the	small	amount	of	CO2	partly
offsets	the	direct	CO2	term	itself.	5A.6(b)	Let	12	refer	to	1,2-dimethylbenzene	and	13	to	1,3-dimethylbenzene.	Because	the	two	components	are	structurally	similar,	we	assume	Raoult’s	Law	[5A.21]	applies.	ptotal	=	p12	+	p13	=	x12p12*	+	x13p13*	=	(0.500)(20	+	18)	kPa	=	19	kPa.	The	mole	fractions	in	the	vapor	phase	are	the	ratios	of	partial	to	total
pressure:	xliq,12	p12*	(0.500)(20	kPa)	p12	and	xvap,13	=	0.47	x12,vap	=	=	=	=	0.53	19	kPa	ptotal	ptotal	5A.7(b)	Total	volume	V	=	nAVA	+	nBVB	=	n(xAVA	+	xBVB),	where	n	=	nA	+	nB	Total	mass	m	=	nAMA	+	nBMB	=	n{xAMA	+	(1–xA)MB}	m	So	n=	xA	M	A	+	(1	−	xA	)M	B	=	1.000	×	103	g	=	4.670	mol	(0.3713)	×	(241.1g	mol−1	)	+	(1	−	0.3713)	×
(198.2	g	mol−1	)	V	=	n(xAVA	+	xBVB	)	and	=	(4.670	mol)	×	{(0.3713)	×	(188.2)	+	(1	−	0.3713)	×	(176.14)}	cm	3	mol−1	=	843.5	cm	3	5A.8(b)	Let	W	denote	water	and	E	ethanol.	The	total	volume	of	the	solution	is	V	=	n	W	V	W	+	n	EV	E	We	are	given	VE,	we	need	to	determine	nW	and	nE	in	order	to	solve	for	VW,	for	V	−	nEVE	VW	=	nW	3	Take	100	cm
of	solution	as	a	convenient	sample.	The	mass	of	this	sample	is	m	=	ρV	=	(0.9687	g	cm–3)	×	(100	cm3)	=	96.87	g	.	80	per	cent	of	this	mass	water	and	20	per	cent	ethanol,	so	the	moles	of	each	component	are	(0.20)	×	(96.87	g)	(0.80)	×	(96.87	g)	=	0.42	mol−1	.	=	4.3	mol	and	nE	=	nW	=	−1	−1	46.07	g	mol	18.02	g	mol	VW	=	5A.9(b)	V	−	nEVE	100	cm	3
−	(0.42	mol)	×	(52.2	cm	3	mol−1	)	=	18	cm	3	mol−1	=	4.3	mol	nW	Henry’s	law	is	[5A.23]	pB	=	xBKB,	so	check	whether	pB	/	xB	is	equal	to	a	constant	(KB)	x	0.010	0.015	0.020	p/kPa	82.0	122.0	166.1	(p/kPa)	/	x	8.2×103	8.1×103	8.3×103	Hence,	KB	=	p	/	x	=	8.2×103	kPa	(average	value).	5A.10(b)	Refer	to	Brief	Illustration	5A.4	and	use	the	Henry’s
Law	constant	from	Table	5A.1.	Henry’s	law	in	terms	of	molal	concentration	is	pB	=	bBKB.	So	the	molal	solubility	of	methane	in	benzene	at	25°C	in	equilibrium	with	1.0	bar	of	methane	is	pCH	100	kPa	4	bCH	=	=	=	2.25	×	10−3	mol	kg	−1	3	−1	4	K	CH	44.4	×	10	kPa	kg	mol	4	To	find	the	molar	solubility,	we	assume	that	the	density	of	the	solution	is	the
same	as	that	of	pure	benzene,	given	at	a	nearby	temperature	(20°C)	in	Table	0.1:	[CH	4	]	=	bCH	ρ	benzene	=	2.25	×	10−3	mol	kg	−1	×	0.879	kg	dm	−3	=	2.0	×	10−3	mol	dm	−3	4	5A.11(b)	With	concentrations	expressed	in	molalities,	Henry’s	law	[5A.23]	becomes	pB	=	bBKB.	3	Solving	for	bB,	the	molality,	we	have	bB	=	pB	xB	ptotal	,	=	K	K	where
ptotal	=	1	atm	=	101.3	kPa	For	N2,	K	=	1.56×105	kPa	kg	mol–1	[Table	5A.1]	0.78	×	101.3	kPa	b=	=	5.1	×	10−4	mol	kg	−1	1.56	×	105	kPa	kg	mol−1	For	O2,	K	=	7.92×104	kPa	kg	mol–1	[Table	5A.1]	0.21	×	101.3	kPa	b=	=	2.7	×	10−4	mol	kg	−1	7.92	×	104	kPa	kg	mol−1	5A.12(b)	As	in	Exercise	5A.11(b),	we	have	p	2.0	×	101.3	kPa	bB	=	B	=	=	0.067
mol	kg	−1	K	3.01	×	103	kPa	kg	mol−1	Hence,	the	molality	of	the	solution	is	about	0.067	mol	kg–1.	Since	molalities	and	molar	concentrations	(molarities)	for	dilute	aqueous	solutions	are	numerically	approximately	equal,	the	molar	concentration	is	about	0.067	mol	dm–3	.	Solutions	to	problems	5A.2	C	=	1;	hence,	according	to	the	phase	rule	(eqn	4A.1)
F	=	C	–	P	+	2	=	3	–	P	Since	the	tube	is	sealed	there	will	always	be	some	gaseous	compound	in	equilibrium	with	the	condensed	phases.	Thus	when	liquid	begins	to	form	upon	melting,	P	=	3	(s,	l,	and	g)	and	F	=	0,	corresponding	to	a	definite	melting	temperature.	At	the	transition	to	a	normal	liquid,	P	=	3	(l,	l′,	and	g)	as	well,	so	again	F	=	0.	5A.4	Letting
B	stand	for	CuSO4(aq),	the	partial	molar	volume	of	the	dissolved	salt	is	æ	∂V	ö	VB	=	ç		[5A.1]	è	∂nB	ø	n	A	We	will	determine	VB	by	plotting	V	against	nB	while	holding	nA	constant.	We	can	find	the	volume	from	the	density:	m	+	mB	m	+	mB	so	.	ρ=	A	V=	A	V	ρ	The	data	include	the	composition	of	the	solution	expressed	as	mass	percent.	(That	is,
m(CuSO4)/g,	the	mass	in	grams	of	B	dissolved	in	100	g	solution,	is	numerically	equal	to	w,	defined	as	mass	of	B	over	total	solution	mass	expressed	as	a	percent).	For	our	plot,	we	need	nB	per	fixed	amount	of	A.	Let	us	choose	that	fixed	quantity	to	be	mA	=	1	kg	exactly,	so	nB	is	numerically	equal	to	the	molal	concentration.	So	m	nB	=	B	MB	mB	×	100	=
w	.	mA	+	mB	Solve	for	mB:	wmA	mB	=	.	100	−	w	Draw	up	the	following	table	of	values	of	mB,	nB,	and	V	at	each	data	point,	using	mA	=	1000	g.	W	5	10	15	20	–3	1.051	1.107	1.167	1.23	ρ	/(g	cm	)	mB/g	52.6	111.1	176.5	250.0	nB/mol	0.330	0.696	1.106	1.566	V/cm3	1001.6	1003.7	1008.1	1016.3	VB/(cm3	mol–1)	2.91	8.21	14.13	20.78	A	plot	V	against	nB



is	shown	in	Figure	5A.1.	such	that	4	Figure	5A.1	To	find	the	partial	molar	volume,	draw	tangent	lines	to	the	curve	at	each	of	the	data	points	and	measure	the	slope	of	each	tangent.	Alternatively,	fit	the	curve	to	a	polynomial	and	differentiate	the	fit	equation.	A	quadratic	equation	fits	the	data	quite	well	V/cm3	=	7.226(nB/mol)2	–	1.851(nB/mol)	+	1001.4
,	æ	∂V	/	cm	3	ö	so	VB	/	cm	3	=	ç		=	2	×	7.226	×	(nB	/	mol)	−	1.851	è	∂nB	/	mol	ø	n	A	Comment.	Selecting	mA	=	1000	g	is	arbitrary.	If	you	chose	a	different	value	for	mA,	your	table	will	have	different	values	for	mB,	nB,	and	V;	however,	you	should	arrive	at	the	same	values	for	VB.	5A.6	From	Example	5A.1,	we	have	VE/(cm3	mol–1)	=	54.6664	–	0.72788x	+
0.084468x2	,	where	x	=	nE/mol	mixed	with	1.000	kg	water.	Thus,	x	is	also	equal	to	the	numerical	value	of	the	molality.	To	find	the	minimum	in	VE,	differentiate	it	and	set	the	derivative	equal	to	zero:	dVE	(cm	3	mol−1	)	=	−0.72788	+	2	×	0.084468x	=	0	dx	0.72788	Thus	so	b	=	4.3086	mol	kg–1	x=	=	4.3086	2	×	0.084468	This	value	is	consistent	with
Figure	5A.3	of	the	main	text.	5B	The	properties	of	solutions	Answers	to	discussion	question	5B.2	All	of	the	colligative	properties	result	from	the	lowering	of	the	chemical	potential	of	the	solvent	due	to	the	presence	of	the	solute.	This	reduction	takes	the	form	µA	=	µA*	+	RT	ln	xA	or	µA	=	µA*	+	RT	ln	aA,	depending	on	whether	or	not	the	solution	can	be
considered	ideal.	The	lowering	of	the	chemical	potential	results	in	a	freezing	point	depression	and	a	boiling	point	elevation	as	illustrated	in	Figure	5B.6	of	the	text.	Both	of	these	effects	can	be	explained	by	the	lowering	of	the	vapour	pressure	of	the	solvent	in	solution	due	to	the	presence	of	the	solute.	The	solute	molecules	get	in	the	way	of	the	solvent
molecules,	reducing	their	escaping	tendency.	Solutions	to	exercises	5B.1(b)	In	Exercise	5A.10(b),	the	Henry’s	law	constant	was	determined	for	concentrations	expressed	in	mole	fractions;	KB	=	8.2×103	kPa.	Thus	the	concentration	must	be	converted	from	molality	to	mole	fraction	5	mA	=	1000	g,	corresponding	to	nA	=	Therefore	xB	=	1000	g	74.1	g
mol	−1	=	13.50	mol	0.25	mol	=	0.018	(0.25mol)	+	(13.50	mol)	The	pressure	is	pB	=	KBxB	[5A.23]	=	(0.018)	×	(8.2×103	kPa)	=	1.5×102	kPa	.	5B.2(b)	We	assume	that	the	solvent,	2-propanol,	is	ideal	and	obeys	Raoult’s	law	[5A.21].	p	49.62	xA	(solvent)	=	*	=	=	0.9924	50.00	p	Since	MA(C3H8O)	=	60.096	g	mol–1,	250	g	nA	=	=	4.16	mol	60.096	g
mol−1	xA	=	nA	nA	+	nB	so	nA	+	nB	=	nA	.	xA	æ	1	ö	æ	1	ö	Hence	nB	=	nA	ç	−	1	=	4.16	mol	×	ç	−	1	=	3.12	×	10−2	mol	0.9924	x	è	ø	è	A	ø	and	5B.3(b)	MB	=	mB	8.69	g	=	=	273	g	mol−1	nB	3.12	×	10−2	mol	Let	B	denote	the	compound	and	A	the	solvent,	naphthalene.	Kf	=	6.94	K	kg	mol–1	[Table	5B.1]	m	MB	=	B	nB	n	B	=	mA	b	B	Thus	M	B	=	5B.4(b)
where	bB	=	∆T	[5B.13]	Kf	mB	K	f	(5.00	g)	×	(6.94	K	kg	mol−1	)	=	=	178	g	mol−1	mA	∆T	(0.250	kg)	×	(0.780	K)	From	the	osmotic	pressure,	compute	the	concentration,	and	from	the	concentration	the	freezing	point.	According	to	the	van’t	Hoff	equation	[5B.16],	the	osmotic	pressure	is	n	Π	Π	=	[B]RT	so	=	B	[B]	=	RT	Vsoln	The	expression	for	freezing
point	depression	[5B.13]	includes	the	molality	b	rather	than	the	molarity	[B].	In	dilute	solutions,	the	two	concentration	measures	are	readily	related:	nB	n	[B]	Π	=	=	b=	B	≈	mA	Vsoln	ρsoln	ρsoln	RT	ρsoln	The	freezing	point	depression	is	Kf	Π	where	Kf	=	1.86	K	mol–1	kg	[Table	5B.1]	∆T	=	K	f	b	≈	RT	ρsoln	The	density	of	a	dilute	aqueous	solution	is
approximately	that	of	water:	ρ	≈	1.0	g	cm–3	=1.0×103	kg	m–3	−1	So	∆T	≈	(1.86	K	kg	mol	)	×	(99	×	103	Pa)	−3	(8.3145	J	K	−1	mol−1	)	×	(288	K)	×	(103	kg	m	)	Therefore,	the	solution	will	freeze	at	about	–0.077°C.	5B.5(b)	∆	mix	G	=	nRT	∑	x	ln	x	J	J	[5A.16]	and	J	∆	mix	S	=	−	nR∑	xJ	ln	xJ	[5A.17]	=	J	−∆	mix	G	T	6	=	0.077	K	n	=	2.00	mol	and	xhexane	=
xheptane	=	0.500	Therefore,	∆	mix	G	=	(2.00	mol)	×	(8.3145	J	K	−1	mol−1	)	×	(298	K)	×	2	×	(0.500	ln	0.500)	=	−3.43	×	103	J	=	−3.43	kJ	−∆	mix	G	+3.43	×	103	=	+11.5	J	K	−1	=	T	298	K	For	an	ideal	solution,	∆mixH	=	0,	just	as	it	is	for	a	mixture	of	perfect	gases	[5A.18].	It	can	be	demonstrated	from	æ	−∆	mix	G	ö	=0	∆	mix	H	=	∆	mix	G	+	T	∆	mix	S	=
∆	mix	G	+	T	ç	è	T	ø	and	5B.6(b)	∆	mix	S	=	(i)	Benzene	and	ethylbenzene	form	nearly	ideal	solutions,	so.	∆mixS	=	–nRT(xA	ln	xA	+	xB	ln	xB)	[5A.17]	We	need	to	differentiate	eqn	5A.17	with	respect	to	xA	and	look	for	the	value	of	xA	at	which	the	derivative	is	zero.	Since	xB	=	1	–xA,	we	need	to	differentiate	∆mixS	=	–nRT{xA	ln	xA	+	(1–xA)ln(1–xA)}	This
gives	æ	using	d	ln	x	=	1	ö	è	xø	dx	x	d∆	mix	S	=	−nR{ln	xA	+	1	−	ln(1	−	xA	)	−	1}	=	−nR	ln	A	dxA	1	−	xA	which	is	zero	when	xA	=	1	.	Hence,	the	maximum	entropy	of	mixing	occurs	for	the	2	preparation	of	a	mixture	that	contains	equal	mole	fractions	of	the	two	components.	(ii)	Because	entropy	of	mixing	is	maximized	when	nE	=	nB	(changing	to	notation
specific	to	Benzene	and	Ethylbenzene)	m	mE	=	B	ME	MB	This	makes	the	mass	ratio	mB	M	B	78.11	g	mol−1	=	0.7357	=	=	mE	M	E	106.17	g	mol−1	5B.7(b)	The	ideal	solubility	in	terms	of	mole	fraction	is	given	by	eqn	5B.15:	ö	∆	H	æ	ln	xPb	=	fus	×	ç	1	−	1		R	è	Tf	T	ø	æ	5.2	×	103	J	mol−1	ö	æ	1	ö	=ç	−	1		=	−0.089	×ç	−1		−1	è	8.3145	J	K	mol	ø	è	600.K	553K
ø	Therefore,	xPb	=	e–0.089	=	0.92	.	nPb	x	n	x	m	nPb	=	Bi	Pb	=	Bi	×	Pb	xPb	=	implying	that	1	−	xPb	M	Bi	1	−	xPb	nBi	+	nPb	Hence	the	amount	of	lead	that	dissolves	in	1	kg	of	bismuth	is	1000	g	0.92	nPb	=	×	=	52	mol	−1	1	−	0.92	209	g	mol	or,	in	mass	units,	mPb	=	nPb×MPb	=	52	mol	×	207	g	mol–1	=	1.1×104	g	=	11	kg.	Comment.	A	mixture	of	11
kg	of	lead	and	1	kg	of	bismuth	would	normally	be	regarded	as	a	solution	of	bismuth	in	lead,	not	the	other	way	around.	It	is	unlikely	that	such	a	mixture	could	be	regarded	as	an	ideal	dilute	solution	of	lead	in	bismuth.	Under	such	circumstances	eqn	5B.15	ought	to	be	considered	suggestive	at	best,	rather	than	quantitative.	5B.8(b)	The	best	value	of	the
molar	mass	is	obtained	from	values	of	the	data	extrapolated	to	zero	concentration,	since	it	is	under	this	condition	that	the	van’t	Hoff	equation	(5B.16)	applies.	7	ΠV	=	nBRT	Π	=	mRT	=	cRT	where	c	=	m/V	.	so	M	MV	But	the	osmotic	pressure	is	also	equal	to	the	hydrostatic	pressure	ö	æ	Π	=	ρgh	[1A.1]	so	h	=	ç	RT		c	è	ρ	gM	ø	Figure	5B.1	Hence,	plot	h
against	c	and	identify	the	slope	as	RT	.	Figure	5B.1	shows	the	plot	of	the	ρ	gM	data.	The	slope	of	the	line	is	1.78	cm	/(g	dm–3),	so	RT	1.78	cm	=	=	1.78	cm	dm	3	g	−1	=	1.78	×	10−2	m	4	kg	−1	ρ	gM	g	dm	−3	Therefore,	RT	M=	(	ρ	g)	×	(1.78	×	10−2	m	4	kg	−1	)	=	5B.9(b)	(8.3145	J	K	−1	mol−1	)	×	(293K)	−3	(1.000	×	103	kg	m	)	×	(9.81	m	s	−2	)	×
(1.78	×	10−2	m	4	kg	−1	)	=	14.0	kg	mol-1	In	an	ideal	dilute	solution	the	solvent	(CCl4,	A)	obeys	Raoult’s	law	[5A.21]	and	the	solute	(Br2,	B)	obeys	Henry’s	law	[5A.23];	hence	pA	=	xA	p*	=	(0.934)	×	(23	kPa)	=	21.5	kPa	pB	=	xBKB	=	(0.066)	×	(73	kPa)	=	4.8	kPa	ptotal	=	(21.5	+	4.8)	kPa	=	26.3	kPa	The	composition	of	the	vapour	in	equilibrium	with
the	liquid	is	p	p	and	yA	=	A	=	21.5	kPa	=	0.82	yB	=	B	=	4.8	kPa	=	0.18	ptotal	23.3	kPa	ptotal	23.3	kPa	5B.10(b)	Let	subscript	12	denote	the	1,2	isomer	and	13	the	1,3	isomer.	Assume	that	the	structurally	similar	liquids	obey	Raoult’s	law	[5A.21].	The	partial	pressures	of	the	two	liquids	sum	to	19	kPa.	p13	+	p12	=	p	=	x13p13*	+	x12p12*	=	x13p13*	+
(1–x13)p12*	Solve	for	x13:	p−	p	*	(19	−	20)	kPa	x13	=	*	12	*	=	=	0.5	(18	−	20)	kPa	p13	−	p12	and	x12	=	1	–	0.5	=	0.5	.	The	vapour	phase	mole	fractions	are	given	by	eqn	1A.8:	8	and	y13	=	p13	x13	p13*	(0.5)	×	18	kPa	=	=	=	0.47	19	kPa	p	p	y12	=	x12	p12*	(0.5)	×	20.0	kPa	=	=	0.53	.	50.7	kPa	p	5B.11(b)	The	partial	vapour	pressures	are	given	by
Raoult’s	law	[5A.21]:	and	pB	=	xBpB*	=	(1–xB)pB*	.	pA	=	xApA*	Eqn	1A.8	relates	these	vapour	pressures	to	the	vapour-phase	mole	fractions:	p	xA	pA*	yA	=	A	=	ptotal	xA	pA*	+	(1	−	xA	)	pB*	Solve	for	xA:	xA	pA*	+	(1	−	xA	)	pB*	=	xA	pA*	yA	æ	p*	ö	xA	ç	pA*	−	pB*	−	A		=	−	pB*	yA	ø	è	pB*	xA	=	pB*	+	*	A	p	−	pA*	yA	=	82.1	kPa	=	0.662	ö	æ	68.8	kPa	−	68.8
82.1	+	ø	çè	0.621	and	xB	=	1	–	xA	=	1	–	0.662	=	0.338	.	The	total	vapour	pressure	is	ptotal	=	xApA*	+	xBpB*	=	0.662	×	68.8	kPa	+	0.338	×	82.1	kPa	=	73.3	kPa	.	5B.12(b)	(i)	If	the	solution	is	ideal,	then	the	partial	vapour	pressures	are	given	by	Raoult’s	law	[5A.21]:	pA°	=	xApA*	=	0.4217	×	110.1	kPa	=	46.4	kPa	and	pB°	=	xBpB*	=	(1–xB)pB*	=	(1–
0.4217)	×	76.5	kPa	=	44.2	kPa	.	(Note	the	use	of	the	symbol	°	to	emphasize	that	these	are	idealized	quantities;	we	do	not	yet	know	if	they	are	the	actual	partial	vapour	pressures.)	At	the	normal	boiling	temperature,	the	partial	vapour	pressures	must	add	up	to	1	atm	(101.3	kPa).	These	ideal	partial	vapour	pressures	add	up	to	only	90.7	kPa,	so	the
solution	is	not	ideal.	(ii)	We	actually	do	not	have	enough	information	to	compute	the	initial	composition	of	the	vapour	above	the	solution.	The	activities	and	activity	coefficients	are	defined	by	the	actual	partial	vapour	pressures.	We	know	only	that	the	actual	vapour	pressures	must	sum	to	101.3	kPa.	We	can	make	a	further	assumption	that	the
proportions	of	the	vapours	are	the	same	as	given	by	Raoult’s	law.	That	is,	we	assume	that	pA	°	46.4	kPa	=	0.512	=	yA	=	yA	°	=	pA	°	+	pB	°	(46.4	+	44.2)	kPa	pB	°	44.2	kPa	=	0.488	.	=	pA	°	+	pB	°	(46.4	+	44.2)	kPa	By	Eqn.	1A.8,	the	actual	partial	vapour	pressures	would	then	be	pA	=	yAptotal	=	0.512	×	101.3	kPa	=	51.9	kPa	and	pB	=	yBptotal	=
0.488	×	101.3	kPa	=	49.4	kPa	.	To	find	the	activity	coefficients,	note	that	p	p	49.4	kPa	51.9	kPa	and	=	1.117	γB	=	=	1.117	γA	=	A*	=	A	=	44.2	kPa	xA	pA	pA	°	46.4	kPa	and	yB	=	yB	°	=	Comment.	Assuming	that	the	actual	proportions	of	the	vapours	are	the	same	as	the	ideal	proportions	begs	the	question	(i.e.,	arrives	at	the	answer	by	assumption
rather	than	calculation).	The	assumption	is	not	unreasonable,	though.	It	is	equivalent	to	assuming	that	the	activity	coefficients	of	the	two	components	are	equal	(when	in	principle	they	could	be	different).	The	facts	that	the	difference	between	ideal	and	actual	total	pressure	is	relatively	small	(on	the	order	of	10%),	that	non-ideal	behavior	is	due	to	the
interaction	of	the	two	components,	and	that	the	two	components	are	present	in	comparable	quantities	combine	to	suggest	that	the	error	we	make	in	making	this	assumption	is	fairly	small.	9	5B.13(b)	(i)	If	the	solution	is	ideal,	then	the	partial	vapour	pressures	are	given	by	Raoult’s	law	[5A.21]:	pB	=	xBpB*	=	0.50	×	9.9	kPa	=	4.95	kPa	pT	=	xTpT*	=
0.50	×	2.9	kPa	=	1.45	kPa	The	total	pressure	is	ptotal	=	pB	+	pT	=	(4.95	+	1.45)	kPa	=	6.4	kPa	.	(ii)	The	composition	of	the	vapour	is	given	by	p	4.95	kPa	=	0.77	yB	=	B	=	6.4	kPa	ptotal	pT	1.45	kPa	=	=	0.23	6.4	kPa	ptotal	(iii)	When	only	a	few	drops	of	liquid	remain,	the	equimolar	mixture	is	almost	entirely	vapour.	Thus	yB	=	yT	=	0.50,	which	implies
that	pB	=	xBpB*	=	pT	=	xTpT*	=	(1–xB)pT*	.	Solving	for	xB	yields	p*	2.9	kPa	xB	=	*	T	*	=	=	0.23	(9.9	+	2.9)	kPa	pB	+	pT	and	yT	=	The	partial	vapour	pressures	are	pB	=	xBpB*	=	0.23	×	9.9	kPa	=	2.24	kPa	=	pT	[vapour	mixture	is	equimolar]	=	ptotal/2	.	The	total	pressure	is	ptotal	=	2pB	=	4.5	kPa	.	Comment.	Notice	that	an	equimolar	liquid	mixture
yields	a	vapour	composition	directly	proportional	to	the	vapour	pressures	of	the	pure	liquids.	Conversely,	an	equimolar	vapour	mixture	implies	a	liquid	composition	inversely	proportional	to	those	vapour	pressures.	Solutions	to	problems	5B.2	The	apparent	molality	is	0.0703	K	∆T	=	0.0378	mol	kg	−1	[5B.13]	=	bapp	=	Kf	1.86	K/(mol	kg	−1	)	Since	the
solution	molality	is	nominally	0.0096	mol	kg–1	in	Th(NO3)4,	each	formula	unit	supplies	0.0378	≈	4	ions	.	(More	careful	data,	as	described	in	the	original	reference	gives	5	0.0096	to	6	ions.)	5B.4	(a)	Let	V1*	be	the	molar	volume	of	pure	propionic	acid	and	V1	be	its	partial	molar	volume	in	the	mixture	(and	V2*	and	V2	the	analogous	quantities	for	oxane).
The	volume	of	an	ideal	mixture	is	additive	Videal	=	n1V1*	+	n2V2*,	so	the	volume	of	a	real	mixture	is	V	=	Videal	+	VE	.	We	have	an	expression	for	excess	molar	volume	in	terms	of	mole	fractions.	To	compute	partial	molar	volumes,	we	need	an	expression	for	the	excess	volume	as	a	function	of	moles	a	(n	−	n2	)	ö	nn	æ	V	E	=	(n1	+	n2	)VmE	=	1	2	ç	a0	+	1
1	n1	+	n2	ø	n1	+	n2	è	æ	a1	(n1	−	n2	)	ö	ç	a0	+	n	+	n		è	ø	1	2	The	partial	molar	volume	of	propionic	acid	is	æ	∂V	ö	a0	n22	a1	(3n1	−	n2	)n22	*	V1	=	ç	+	+	=	V1*	+	a0	x22	+	a1	(3x1	−	x2	)x22	=	V		1	2	3	∂n	(n	+	n	)	(n	+	n	)	è	1øn	1	2	1	2	so	V	=	n1V1*	+	n2V2*	+	n1n2	n1	+	n2	2	That	of	oxane	is	æ	∂V	ö	a0	n12	a	(n3	−	3n12	n22	)	V2	=	ç	+	1	1	=	V2*	+	a0	x12	+
a1	(x1	−	3x2	)x12	=	V2*	+		2	3	∂n	(n1	+	n2	)	(n1	+	n2	)	è	2øn	1	10	(b)	We	need	the	molar	volumes	of	the	pure	liquids	M	74.08	g	mol−1	=	76.23	cm	3	mol−1	V1*	=	1	=	ρ1	0.97174	g	cm	−3	86.13	g	mol−1	=	99.69	cm	3	mol−1	ρ2	0.86398	g	cm	−3	In	an	equimolar	mixture,	the	partial	molar	volume	of	propionic	acid	is	V1	=	76.23	+	(−2.4697)	×	(0.5)2	+
(0.0608)	×	{3(0.5)	−	0.5}	×	(0.5)2	cm	3	mol−1	V2*	=	and	M2	=	=	75.63	cm	3	mol−1	and	that	of	oxane	is	V2	=	99.69	+	(−2.4697)	×	(0.5)2	+	(0.0608)	×	{0.5	−	3(0.5)}	×	(0.5)2	cm	3	mol−1	=	99.06	cm	3	mol−1	5B.6	5B.8	In	this	mixture,	x	=	0.250,	so	GE	=	RT(0.250)(1–0.250){0.4857–0.1077(0.500–1)+0.0191(0.500–1)2}	=	0.1021RT	Therefore,	since
∆mixG	=	∆mixGideal	+	nGE	=	nRT(xA	ln	xA	+	xB	ln	xB)	+	nGE	[5B.5	and	5A.16]	∆mixG	=	nRT(0.250	ln	0.250	+	0.750	ln	0.750)	+	0.1021nRT	=	–0.460nRT	∆mixG	=	–0.460	×	4.00	mol	×	8.3145	J	mol–1	K–1	×	303.15	K	=	–4.64	kJ	mol–1	.	æ	ö	æ	ö	µA	=	ç	∂G		[5A.4]	=	µAideal	+	ç	∂	(nG	E	)	[5B.5]	where	µAideal	=	µA*	+	RT	ln	xA	[5A.22]	è	∂nA	ø	n	è	∂nA	øn	B	B
æ	∂xA	ö	æ	∂nG	E	ö	æ	∂G	E	ö	E	E	ç	∂n		=	G	+	nç	∂n		=	G	+	nç	∂n		è	Aøn	è	è	A	øn	A	øn	B	B	B	æ	∂G	E	ö	ç	∂x		è	A	øn	B	where	æ	∂xA	ö	xB	xB	nB	nA	1	∂	æ	nA	ö	ç	∂n		=	∂n	ç	n	+	n		=	n	+	n	−	(n	+	n	)2	=	(n	+	n	)2	=	n	+	n	=	n	è	Aøn	A	è	A	B	A	B	A	Bø	B	A	B	A	Hence	æ	∂G	E	ö	æ	∂nG	E	ö	E	ç	∂n		=	G	+	xB	ç	∂x		=	gRTxA	(1	−	xA	)	+	(1	−	xA	)gRT	(1	−	2xA	)	è	A	øn	è	A	øn	B	B	B
After	expanding	and	collecting	terms,	we	arrive	at	æ	∂nG	E	ö	2	2	ç	∂n		=	gRT	(1	−	xA	)	=	gRTxB	è	ø	A	n	B	Therefore,	µA	=	µA*	+	RT	ln	xA	+	gRTxB2	This	function	is	plotted	for	several	values	of	the	parameter	g	in	Figure	5B.2.	Figure	5B.2	11	5B.10	By	the	van’t	Hoff	equation	[5B.16]	Π	=	[B]RT	=	cRT	M	Division	by	the	standard	acceleration	of	free	fall,	g,
gives	Π	=	c(R	/	g)T	M	g	(a)	This	expression	may	be	written	in	the	form	Π	′	=	cR′T	M	which	has	the	same	form	as	the	van’t	Hoff	equation,	but	the	unit	of	osmotic	pressure	(Π′)	is	now	force	/	area	(mass	length)	/	(area	time	2	)	mass	=	=	area	length	/	time	2	length	/	time	2	This	ratio	can	be	specified	in	g	cm–2.	Likewise,	the	constant	of	proportionality	(R′)
would	have	the	units	of	R/g.	energy	K	−1	mol−1	(mass	length	2	/	time	2	)	K	−1	mol−1	=	=	mass	length	K	−1	mol−1	length	/	time	2	length	/	time	2	This	result	may	be	specified	in	g	cm	K–1	mol–1	.	8.314	47	J	K	−1	mol−1	R′	=	R	=	g	9.806	65m	s	−2	æ	103	g	ö	æ	102	cm	ö	×	=	0.847	840	kg	m	K	−1	mol−1	ç	è	kg	ø	çè	m	ø	=	84	784.0	g	cm	K	−1	mol−1	In	the
following	we	will	drop	the	primes	giving	Π	=	cRT	M	and	use	the	Π	units	of	g	cm–2	and	the	R	units	g	cm	K–1	mol–1.	(b)	By	extrapolating	the	low	concentration	plot	of	Π	/	c	versus	c	(Figure	5B.3(a))	to	c	=	0	we	find	the	intercept	230	g	cm–2/(g	cm–3).	In	this	limit	the	van’t	Hoff	equation	is	valid	so	Figure	5B.3(a)	RT	=	intercept	M	or	M=	RT	intercept	12
M=	(84	784.0	g	cm	K	−1	mol−1	)	×	(298.15	K)	RT	=	1.1×105	g	mol−1	=	intercept	(230	g	cm	−2	)	/	(g	cm	−3	)	(c)	The	plot	of	Π	/	c	versus	c	for	the	full	concentration	range	(Figure	5B.3(b))	is	very	nonlinear.	We	may	conclude	that	the	solvent	is	good.	This	may	be	due	to	the	nonpolar	nature	of	both	solvent	and	solute.	Figure	5B.3(b)	(d)	The	virial
analogue	to	the	van’t	Hoff	equation	(eqn.	5B.18)	rearranges	to	Π	/	c	=	(RT	/	M	)(1	+	B′c	+	C	′c	2	)	Since	RT	/	M	has	been	determined	in	part	(b)	by	extrapolation	to	c	=	0,	it	is	best	to	determine	the	second	and	third	virial	coefficients	with	the	linear	regression	fit	(Π	/	c)	/	(RT	/	M	)−1	=	B	′	+	C	′c	c	R	=	0.9791.	B′	=	21.4	cm3	g–1	;	standard	deviation	=	2.4
cm3	g–1	.	C′	=	211	cm6	g–2	;	standard	deviation	=	15	cm6	g–2	.	(e)	Using	1/4	for	g	and	neglecting	terms	beyond	the	second	power,	we	may	write	(	)	(	)	(	1/	2	)	1/	2	Π	RT	=	1	+	1	B	′c	c	M	2	We	can	solve	for	B′	,	then	g(B′)2	=	C′	.	(	Πc	)	(	RTM	)	1/	2	1/	2	−	1	=1	B	′c	2	RT	/	M	has	been	determined	above	as	230	g	cm–2/(g	cm–3).	We	may	analytically	solve
for	B′	from	one	of	the	data	points,	say,	Π	/	c	=	430	g	cm	−2	/	g	cm	−3	at	c	=	0.033	g	cm–3.	æ	430	g	cm	−2	/	g	cm	−3	ö	çè	230	g	cm	−2	/	g	cm	−3	ø	1/2	−	1	=	1	B	′	×	(0.033	g	cm	−3	)	2	13	B′	=	2	×	(1.367	−	1)	=	22	cm	3	g	−1	0.033	g	cm	−3	C	′	=	g(	B′	)2	=	0.25	×	(22	cm	3	g	−1	)2	=	123	cm	6	g	−2	(	)	/(	)	1/	2	1/	2	RT	against	c.	This	plot	is	Better	values	of
B′	and	C′	can	be	obtained	by	plotting	Π	c	M	shown	in	Figure	5B.3(c).	The	slope	is	14	cm3	g–1.	B′	=2	×	slope	=	28	cm3	g–1	.	C′	is	then	196	cm	6	g	−2	.	The	intercept	of	this	plot	should	theoretically	be	1.00,	but	it	is	in	fact	0.916	with	a	standard	deviation	of	0.066.	The	overall	consistency	of	the	values	of	the	parameters	confirms	that	g	is	roughly	1/4	as
assumed.	Figure	5B.3(c)	5B.12	The	Gibbs	energy	of	mixing	an	ideal	solution	is	[5A.16]	∆mixG	=	nRT(xA	ln	xA	+	xB	ln	xB)	The	molar	Gibbs	energy	of	mixing	is	plotted	against	composition	for	several	temperatures	in	Fig.	5B.4.	The	legend	shows	the	temperature	in	kelvins.	Figure	5B.4	The	composition	at	which	the	temperature	dependence	is	strongest
is	the	composition	at	which	the	function	has	its	largest	magnitude,	namely	xA	=	xB	=	0.5.	5B.14	The	theoretical	solubility	[5B.15]	is	14	=	ln	xB	Δ	fus	H	R	æ	1	1ö	ç	−		è	Tf	T	ø	æΔ	H	ö	æ	Δ	Hö	so	=	xB	exp	ç	fus		exp	ç	−	fus		RT	è	RT	ø	è	f	ø	æΔ	H	ö	æ	Δ	H	ö	æΔ	H	ö	exp	ç	fus		exp	ç	−	fus		×	ç	fus	2		RT	è	RT	ø	è	RT	ø	è	f	ø	This	expression	can	be	plotted	as	a	function	of
temperature	for	various	values	of	the	enthalpy	of	fusion	and	the	freezing	temperature.	The	dependence	on	the	freezing	temperature	is	relatively	uninteresting,	though,	since	it	enters	into	a	factor	that	is	independent	of	temperature,	æΔ	H	ö	namely	exp	ç	fus		è	RTf	ø	dxB	and	=	dT	So	we	will	ignore	the	effect	of	the	freezing	temperature	and	simply	plot
dxB/dT	with	this	factor	divided	out.	That	is,	in	Figure	5B.5,	we	plot	f(T)	vs.	T	for	several	values	of	∆fusH	between	1	and	10	kJ	mol–1,	where	æ	Δ	H	ö	æΔ	H	ö	f	(T	)	=	exp	ç	−	fus		×	ç	fus	2		è	RT	ø	è	RT	ø	Figure	5B.5	Note	that	the	function	does	not	appear	to	consistently	as	we	increase	∆fusH.	This	apparent	inconsistency	would	be	removed,	though,	if	we
plotted	over	a	temperature	range	that	extended	back	to	T	=	0.	The	function	has	a	maximum	because	the	exponential	factor	increases	toward	a	constant	value	of	1	with	increasing	temperature	while	the	other	factor	decreases	toward	zero.	The	higher	the	value	of	∆fusH.	the	higher	the	temperature	at	which	f(T)	is	maximal	and	the	lower	the	value	of	that
maximum	value.	For	∆fusH	=	1	or	2	kJ	mol–1,	the	maximum	occurs	at	temperatures	lower	than	those	shown	and	for	∆fusH	=	10	kJ	mol–1	it	occurs	at	a	higher	temperature	than	those	shown.	5C	Phase	diagrams	of	binary	systems	Answers	to	discussion	question	5C.2	A	low-boiling	azeotrope	has	a	boiling	temperature	lower	than	that	of	either
component,	so	it	is	easier	to	get	the	molecules	into	the	vapor	phase	than	in	a	“normal”	(non-azeotropic)	mixture.	Therefore,	the	liquid	phase	has	less	favorable	intermolecular	interactions	than	in	a	“normal”	mixture,	a	sign	that	the	components	are	less	attracted	to	each	other	in	the	liquid	phase	than	to	molecules	of	their	own	kind.	These	intermolecular
interactions	are	determined	by	factors	such	as	dipole	moment	(polarity)	and	hydrogen	bonding.	Conversely,	a	highboiling	azeotrope	has	a	boiling	temperature	higher	than	that	of	either	component,	so	it	is	more	difficult	to	get	the	molecules	into	the	vapor	phase.	This	reflects	the	relatively	unusual	situation	of	components	that	have	more	favorable
intermolecular	interactions	with	each	other	in	the	liquid	phase	than	with	molecules	of	their	own	kind.	The	concepts	of	ideal	15	mixtures	of	liquids	(in	Topic	5A)	and	deviations	from	ideal	behavior	(in	Topics	5B	and	5E)	will	further	define	the	behavior	of	“normal”	(ideal)	mixtures.	Solutions	to	exercises	5C.1(b)	Add	the	boiling	point	of	A	to	the	table	at	xA
=	yA	=	1	and	the	boiling	point	of	B	at	xB	=	yB	=	0.	Plot	the	boiling	temperatures	against	liquid	mole	fractions	and	the	same	boiling	temperatures	against	vapour	mole	fractions	on	the	same	plot.	The	phase	diagram	is	shown	in	Figure	5C.1.	The	phase	boundary	curves	are	polynomial	fits	to	the	data	points.	Figure	5C.1	(i)	Find	xA	=	0.50	on	the	lower
curve	and	draw	a	horizontal	tie	line	to	the	upper	curve.	The	mole	fraction	at	that	point	is	yA	=	0.82.	(ii)	Find	xA	=	0.67	(i.e.,	xB	=	0.33)	on	the	lower	curve	and	draw	a	horizontal	tie	line	to	the	upper	curve.	The	mole	fraction	at	that	point	is	yA	=	0.91	(i.e.,	yB	=	0.09).	5C.2(b)	The	phase	diagram	is	shown	in	Figure	5C.2.	Figure	5C.2	16	5C.3(b)	Refer	to
the	figure	given	with	the	exercise.	At	the	lowest	temperature	shown	on	the	phase	diagram,	there	are	two	liquid	phases,	a	water-rich	phase	(xB	=	0.07)	and	a	methylpropanolrich	phase	(xB	=	0.88);	the	latter	phase	is	about	10	times	as	abundant	as	the	former	(lever	rule).	On	heating,	the	compositions	of	the	two	phases	change,	the	water-rich	phase
increasing	significantly	in	methylpropanol	and	the	methylpropanol-rich	phase	more	gradually	increasing	in	water.	(Note	how	the	composition	of	the	left	side	of	the	diagram	changes	more	with	temperature	than	the	right.)	The	relative	proportions	of	the	phases	continue	to	be	given	by	the	lever	rule.	Just	before	the	isopleth	intersects	the	phase
boundary,	the	methylpropanol-rich	phase	(xB	=	0.84)	is	in	equilibrium	with	a	vanishingly	small	waterrich	phase	(xB	=	0.3).	Then	the	phases	merge,	and	the	single-phase	region	is	encountered	with	xB	=	0.3.	5C.4(b)	The	feature	that	indicates	incongruent	melting	(Topic	5C.4(c))	is	circled	in	Figure	5C.3.	The	incongruent	melting	point	is	marked	as	T1.
The	composition	of	the	eutectic	is	xB	≈	0.58	and	its	melting	point	is	labeled	T2	.	Figure	5C.3	5C.5(b)	The	cooling	curves	corresponding	to	the	phase	diagram	in	Figure	5C.4(a)	are	shown	in	Figure	5C.4(b).	Note	the	breaks	(abrupt	change	in	slope)	at	temperatures	corresponding	to	points	a1,	b1,	and	b2.	Also	note	the	eutectic	halts	at	a2	and	b3.	Figure
5C.4	5C.6(b)	Refer	to	Figure	5C.5.	Dotted	horizontal	lines	have	been	drawn	at	the	relevant	temperatures.	17	Figure	5C.5	(i)	At	500°C,	the	phase	diagram	shows	a	single	liquid	phase	at	all	compositions,	so	B	is	soluble	in	A	in	all	proportions.	(ii)	At	390°C,	solid	B	exists	in	equilibrium	with	a	liquid	whose	composition	is	circled	and	labeled	x1	on	Figure
5.11.	That	composition	is	xB	=	x1	=	0.63.	(iii)	At	point	x2,	two	phases	coexist:	solid	AB2	and	a	liquid	mixture	of	A	and	B	with	mole	fraction	xB	=	x2	=	0.41.	Although	the	liquid	does	not	contain	any	AB2	units,	we	can	think	of	the	liquid	as	a	mixture	of	dissociated	AB2	in	A.	Call	the	amount	(moles)	of	the	compound	nc	and	that	of	free	A	na.	Thus,	the
amount	of	A	(regardless	of	whether	free	or	in	the	compound)	is	nA	=	na	+	nc	,	and	the	amount	of	B	is	nB	=	2nc	.	The	mole	fraction	of	B	is	2nc	2nc	nB	=	=	x	B	=	x2	=	nA	+	nB	(na	+	nc	)	+	2nc	na	+	3nc	Rearrange	this	relationship,	collecting	terms	in	nc	on	one	side	and	na	on	the	other:	nax2	=	nc(2–3x2)	.	The	mole	ratio	of	compound	to	free	A	is	given
by	nc	x2	0.41	=	0.53	.	=	=	na	2	−	3x2	2	−	3	×	0.41	5C.7(b)	The	phase	diagram	is	shown	in	Figure	5C.6.	Point	symbols	are	plotted	at	the	given	data	points.	The	lines	are	schematic	at	best.	18	Figure	5C.6	At	860°C,	a	solid	solution	with	x(ZrF4)	=	0.27	appears.	The	solid	solution	continues	to	form,	and	its	ZrF4	content	increases	until	it	reaches	x(ZrF4)	=
0.40	at	830°C.	At	that	temperature	and	below,	the	entire	sample	is	solid.	5C.8(b)	The	phase	diagram	for	this	system	(Figure	5C.7)	is	very	similar	to	that	for	the	system	methyl	ethyl	ether	and	diborane	of	Exercise	5C.7(a).	The	regions	of	the	diagram	contain	analogous	substances.	The	mixture	in	this	Exercise	has	a	diborane	mole	fraction	of	0.80.	Follow
this	isopleth	down	to	see	that	crystallization	begins	at	about	123	K.	The	liquid	in	equilibrium	with	the	solid	becomes	progressively	richer	in	diborane	until	the	liquid	composition	reaches	0.90	at	104	K.	Below	that	temperature	the	system	is	a	mixture	of	solid	compound	and	solid	diborane.	Figure	5C.7	5C.9(b)	The	cooling	curves	are	sketched	in	Figure
5C.8.	Note	the	breaks	and	halts.	The	breaks	correspond	to	changes	in	the	rate	of	cooling	due	to	the	freezing	out	of	a	solid	which	releases	its	heat	of	fusion	and	thus	slows	down	the	cooling	process.	The	halts	correspond	to	the	existence	of	three	phases	and	hence	no	variance	until	one	of	the	phases	disappears.	Figure	5C.8	19	5C.10(b)	The	phase
diagram	is	sketched	in	Figure	5C.9.	Figure	5C.9	(i)	When	xA	falls	to	0.47,	a	second	liquid	phase	appears.	The	amount	of	new	phase	increases	as	xA	falls	and	the	amount	of	original	phase	decreases	until,	at	xA	=	0.314,	only	one	liquid	remains.	(ii)	The	mixture	has	a	single	liquid	phase	at	all	compositions.	Solutions	to	problems	5C.2	(a)	The	phase
diagram	is	shown	in	Figure	5C.10.	Figure	5C.10	20	(b)	We	need	not	interpolate	data,	for	296.0	K	is	a	temperature	for	which	we	have	experimental	data.	The	mole	fraction	of	N,	N-dimethylacetamide	in	the	heptane-rich	phase	(call	the	point	α,	at	the	left	of	the	tie	line)	is	0.168	and	in	the	acetamide-rich	phase	(β,	at	right)	0.804.	The	proportions	of	the
two	phases	are	in	an	inverse	ratio	of	the	distance	their	mole	fractions	are	from	the	composition	point	in	question,	according	to	the	lever	rule.	That	is	nα	/	nβ	=	lβ	/	lα	=	(0.804	−	0.750)	/	(0.750	−	0.168)	=	0.093	The	smooth	curve	through	the	data	crosses	x	=	0.750	at	302.5	K,	the	temperature	at	which	the	heptane-rich	phase	will	vanish.	5C.4	Figure
5C.11	displays	the	phase	diagram.	A	compound	with	probable	formula	A3B	exists.	It	melts	incongruently	at	700	°C	,	undergoing	the	peritectic	reaction	A	3	B(s)	→	A(s)	+	(A	+	B,	l)	The	proportions	of	A	and	B	in	the	product	are	dependent	upon	the	overall	composition	and	the	temperature.	A	eutectic	exists	at	400°C	and	xB	=	0.83.	Figure	5C.11	5C.6	The
information	has	been	used	to	construct	the	phase	diagram	in	Figure	5C.12(a).	In	MgCu2	the	mass	percentage	of	Mg	is	21	24.3	=	16	24.3+127	and	in	Mg2Cu	it	is	48.6	(100)	×	=	43	.	48.6	+	63.5	The	initial	point	is	a1,	corresponding	to	a	single-phase	liquid	system.	At	a2	(at	720°C)	MgCu2	begins	to	come	out	of	solution	and	the	liquid	becomes	richer	in
Mg,	moving	toward	e2.	At	a3	there	is	solid	MgCu2	+	liquid	of	composition	e2	(33	per	cent	by	mass	of	Mg).	This	solution	freezes	without	further	change.	The	cooling	curve	will	resemble	that	shown	in	Figure	5C.12(b).	(100)	×	Figure	5C.12	5C.8	The	data	are	plotted	in	Figure	5C.13.	At	360°C,	K2FeCl4(s)	appears.	The	solution	becomes	richer	in	FeCl2
until	the	temperature	reaches	351°C,	at	which	point	KFeCl3(s)	also	appears.	Below	351°C	the	system	is	a	mixture	of	K2FeCl4(s)	and	KFeCl3(s).	Figure	5C.13	5C.10	Equation	5C.5	is	22	p=	pA*	pB*	pA*	+	(	pB*	−	pA*	)	yA	First	divide	both	sides	by	pA*	to	express	the	pressure	in	units	of	pA*	.	Next,	divide	both	numerator	and	denominator	by	pB*	to	see	if
the	right	hand	side	can	be	expressed	as	a	function	of	the	ratio	pA*	/	pB*	rather	than	of	each	vapor	pressure	separately:	p	/	pA*	=	1	p	/	p	+	(1−	pA*	/	pB*	)	yA	*	A	*	B	The	plot	of	p	/	pA*	vs.	yA	at	several	values	of	the	vapor	pressure	ratio	is	shown	in	Figure	5C.4	of	the	main	text.	5C.12	Equation	5C.7	is	The	simplest	way	to	construct	a	plot	of	ξ	vs.	xA	is	to
isolate	ξ:	A	plot	based	on	this	equation	is	shown	in	Figure	5C.14(a).	Figure	5C.14(a)	(a)	The	graphical	method	described	in	section	5C.3(b)	and	illustrated	in	the	main	text’s	Figure	5C.19	is	also	shown	below	in	Figure	5C.14(b).	Here	the	left-hand	side	of	eqn	5C.7	is	plotted	as	the	bold	curve,	and	the	lighter	lines	are	the	right-hand	side	for	ξ	=	1,	2,	3,
and	5.	Small	squares	are	placed	where	the	curve	intersects	one	of	the	lines.	Note	that	the	curve	intersects	every	line	at	xA	=	½,	the	composition	at	which	HE	is	maximized.	For	values	of	ξ	≤	2,	that	is	the	only	point	of	intersection;	for	values	of	ξ	>	2,	there	are	two	additional	points	of	intersection	arranged	at	equal	distance	from	xA	=	½.	23	Figure
5C.14(b)	The	root	xA	=	½	is	unlike	the	other	roots	of	eqn	5C.7	in	several	respects.	The	graphical	approach	shows	that	it	is	a	root	for	all	values	of	ξ.	That	fact	can	be	confirmed	by	inspection	by	substituting	xA	=	½	into	eqn	5C.7,	leading	to	0	=	0	for	any	finite	value	of	ξ.	For	ξ	>	2,	that	root	of	eqn	5C.7	is	a	maximum	in	the	Gibbs	energy,	not	a	minimum,
as	can	be	seen	in	Figure	5C.18	of	the	main	text.	However,	in	the	equation	obtained	by	isolating	ξ,	xA	=	½	leads	only	to	ξ	=	2.	That	equation	yields	an	indeterminate	form	for	xA	=	½,	but	application	of	L’Hospital’s	rule	yields	x	ln	A	x	−1	−	(−	xA	)	−1	2	+	2	1	−	xA	ln	xA	−	ln(1	−	xA	)	=	lim1	=	lim1	A	=	=	2	lim1	x→	2	2	x	−	1	x→	2	x→	2	2	xA	−	1	2	2	A	(b)
One	method	of	numerical	solution	is	illustrated	by	the	following	cells	from	a	spreadsheet.	Set	up	one	column	to	represent	xA,	one	for	the	left-hand	side	of	eqn	5C.7,	and	one	for	the	right-hand	side	(with	variable	).	From	the	cells	shown	here,	it	is	apparent	that	when	xA	=	0.9980	or	0.9985,	but	when	xA	=	0.9990.	Therefore,	the	value	of	xA	when	the	two
sides	were	equal	lies	somewhere	between	0.9985	and	0.9990,	or,	to	three	decimal	places,	at	0.999.	Therefore,	a	root	of	eqn	5C.7	when	ξ	=	7	is	xA	=	0.999.	x	ln(x/(1-x))	7(2x–1)	0.998	6.213	6.972	0.9985	6.501	6.979	0.999	6.907	6.986	5D	Phase	diagrams	of	ternary	systems	Answers	to	discussion	question	5D.2	The	lever	rule	[5C.6]	applies	in	a	ternary
system,	but	with	an	important	caveat.	The	tie	lines	along	which	the	rule	applies	are	experimentally	determined,	not	necessarily	horizontal	lines	or	lines	parallel	to	any	edge	of	the	triangular	diagram.	Thus	the	lever	rule	applies,	but	as	a	practical	matter	it	can	be	used	only	in	the	vicinity	of	plotted	tie	lines.	(By	contrast,	recall	that	the	lever	rule	in	a
binary	phase	diagram	could	be	applied	within	a	two-phase	region	simply	by	drawing	a	horizontal	line	to	the	appropriate	phase	boundaries.)	See	Topic	5D.2(a)	and	Figure	5D.4	of	the	main	text.	Solutions	to	exercises	5D.1(b)	The	ordered	triples	(xA,	xB,	xC)	are	plotted	in	Figure	5D.1.	The	vertices	of	the	triangular	phase	diagram	are	labeled	for	the
component	that	is	pure	at	that	vertex.	For	example,	the	top	of	the	diagram	is	pure	A:	(1,	0,	0).	As	a	reminder,	at	the	edge	opposite	a	labeled	vertex,	that	24	component’s	mole	fraction	is	zero.	For	example,	the	base	of	the	diagram	represents	compositions	(0,	xB,	xC).	Figure	5D.1	5D.2(b)	Note	that	the	compositions	are	given	in	mass	percentages,	not
mole	percentages,	so	we	simply	convert	to	moles	before	plotting.	Assume	a	convenient	sample	size,	such	as	100	g,	making	the	numerical	values	of	the	mass	percentages	equal	to	masses	in	grams:	1	mol	(i)	NaCl:	=	0.565	mol	33	g	×	58.44	g	Na2SO4⋅10H2O:	33	g	×	1	mol	=	0.102	mol	322.21	g	1	mol	=	1.89	mol	18.016	g	To	get	mole	fractions,	divide
these	amounts	by	the	total	amount	of	2.55	mol:	0.565	mol	=	0.22	x(NaCl)	=	2.55	mol	x(H2O)	=	0.74	x	(Na2SO4⋅10H2O)	=	0.040	This	composition	is	point	a	in	Figure	5D.2.	(ii)	We	want	to	plot	a	line	representing	equal	masses	of	salt	with	varying	amounts	of	water.	One	point	on	that	line	has	no	water.	Compute	the	mole	fractions	that	correspond	to	the
amounts	of	salt	computed	in	part	(a)	with	no	water.	In	that	case,	the	total	amount	is:	ntotal	=	(0.565	+	0.102)	mol	=	0.667	mol	34	g	×	H2O:	0.565	mol	and	x	(Na2SO4⋅10H2O)	=	0.15	=	0.85	0.667	mol	Plot	this	point	on	the	edge	opposite	the	vertex	labeled	H2O.	The	other	extreme	has	the	salts	in	the	same	proportions,	but	in	amounts	negligible
compared	to	that	of	water,	so	the	other	end	of	this	line	lies	at	the	vertex	labeled	H2O.	The	line	is	labeled	b	on	Figure	5D.2,	and	note	that	it	goes	through	point	(a)	as	it	must.	so	x(NaCl)	=	Figure	5D.2	25	5D.3(b)	First	convert	to	moles	and	find	composition	by	mole	fraction.	1	mol	H2O	(W):	=	3.05	mol	55.0	g	×	18.016	g	CHCl3	(C):	8.8	g	×	1	mol	=	0.074
mol	119.4	g	1	mol	=	0.062	mol	60.05	g	To	get	mole	fractions,	divide	these	amounts	by	the	total	amount	of	3.19	mol:	3.05	mol	x	C	=	0.023	xA	=	0.019	=	0.958	xW	=	3.19	mol	This	point	is	plotted	in	Figure	5D.3;	it	is	very	close	to	the	label	W	in	the	original	Figure	5D.4	of	the	main	text.	One	phase	is	present,	since	our	point	lies	outside	the	phase-
boundary	arc	(to	the	left	of	it).	(i)	If	water	is	added	to	our	mixture,	the	composition	changes	from	our	point	along	the	very	short	line	connecting	it	to	the	vertex	labeled	W.	The	system	remains	in	a	single	phase.	(ii)	If	acetic	acid	is	added	to	our	mixture,	the	composition	changes	from	our	point	along	the	line	connecting	it	to	the	vertex	labeled	A.	The
system	remains	in	a	single	phase.	Figure	5D.3	CH3COOH	(A):	5D.4(b)	3.7	g	×	The	phase	diagram	showing	the	four	given	compositions	is	shown	in	Figure	5D.4.	26	Figure	5D.4	Point	(a)	is	in	a	two-phase	region	and	point	(b)	in	a	three-phase	region.	Point	(c)	is	practically	in	a	single-phase	region;	that	is,	it	is	on	the	border	between	a	single-phase	and	a
two-phase	region,	so	there	would	be	a	vanishingly	small	amount	of	a	second	phase	present.	Finally,	point	(d),	for	which	all	three	components	are	present	in	nearly	equal	amounts,	is	in	a	three-phase	region	(although	very	near	the	border	with	a	two-phase	region).	5D.5(b)	(i)	Note	the	line	in	Figure	5D.	5	that	runs	from	the	water-NH4Cl	edge	near
x(NH4Cl)	=	0.2	(the	point	that	represents	a	saturated	aqueous	solution	of	NH4Cl)	to	the	(NH4)2SO4	vertex.	Traveling	along	that	line	from	the	edge	to	the	vertex	represents	adding	(NH4)2SO4	to	a	saturated	aqueous	solution	of	NH4Cl.	Note	that	it	traverses	the	single-phase	region	at	first.	That	is,	the	added	(NH4)2SO4	dissolves	and	does	not	cause
NH4Cl	to	precipitate	out.	If	one	starts	with	saturated	aqueous	NH4Cl	with	solid	NH4Cl	in	excess,	then	the	starting	point	is	a	bit	further	down	on	the	water-NH4Cl	edge,	for	example	at	x(NH4Cl)	=	0.3.	Adding	(NH4)2SO4	to	such	a	solution	would	take	one	from	that	point	to	the	(NH4)2SO4	vertex.	Initially,	the	system	remains	in	the	two-phase	region,
but	eventually	a	single-phase	region	is	reached.	Note	that	the	line	intersects	the	single-phase	region	at	a	higher	NH4Cl-water	ratio	and	even	a	higher	overall	x(NH4Cl)	than	that	of	saturated	aqueous	NH4Cl.	(That	is,	there	is	not	only	more	NH4Cl	relative	to	water	at	that	intersection	point,	but	NH4Cl	is	a	larger	fraction	of	the	saturated	three-
component	solution	than	it	was	in	the	saturated	twocomponent	system	of	water	and	NH4Cl.)	So	here	too,	the	effect	of	adding	(NH4)2SO4	is	to	make	additional	NH4Cl	dissolve,	at	least	at	first.	Figure	5D.5	(ii)	First	convert	to	moles	for	a	convenient	sample	size,	such	as	100	g,	and	find	composition	by	mole	fraction.	1	mol	NH4Cl:	25	g	×	=	0.467	mol
53.49	g	1	mol	=	0.568	mol	132.15	g	To	get	mole	fractions,	divide	these	amounts	by	the	total	amount	of	1.03	mol:	0.467	mol	x((NH4)2SO4)	=	0.55	x(NH	4Cl)	=	=	0.45	1.03	mol	27	(NH4)2SO4:	75	g	×	So	the	system’s	starting	point	is	on	the	baseline	of	the	triangle,	and	the	path	it	traverses	joins	the	initial	point	on	the	baseline	to	the	H2O	vertex.	As	soon
as	water	is	introduced,	a	third	(saturated	aqueous)	phase	is	formed	in	equilibrium	with	two	solid	phases.	As	more	water	is	added,	one	of	the	solid	phases	disappears,	and	the	two	remaining	phases	consist	of	a	saturated	aqueous	phase	and	a	solid	rich	in	(NH4)2SO4.	Eventually,	as	still	more	water	is	added,	that	solid	phase	also	disappears,	leaving	a
single	aqueous	phase	at	x(H2O)	≥	0.63.	Solutions	to	problem	5D.2	(i)	The	phase	diagram	is	shown	in	Figure	5D.6.	Figure	5D.6	(ii)	Lines	from	the	baseline	(the	CO2-nitroethane	edge)	to	the	DEC	vertex	represent	compositions	obtained	by	adding	DEC	to	a	CO2-nitroethane	mixture.	Such	lines	that	avoid	two-phase	regions	represent	compositions	of	CO2
and	nitroethane	to	which	addition	of	DEC	can	cause	no	phase	separation.	The	range	of	such	CO2-nitroethane	compositions	can	be	found	by	drawing	lines	from	the	DEC	vertex	to	the	baseline	tangent	to	the	two-phase	arcs.	On	Figure	5.26,	the	dashed	lines	are	tangent	to	the	two	two-phase	regions,	and	they	intersect	the	baseline	at	x	=	0.2	and	x	=	0.4
(where	x	is	mole	fraction	of	nitroethane).	So	binary	CO2nitroethane	compositions	between	these	would	show	no	phase	separation	if	DEC	is	added	to	them	in	any	amount.	(Keep	in	mind,	though,	that	the	phase	boundaries	here	are	sketched,	not	plotted,	so	the	tangent	lines	are	only	approximate.)	5E	Activities	Answers	to	discussion	question	5E.2
Raoult’s	law	[5A.21]	assumes	that	the	vapor	pressure	of	a	solvent	in	solution	(or	of	a	liquid	in	a	mixture	of	liquids)	is	simply	its	pure-substance	vapor	pressure	multiplied	by	its	mole	fraction	in	the	mixture.	That	is,	it	assumes	that	the	intermolecular	interactions	that	produce	equilibrium	between	pure	liquid	and	vapor	are	unchanged	except	for	the	fact
that	only	a	fraction	of	the	molecules	in	the	liquid	are	molecules	of	the	species	of	interest.	In	effect,	Raoult’s	law	predicts	vapor	pressure	based	on	pure-liquid	vapor	pressure	and	composition	(mole	fraction):	pA	=	pA*xA	For	real	solutions,	on	the	other	hand,	we	modify	Raoult’s	law	to	say,	in	effect,	whatever	the	vapor	pressure	really	is,	let	us	use	that	to
define	an	“effective”	mole	fraction.	Raoult’s	law	implies	pA	=	xA	pA*	We	modify	this	relationship	to	define	activity:	28	pA	=	aA	[5E.2]	pA*	Solutions	to	exercises	5E.1(b)	Let	A	=	water	and	B	=	solute.	p	0.02239	atm	aA	=	A∗	[5E.2]	=	=	0.9701	0.02308	atm	pA	So	5E.2(b)	γA	=	aA	nA	[5E.4]	and	xA	=	xA	nA	+	nB	nA	=	920	g	=	51.1	mol	18.02	g	mol−1	xA
=	51.1	=	0.990	51.1	+	0.506	122	g	=	0.506	mol	241	g	mol−1	and	γ	A	=	0.9701	=	0.980	0.990	From	eqn	1A.8	(partial	pressures)	and	yA	we	can	compute	the	partial	pressures:	pA	pA	yA	=	=	=	0.314	pA	+	pB	101.3	kPa	So	and	pA	=	101.3	kPa	×	0.314	=	31.8	kPa	pB	=	101.3	kPa	–	31.8	kPa	=	69.5	kPa	p	31.8	kPa	=	0.436	and	aA	=	A∗	[5E.2]=	73.0	kPa
pA	γA	=	5E.3(b)	nB	=	aA	0.436	=	1.98	[5E.4]	=	0.220	xA	aB	=	and	γ	B	=	pB	69.5	kPa	=	0.755	=	p*B	92.1	kPa	aB	0.755	=	0.967	=	xB	0.780	The	biological	standard	state	is	defined	as	pH	7,	which	implies	aH	+	=	10−7	.	All	other	activities	in	the	biological	standard	state	are	unity,	just	as	in	the	chemical	standard	state;	in	the	chemical	standard	state,	aH
+	=	1	=	100	as	well	(which	implies	pH	0).	As	a	result,	the	biological	standard	molar	Gibbs	function	for	H+	is	lower	than	that	of	the	chemical	standard	by	7	RT	ln	10	[5E.16],	which	is	equal	to	39.96	kJ	mol–1	at	25°C	[Brief	illustration	5E.3].	For	the	given	reaction,	the	standard	Gibbs	energy	is	ΔG	O	=	Δ	f	G	O	(B)	+	4Δ	f	G	O	(H	+	)	−	2Δ	f	G	O	(A)	The
biological	standard	is	ΔG	⊕	=	Δ	f	G	⊕	(B)	+	4Δ	f	G	⊕	(H	+	)	−	2Δ	f	G	⊕	(A)	Δ	f	G	O	(B)	+	4{Δ	f	G	O	(H	+	)	−	39.96	kJ	mol−1}	−	2Δ	f	G	O	(A)	=	Comparing	the	two,	we	have	ΔG	⊕	−	ΔG	O	=−4	×	39.96	kJ	mol−1	=	−159.84	kJ	mol−1	5E.4(b)	The	partial	pressures	of	both	components	are	given	by	eqn	5E.19	ξ	(1−x	)2	pJ	=	pJ*	xJ	e	J	The	total	pressure	is	the
sum	of	the	two	partial	pressures.	The	vapor-pressure	diagram	is	plotted	in	Figure	5E.1.	Figure	5E.1	29	Comment.	The	figure	shows	that	upon	adding	the	other	component	to	either	pure	component,	the	vapor	pressure	falls	(as	is	evident	from	the	fact	that	the	total	pressure	decreases	as	one	moves	from	either	edge	of	the	graph).	This	is	consistent	with
the	physical	interpretation	given	in	Topic	5E.3:	negative	ξ	corresponds	to	exothermic	mixing,	reflecting	favorable	interactions	between	the	components.	Solutions	to	problems	5E.2	φ=−	ln	aA	xA	ln	aA	=	−	r	xB	(a)	Therefore,	dφ	=	−	1	d	ln	aA	+	12	ln	aA	dr	r	r	and	d	ln	aA	=	1	ln	aA	dr	−	rdφ	.	r	Now	the	Gibbs–Duhem	equation	[5A.12a],	implies	xAdµA	+
xBdµB	=	0	.	Since	µ	=	µ*	+	RT	ln	a,	xA	d	ln	aA	+	xB	d	ln	aB	=	0	.	x	d	ln	aA	Therefore	d	ln	aB	=	−	A	d	ln	aA	=	−	=	−	12	ln	aA	dr	+	dφ	[from	(b)]	xB	r	r	φ	(b)	=	dr	+	dφ	[from	(a)]	=	φ	d	ln	r	+	dφ	r	Subtract	d	ln	r	from	both	sides,	to	obtain	a	(φ	−	1)	dr	+	dφ	.	d	ln	B	=	(φ	−	1)	d	ln	r	+	dφ	=	r	r	Integrate	both	sides	of	the	equality	from	pure	A	(where	r	=	0)	to
an	arbitrary	composition:	a	(φ	−	1)	∫	dln	rB	=	∫	r	dr	+	∫	dφ	The	lower	limit	of	the	left-hand	integral	is:	æγ	x	ö	æa	ö	lim	ln	ç	B		=	lim	ln	ç	B	B		=	lim	ln(γ	B	xA	)	=	ln1	=	0	,	r→0	è	r	ø	r→0	è	r	ø	r→0	leaving	the	desired	expression	ln	5E.4	r	æ	φ	−	1ö	aB	dr	=	φ	−	φ	(0)	+	∫	ç	0	è	r	ø	r	The	partial	pressure	compared	to	its	pure	substance	value,	according	to	eqn
5E.19,	is	ξ	(1−x	)2	pA	/	pA*	=	xAe	A	For	small	xA,	this	becomes	approximately	[5E.20]	pA	/	pA*	≈	xAeξ	30	Certainly	one	would	not	expect	this	expression	to	hold	over	the	entire	range	of	compositions.	In	fact,	the	two	equations	differ	pretty	quickly,	particularly	for	relatively	large	values	of	ξ.	These	two	equations	are	plotted	against	xA	in	Figure	5E.2.
Figure	5E.2	At	xA	>	0.019,	eqn	5E.20	exceeds	5E.19	by	more	than	10	per	cent.	5F	The	activities	of	ions	Answers	to	discussion	question	5F.2	The	Debye-Hückel	theory	of	electrolyte	solutions	formulates	deviations	from	ideal	behavior	(essentially,	deviations	due	to	electrostatic	interactions)	in	terms	of	the	work	of	charging	the	ions.	The	assumption	is
that	the	solute	particles	would	behave	ideally	if	they	were	not	charged,	and	the	difference	in	chemical	potential	between	real	and	ideal	behavior	amounts	to	the	work	of	putting	electrical	charges	onto	the	ions.	(Recall	[Topic	3C.1(e)]	that	the	Gibbs	function	is	associated	with	maximum	non-expansion	work.)	To	find	the	work	of	charging,	the	distribution
of	ions	must	be	found,	and	that	is	done	using	the	shielded	Coulomb	potential	[5F.15],	which	takes	into	account	the	ionic	strength	of	the	solution	and	the	dielectric	constant	of	the	solvent.	Details	of	the	derivation	are	found	in	Topic	5F.2	(particularly	in	the	Justifications).	The	Debye-Hückel	limiting	law	[5F.19b]	(valid	only	for	dilute	solutions	because	of
some	truncated	series	expansions)	gives	a	mean	ionic	activity	coefficient	that	depends	on	the	charges	of	the	ions	involved,	the	ionic	strength	of	the	solution,	and	on	a	constant	[5F.20]	that	takes	into	account	solvent	properties	and	temperature.	Solutions	to	exercises	5F.1(b)	The	definition	of	ionic	strength	is	1	æ	b	ö	I	=	∑	ç	Oi		zi2	[5F.9]	2	i	èb	ø	and	if	b	is
the	molal	concentration	of	an	MpXq	salt,	the	molal	concentrations	of	the	ions	are	and	bX	=	q	×	b	.	bM	=	p	×	b	æ	b	ö	1	Hence	I	=	(	pz+2	+	qz−2	)	ç	O		2	èb	ø	æ	b	ö	æ	b	ö	1	(3	×	12	+	1	×	32	)	ç	O		=	6	ç	O		2	èb	ø	èb	ø	For	KCl	and	NaBr	(and	any	other	compound	of	monovalent	ions)	For	K3[Fe(CN)6]	I	=	31	æ	b	ö	æ	b	ö	1	(1	×	1	+	1	×	1)	ç	O		=	ç	O		2	èb	ø	èb	ø
Thus,	for	this	mixture	I	=	I(K	3	[Fe(CN)6	])	+	I(KCl)	+	I(NaBr)	I=	æ	b(K	3	[Fe(CN)6	])	ö	b(KCl)	b(NaBr)	=	6ç		+	bΟ	+	bΟ	bΟ	è	ø	=	(6)	×	(0.040)	+	(0.030)	+	(0.050)	=	0.320	Comment.	Note	that	the	strength	of	a	solution	of	more	than	one	electrolyte	may	be	calculated	by	summing	the	ionic	strengths	of	each	electrolyte	considered	as	a	separate	1æ	b	ö
solution,	as	in	the	solution	to	this	exercise,	by	summing	the	product	ç	Oi		zi2	for	each	2èb	ø	individual	ion	as	in	the	definition	of	I	[5F.9].	Question.	Can	you	establish	that	the	comment	holds	for	this	exercise?	Note	that	the	term	for	K+	in	a	sum	over	ions	includes	ions	from	two	different	salts.	5F.2(b)	The	original	KNO3	solution	has	an	ionic	strength	of
0.110.	(For	compounds	of	monovalent	ions,	the	ionic	strength	is	numerically	equal	to	the	molal	concentration,	as	shown	in	Exercise	5F.1(b).)	Therefore,	the	ionic	strengths	of	the	added	salts	must	be	0.890.	(i)	The	salt	to	be	added	is	monovalent,	so	an	additional	0.890	mol	kg–1	must	be	dissolved.	The	mass	that	must	be	added	is	therefore	(0.500	kg)	×
(0.890	mol	kg–1)	×	(101.11	g	mol–1)	=	45.0	g	.	æ	b	ö	æ	b	ö	1	(ii)	For	Ba(NO3)2	I	=	(1×	22	+	2	×	12	)	ç	O		[5F.9]	=	3ç	O		2	èb	ø	èb	ø	–1	Therefore,	the	solution	should	be	made	0.890	mol	kg	/3	=	0.297	mol	kg–1	in	Ba(NO3)2.	The	mass	that	should	be	added	to	500	g	of	the	solution	is	therefore	(0.500	kg)	×	(0.297	mol	kg–1)	×	(261.32	g	mol–1)	=	38.8	g	.
5F.3(b)	The	solution	is	dilute,	so	use	the	Debye–Hückel	limiting	law.	log	γ±	=	–|z+z–|	AI1/2	[5F.8]	I=	1	1	æ	bi	ö	2	z	[5F.9]	=	{(0.020	×	12	)	+	(0.020	×	12	)	+	(0.035	×	22	)	+	(2	×	0.035	×	12	)}	∑	2	2	i	çè	b	O	ø	i	=	0.125	For	NaCl:	log	γ±	=	–1×1×0.509×(0.125)1/2	=	–0.180	so	γ±	=	0.66	.	The	activities	of	the	ions	are	a(Na+)	=	a(Cl–)	=	γ±b/b°	=	0.66	×
0.020	=	0.013	Question:	What	are	the	activity	coefficients	and	activities	of	Ca(NO3)2	in	the	same	solution?	5F.4(b)	The	extended	Debye–Hückel	law	[5F.11a]	is	A	|	z+	z−	|	I	1/2	log	γ	±	=	−	1	+	BI	1/2	Solving	for	B.	æ	æ	1	A	|	z+	z−	|	ö	0.509	ö	1	B	=	−	ç	1/2	+	+	=	−ç		Ο	1/2	log	γ	±	ø	log	γ	±	ø	è	(b	/	b	)	èI	Draw	up	the	following	table	b	/	(mol	kg–1)	5.0×10–3
10.0×10–3	50.0×10–3	γ±	0.927	0.902	0.816	B	1.32	1.36	1.29	The	values	of	B	are	reasonably	constant,	illustrating	that	the	extended	law	fits	these	activity	coefficients	with	B	=	1.3	.	32	Solutions	to	problem	5F.2	Specialized	to	1,1	electrolytes,	the	Davies	equation	with	C	=	0	and	Debye-Hückel	limiting	law	are,	respectively	AI	1/2	[5F.11b]	and	log	γ	±	=
−	1+	BI	1/2	1/	2	æ	b	ö	−0.509	I	1/	2	[5F.8]	=	−0.509	ç	O		[5F.9]	logγ	±	=	èb	ø	1/2	Figure	5F.1(a)	shows	a	plot	of	log	γ±	vs.	I	for	both	equations.	Figure	5F.1(a)	It	is	clear	that	the	values	plotted	differ	by	about	50%	at	the	right	side	of	the	figure;	however,	note	that	the	values	plotted	are	log	γ±	and	not	γ±.	Figure	5F.1(b)	shows	a	plot	of	γ±	vs.	I1/2	for
both	equations.	Toward	the	right	side	of	this	graph,	one	can	see	that	the	values	plotted	differ	by	about	10%.	To	be	exact,	for	I	<	0.086,	the	limiting	law	predicts	activity	coefficients	within	10%	of	those	predicted	by	the	extended	law.	Figure	5F.1(b)	Integrated	activities	5.2	The	data	are	plotted	in	Figure	I5.1.	The	dotted	lines	correspond	to	Henry’s	law
vapour	pressures	and	the	dashed	lines	to	Raoult’s	law;	the	solid	curves	represent	the	experimental	data.	Figure	I5.1	33	On	a	Raoult’s	law	basis,	a	=	p	p	[5E.2]	and	a	=	γx	[5E.4],	so	γ	=	∗	.	On	a	Henry’s	law	∗	xp	p	p	p	[5E.10],	so	γ	=	.	The	vapour	pressures	of	the	pure	components	are	not	K	xK	given	in	the	table	of	data,	so	we	extrapolate	the
experimental	data	to	obtain	p*A	=	7.3	kPa	and	p*B	=	35.6	kPa.	The	Henry’s	law	constant	for	benzene	is	determined	by	extrapolating	the	lowB	data	to	xB	=	1,	i.e.,	to	xA	=	0.	(The	Henry’s	law	constant	for	acetic	acid	can	also	be	determined	by	extrapolating	the	low-A	data	to	xA	=	1)	The	values	obtained	are	KB	=	68.1	kPa	and	KA	=	30.3	kPa.	Then	draw
up	the	following	table	based	on	the	partial	pressures	given	in	the	data.	xA	0.016	0.0439	0.0835	0.1138	0.1714	pA/kPa	0.484	0.967	1.535	1.89	2.45	pA/kPa	35.05	34.29	33.28	32.64	30.9	aA(R)	0.066	0.132	0.210	0.259	0.336	[pA/p*A]	aB(R)	0.985	0.963	0.935	0.917	0.868	[pB/p*B]	4.144	3.017	2.518	2.275	1.958	[pA/xAp*A]	γA(R)	1.001	1.007	1.020	1.035
1.048	[pB/xBp*B]	γB(R)	aB(H)	0.515	0.504	0.489	0.479	0.454	[pB/KB]	0.523	0.527	0.533	0.541	0.548	[pB/xBKB]	γB(H)	basis,	a	=	xA	pA/kPa	pA/kPa	aA(R)	aB(R)	γA(R)	γB(R)	aB(H)	γB(H)	0.2973	3.31	28.16	0.453	0.791	1.525	1.126	0.414	0.588	0.3696	3.83	26.08	0.525	0.733	1.420	1.162	0.383	0.607	0.5834	4.84	20.42	0.663	0.574	1.136	1.377	0.300
0.720	0.6604	5.36	18.01	0.734	0.506	1.112	1.490	0.264	0.779	0.8437	6.76	10	0.926	0.281	1.098	1.797	0.147	0.939	0.9931	7.29	0.47	0.999	0.013	1.006	1.913	0.007	1.000	GE	is	defined	[5B.5]	as	G	E	=	∆	mix	G	−	∆	mix	G	ideal	=	nRT	(xA	ln	aA	+	xB	ln	aB	)	−	nRT	(xA	ln	xA	+	xB	ln	xB	)	and	with	a	=	γx	GE	=	nRT(xA	ln	γA	+	xB	ln	γB)	.	For	n	=	1,	we	can
draw	up	the	following	table	from	the	information	above	and	RT	=	8.3145	J	mol–1	K–1	×	323	K	=	2.69×103	J	mol–1	=	2.69	kJ	mol–1.	xA	0.016	0.0439	0.0835	0.1138	0.1714	0.023	0.0485	0.077	0.094	0.115	xA	ln	γA	0.001	0.0071	0.018	0.030	0.038	xb	ln	γB(R)	34	GE	/	kJ	mol–1	0.0626	0.1492	0.256	0.332	0.413	xA	0.2973	0.3696	0.5834	0.6604	0.8437
0.9931	0.125	0.129	0.075	0.070	0.079	0.006	xA	ln	γA	0.083	0.095	0.133	0.135	0.092	0.004	xb	ln	γB(R)	GE	/	kJ	mol–1	0.560	0.602	0.558	0.551	0.457	0.027	Question.	In	this	problem	both	A	and	B	were	treated	as	solvents,	but	only	B	as	a	solute.	Extend	the	table	by	including	a	row	for	γA(H).	5.4	pA	=	aA	pA*	[5E.2]	=	γAxApA*	[5E.4]	p	y	p	so	γ	A	=	A*	=	A
*	xA	pA	xA	pA	Sample	calculation	at	80	K:	0.11	×	100	kPa	æ	760	Torr	ö	=	1.079	γ	(O	2	)	=	×	0.34	×	225Torr	çè	101.325kPa	ø	Summary	T/K	77.3	78	80	82	84	86	88	90.2	0.877	1.079	1.039	0.995	0.993	0.990	0.987	γ(O2)	—	To	within	the	experimental	uncertainties	the	solution	appears	to	be	ideal	(γ	=	1).	The	low	value	at	78	K	may	be	caused	by
nonideality;	however,	the	larger	relative	uncertainty	in	y(O2)	is	probably	the	origin	of	the	low	value.	A	temperature–composition	diagram	is	shown	in	Figure	I5.2(a).	The	near	ideality	of	this	solution	is,	however,	best	shown	in	the	pressure–composition	diagram	of	Figure	I5.2(b).	The	liquid	line	is	essentially	a	straight	line	as	predicted	for	an	ideal
solution.	Figure	I5.2(a)	Figure	I5.2(b)	35	5.6	The	Gibbs-Duhem	equation	applies	to	any	partial	molar	quantity,	so	we	start,	as	in	Example	5A.2,	with	nA	dVA	+	nB	dVB	=	0	n	Hence	dVB	=	−	A	dVA	nB	Therefore,	by	integration,	VA	(	xA	,xB	)	nx	dV	VA	(	xA	,xB	)	n	VB	(	xA	,xB	)	A	A	A	dVA	=	−	∫	dVB	=	−	∫	VB	(xA	,	xB	)	−	VB	(0,1)	=	∫	V	VA	(0,1)	VB	(0,1)	n(1
−	xA	)	A	(0,1)	nB	The	notation	VB*	means	the	molar	volume	of	pure	B,	which	is	the	same	as	the	partial	molar	volume	of	B	when	xB	=	1.	Therefore,	VA	(	xA	,xB	)	x	dV	A	A	.	VB	(xA	,	xB	)	=	VB*	−	∫	VA	(0,1)	1	−	xA	We	must	now	plot	xA/(1	–	xA)	against	VA	and	estimate	the	integral.	That	means	we	must	first	find	the	partial	molar	volumes	of	chloroform
(VA)	that	corresponds	to	various	chloroform	mole	fractions	(xA).	At	constant	temperature	and	pressure,	æ	∂V	ö	æ	∂	(nVm	)	ö	=	VA	ç=		[5A.1]	ç		where	n	=	nA	+	nB	is	the	total	number	of	moles.	è	∂nA	ø	n	è	∂	(nxA	)	ø	n	B	B	Thus,	VA	is	the	tangent	line	to	the	curve	of	a	plot	of	V	vs.	nA	for	a	constant	value	of	nB.	For	convenience,	let	nB	=	1	mol.	Then	we	can
draw	up	a	table	of	V,	n,	and	nA	values	using	the	Vm,	xA	data	given	and	the	relationship	n	nA	xA	=	A	=	.	n	nA	+	1	mol	Solving	for	nA	yields	xA	Vm/(cm3	mol–1)	nA/mol	n/mol	V/cm3	nA	=	0	73.99	0	1	73.99	xA	1	−	xA	0.194	75.29	0.241	1.241	93.41	×	1	mol	0.385	76.5	0.626	1.626	124.4	Figure	I5.3(a)	36	0.559	77.55	1.268	2.268	175.9	0.788	79.08	3.717
4.717	373.0	0.889	79.82	8.009	9.009	719.1	1	80.67	In	Figure	I5.3(a),	we	plot	V	against	nA.	Both	linear	and	quadratic	fits	to	the	data	are	shown.	The	data	fit	a	straight	line	quite	well;	however,	the	slope	of	a	straight	line	is	constant,	which	would	imply	VA	is	constant	(at	80.54	cm3	mol–1)	over	this	range	of	compositions.	We	require	some	variation	in	VA,
so	we	use	the	quadratic	fit,	V/cm3	=	0.0252(nA/mol)2	+	80.34(nA/mol)	+	74.03	,	which	leads	to	æ	∂V	ö	3	−1	VA	=	ç		=	{2	×	0.0252(nA	/	mol)	+	80.34}	cm	mol	è	∂nA	ø	n	B	Finally,	we	can	draw	up	the	table,	including	xA	=	0.500	xA	0	0.194	0.385	0.500	0.559	0.788	0.889	VA/(cm3	mol–1)	80.34	80.35	80.37	80.39	80.40	80.53	80.74	For	the	present	purpose
we	integrate	up	to	VA(0.5,0.5)	=	84.39	cm3	mol–1.	Figure	I5.3(b)	The	points	are	plotted	in	Figure	I5.3(b),	and	the	area	required	is	0.025	cm3	mol–1.	Hence,	VB(0.5,0.5)	=	73.99	cm3	mol–1	–	0.025	cm3	mol–1	=	73.96	cm3	mol–1	.	Comment.	The	integral	derived	at	the	start	of	this	problem	is	most	useful	for	computing	the	partial	molar	quantity	of	one
component	given	that	of	the	other.	In	this	case,	the	data	given	were	overall	molar	volumes,	from	which	we	had	to	compute	VA	before	we	could	apply	the	integral	to	compute	VB.	In	such	a	case,	it	would	have	been	easier	to	compute	VB	directly	in	the	same	way	we	computed	VA.	5.8	In	this	case	it	is	convenient	to	rewrite	the	Henry’s	law	expression	as
mass	of	N	2	=	pN	×	mass	of	H	2	O	×	K	N	2	2	37	(1)	At	pN	=	0.78	×	4.0	atm	=	3.1	atm	2	mass	of	N	2	=	3.1	atm	×	100	g	H	2	O	×	0.18	µ	g	N	2	/	(g	H	2	O	atm)	=	56	µ	g	N	2	(2)	At	pN	=	0.78	atm,	mass	of	N	2	=	14	µ	g	N	2	2	(3)	In	fatty	tissue	the	increase	in	N2	concentration	from	1	atm	to	4	atm	is	4	×	(56	−	14)	µ	g	N	2	=	1.7×102	µ	g	N	2	5.10	(a)	The
sum	has	just	one	term,	so	v	NK	4.0	×	107	dm	3	mol−1	40	dm	3	µ	mol−1	=	=	=	7	3	−1	[A]out	1	+	K[A]out	1	+	(1.0	×	10	dm	mol	)[A]out	1	+	(10	dm	3	µ	mol−1	)[A]out	The	plot	is	shown	in	Figure	I5.4(a).	Figure	I5.4(a)	(b)	There	are	two	terms	in	the	sum	here	ν	[A]out	=	2	×	(2	×	106	dm	3	mol−1	)	4	×	(1	×	105	dm	3	mol−1	)	+	5	3	−1	1	+	(1	×	10	dm	mol
)	×	[A]out	1	+	(2	×	106	dm	3	mol−1	)	×	[A]out	4	dm	3	µ	mol−1	0.4	dm	3	µ	mol−1	+	−1	3	1	+	(0.1	dm	µ	mol	)	×	[A]out	1	+	(2	dm	3	µ	mol−1	)	×	[A]out	The	plot	is	shown	in	Figure	I5.4(b).	=	Figure	I5.4(b)	5.12	Kevlar	is	a	polyaromatic	amide.	Phenyl	groups	provide	aromaticity	and	a	planar,	rigid	structure.	The	amide	group	is	expected	to	be	like	the
peptide	bond	that	connects	amino	acid	residues	within	protein	molecules.	This	group	is	also	planar	because	resonance	produces	38	partial	double	bond	character	between	the	carbon	and	nitrogen	atoms.	There	is	a	substantial	energy	barrier	preventing	free	rotation	about	the	CN	bond.	The	two	bulky	phenyl	groups	on	the	ends	of	an	amide	group	are
trans	because	steric	hinderance	makes	the	cis	conformation	unfavourable.	See	Figure	I5.5(a).	Figure	I5.5(a)	The	flatness	of	the	Kevlar	polymeric	molecule	makes	it	possible	to	process	the	material	so	that	many	molecules	with	parallel	alignment	form	highly	ordered,	untangled	crystal	bundles.	The	alignment	makes	possible	both	considerable	van	der
Waals	attractions	between	adjacent	molecules	and	for	strong	hydrogen	bonding	between	the	polar	amide	groups	on	adjacent	molecules.	These	bonding	forces	create	the	high	thermal	stability	and	mechanical	strength	observed	in	Kevlar.	See	Figure	I5.5(b).	Figure	I5.5(b)	Kevlar	is	able	to	absorb	great	quantities	of	energy,	such	as	the	kinetic	energy	of
a	speeding	bullet,	through	hydrogen	bond	breakage	and	the	transition	to	the	cis	conformation.	39	6	Chemical	Equilibrium	6A	The	equilibrium	constant	Answers	to	discussion	questions	6A.2	Eqn	5E.9,	in	the	form	of	the	following	expression,	provides	the	general	definition	of	the	activity	for	species	J,	aJ:	=	µJ	µJ	O	+	RT	ln	aJ	[5E.9]	where	µJ	O	is	the
value	of	the	chemical	potential	of	J	in	the	standard	state,	i.e.,	the	state	for	which	aJ	=	1.	In	fact,	the	standard	state	of	a	substance	at	a	specified	temperature	is	its	pure	form	at	1	bar.	This	means	that	the	activity	of	a	substance	that	is	a	either	a	pure	solid	(e.g.,	copper,	sodium	chloride,	naphthalene)	or	a	pure	liquid	(e.g.,	bromine,	water,	methanol)
equals	1	at,	say,	25°C.	Since	the	activity	of	a	pure	solid	or	liquid	is	equal	to	1,	it	can	be	conveniently	ignored	when	presenting	an	equilibrium	constant	expression.	Activities	and	activity	coefficients	are	generally	used	to	address	questions	that	concern	real,	non-ideal	mixtures.	It	is	well	worth	remembering	several	useful	activity	forms.	Of	course,	both
activities,	aJ,	and	activity	coefficients,	γJ,	of	non-ideal	mixtures	are	dimensionless	and	related	by	eqns	that	have	the	general	form	aJ	=	γJ	×	(concentration	of	J).	Perfect	Gas:	aJ	=	pJ/p	O	(	µ	J	O	depends	upon	T	alone;	p	O	≡	1	bar.)	Real	Gas:	Ideal	solutions:	Ideal-dilute	solutions:	Solvent	A	of	a	non-ideal	solution:	Solute	B	of	a	non-ideal	solution:	aJ	=	γJ	pJ
/p	O	(	µ	J	O	depends	upon	T	alone.)	a	J	=	xJ	aB	=	[B]/	c	O	where	c	O	≡	1	mol	dm−3	aA	=	γAxA	aB	=	γB[B]/	c	O	Solutions	to	exercises	6A.1(b)	2	A	→	B	nJ	=	nJ(0)	+	vJΔξ	where	ξ	is	the	extent	of	reaction;	vJ	is	negative	for	reactants	and	positive	for	products.	nA	=	1.75	mol	−	2×(0.30	mol)	=	1.15	mol	nB	=	0.12	mol	+	1×(0.30	mol)	=	0.42	mol	6A.2(b)	2	A	→
B	∆rG	=	−2.41	kJ	mol−1	æ	∂G	ö	∆rG	=	[6A.1]	ç		è	∂ξ	ø	p	,T	æ	∂G	ö	∆G	With	the	approximation	that	ç	,	which	is	valid	when	Δξ	is	very	small,	we	find	that			∂	ξ	è	ø	p	,T	∆ξ	∆G		∆	r	G	×	∆ξ		(	−2.41	kJ	mol−1	)	×	(	+0.051	mol	)	=	−0.12	kJ	6A.3(b)	2	NO2(g)	→	N2O4(g)	∆rG	O	=	−4.73	kJ	mol−1	∆rG	=	∆	r	G	O	+	RT	ln	Q	[6A.10]	=	(	−4.73	kJ	mol−1	)	+	(	2.4790	kJ
mol−1	)	×	ln	Q	at	298.15	K	The	above	equation	is	used	to	calculate	∆rG	values	at	the	given	Q	values	in	the	following	table.	Part	(i)	(ii)	(iii)	(iv)	Q	0.10	1.0	10	100	lnQ	−2.303	0	2.303	4.605	ΔrG	/	kJ	mol−1	−10.44	−4.73	+0.979	+6.69	The	above	equation	also	indicates	that	a	plot	of	lnQ	against	∆rG	should	be	linear	so	points	ii	and	iii,	which	straddle	∆rG
=	0,	can	be	used	to	perform	a	linear	interpolation	to	find	K	from	our	equilibrium	knowledge	that	lnQ	=	lnQequilibrium	=	lnK	when	∆rG	=	0.	Performing	the	linear	interpolation:	æ	lnQiii	−	lnQii	ö	ln	=	Q	lnQii	+	ç		×	(	∆	r	G	−	∆	r	Gii	)	è	∆	r	Giii	−	∆	r	Gii	ø	æ	2.303	−	0	ö	æ	∆	r	G	ö	=	0	+	çç	−	(	−4.73)			×	ç	−1	ø	è	0.979	−	(	−4.73)	ø	è	kJ	mol	æ	∆rG	ö	0.4034	×	ç	=
+	4.73		−1	è	kJ	mol	ø	Thus,	ln=	K	0.4034	×	(	0	+	4.73)	=	1.908	1.908	6.74	from	a	two-point	interpolation	=	K	e=	The	two-point	interpolation	is	in	agreement	with	the	result	given	by	eqn	6A.8:	K	=	e	−	∆r	G	O	/	RT	[6A.8]	)	{(	(	)	}	−	−4.73×103	J	mol−1	/	8.3145	J	mol−1	K	−1	×(	298.15	K	)	=e	=	6.74	6A.4(b)	N	2	O	4	(g)		2NO	2	(g)	T	=	298.15	K,	p	=	1
bar	=	p	O	,	α	=	0.201	at	equilibrium	We	draw	up	the	following	equilibrium	table	(Example	6A.2).	Amount	at	equilibrium	Mole	fraction	Partial	pressure	N2O4(g)	NO2(g)	(1	−	α	)n	2α	n	1−α	1+	α	(1	−	α	)	p	1+	α	2α	1+	α	2α	p	1+	α	vJ	ö	æ	ö	æ	K	ç=	aJvJ		[6A.13]	ç	∏	(	pJ	/	p	O	)		(perfect	gas	assumption)	=	∏	è	J	øequilibrium	è	J	øequilibrium	æ	2α	p	ö	ç		pNO2	/	p
pNO2	è1+	α	ø	=	=	pN	2	O	4	/	p	O	pN2	O4	p	O	æ	(1	−	α	)	p	ö	O	ç	p	è	1+	α	ø	2	=	(	O	)	2	2	2	ìï	üï	(	0.201)	α2	4	p	ïì	ïü	4	=	í	ý	í	ý	O	p	ïî	(1	−	α	)	×	(1	+	α	)	ïþ	îï	(1	−	0.201)	×	(1	+	0.201)	þï	=	=	0.168	T	=	1600	K,	p	=	1	bar	=	p	O	,	α	=	0.24	at	equilibrium	6A.5(b)	(i)	Br2	(g)		2	Br(g)	We	draw	up	the	following	equilibrium	table	(Example	6A.2).	Amount	at
equilibrium	Mole	fraction	Partial	pressure	Br2(g)	Br(g)	(1	−	α	)n	2α	n	1−α	1+	α	(1	−	α	)	p	1+	α	2α	1+	α	2α	p	1+	α	vJ	ö	æ	ö	æ	K	ç=	aJvJ		[6A.13]	ç	∏	(	pJ	/	p	O	)		(perfect	gas	assumption)	=	∏	è	J	øequilibrium	è	J	øequilibrium	æ	2α	p	ö	ç		è1+	α	ø	æ	(1	−	α	)	p	ö	O	ç	p	è	1+	α	ø	2	ìï	(	0.24	)	ïü	4í	ý	îï	(1	−	0.24	)	×	(1	+	0.24	)	þï	2	=	=	(p	/p	)	pBr	=	=	O	pBr2	/	p	pBr2
p	O	O	2	2	Br	4	p	ïì	α2	ïü	=	í	ý	O	p	ïî	(1	−	α	)	×	(1	+	α	)	ïþ	=	0.244	at	1600	K	(ii)	ln	K	2	=	ln	K1	−	∆r	H	O	R	æ1	1ö	ç	−		[6A.22]	è	T2	T1	ø	∆r	H	O	æ	1	1	ö	−	ç		R	è	2000	K	1600	K	ø	æ	+112	×	103	J	mol−1	ö	æ	1	1	ö	=	ln	(	0.244	)	−	ç	×	−		=	0.273	−1	−1		ç	è	8.3145	J	K	mol	ø	è	2000	K	1600	K	ø	ln	K	2000	K	=	ln	K1600	K	−	0.273	K	2000	=	e=	1.3	K	As	expected,
the	temperature	increase	causes	a	shift	to	the	right	when	the	reaction	is	endothermic.	6A.6(b)	CH	4	(g)	+	3	Cl2	(g)		CHCl3	(l)	+	3	HCl(g)	(i)	Using	data	tables	of	the	text	Resource	section	at	25°C,	we	find	∆	r	G	O	=	∆	f	G	O	(CHCl3	,	l)	+	3	∆	f	G	O	(HCl,	g)	−	∆	f	G	O	(CH	4	,	g)	=	(−73.66	KJ	mol−1	)	+	(3)	×	(−95.30	KJ	mol−1	)	−	(−50.72	KJ	mol-1	)	=
−308.84	kJ	mol−1	∆	r	H	O	=	∆	f	H	O	(CHCl3	,	l)	+	3	∆	f	H	O	(HCl,	g)	−	∆	f	H	O	(CH	4	,	g)	=	(−134.47	kJ	mol−1	)	+	(3)	×	(−92.31	kJ	mol−1	)	−	(−74.81	kJ	mol−1	)	=	−336.59	kJ	mol−1	[Used	in	part	(ii)]	−	(	−308.84	×	103	J	mol−1	)	−∆	r	G	O	=	=	124.6	ln	K	=	[6A.14]	RT	(8.3145	J	K	−1	mol−1	)	×	(298.15	K)	K	e124.6	=	=	1.30	×	1054	ln	K	2	=	ln	K1	−
(ii)	∆r	H	O	R	æ1	1ö	ç	−		[6A.22]	è	T2	T1	ø	∆r	H	O	æ	1	1	ö	−	ç		R	è	323.15	K	298.15	K	ø	æ	−336.59	×	103	J	mol−1	ö	æ	1	1	ö	=	ln	(1.30	×	1054	)	−	ç	×	−	=	114.	1	−1	−1		ç	è	8.3145	J	K	mol	ø	è	323.15	K	298.15	K	ø	ln	K	50°C	=	ln	K	25°C	−	1	K=	e114.	=	3.57	×	1049	50°	C	As	expected,	the	temperature	increase	causes	a	shift	to	the	left	when	the	reaction	is
exothermic.	∆rG	O	=	−	RT	ln	K	[6A.14]	∆	r	G50O	°C	=	−	(	8.3145	J	K	−1	mol−1	)	×	(	323.15	K	)	ln	(	3.57	×	1049	)	=	−307	kJ	mol−1	For	this	gas	phase	reaction	∆v	=∑	vJ	=2	−	3	−	1	=−2	6A.7(b)	3	N2(g)	+	H2(g)	→	2	HN3(g)	J	v	vJ	ö	æ	ö	æ	æ	æ	vJ	ö	O	K	ç=	aJvJ		[6A.13]	ç	∏	=	=	(γ	J	pJ	/	p	O	)	J	ö	∏	ç	∏γ	J		ç	∏	(	pJ	/	p	)		è	J	øequilibrium	è	J	øequilibrium	è	J
øequilibrium	è	J	øequilibrium	vJ	ö	æ	ö	æ	where	Kγ	ç	∏=	γ	J	vJ		and	K	p	ç	∏	(	pJ	/	p	O	)		=	K=	γ	Kp	è	J	øequilibrium	è	J	øequilibrium	Let	us	assume	that	the	gases	are	perfect	gases.	Then,	the	activity	coefficients	equal	1	and	Kγ	=	1	.	Additionally,	=	pJ	n=	J	RT	/	V	[	J	]	RT	.	Substitution	gives	vJ	ö	vJ	ö	vJ	ö	æ	æ	æ	O	O	O	K	K=	=	=	ç	∏	([	J	]	/	c	O	)		p	ç	∏	([	J	]	RT	/	p	)		ç
∏	(	c	RT	/	p	)		è	J	øequilibrium	è	J	øequilibrium	è	J	øequilibrium	vJ	ö	∆v	æ	O	O	K=	where	K	c	ç	∏	([	J	]	/	c	O	)		c	(	c	RT	/	p	)	è	J	øequilibrium	K	=K	c	×	(	c	O	RT	/	p	O	)	−2	because	∆v	=−2	for	this	reaction	−1	Since	c	R	/	p	=	0.0831451	K	,	this	expression	may	be	written	in	the	form	O	=	K	O	(144.653	K	)	×	K	2	c	/T	2	Anhydrous	hydrogen	azide,	HN3,	boils	at
36°C	and	decomposes	explosively.	A	dilute	solution	can	be	handled	safely.	6A.8(b)	Draw	up	the	following	table	for	the	reaction	equation:	A	+	B		C	+	2	D.	A	B	C	D	Initial	amounts	/	mol	2.00	1.00	0	3.00	Stated	change	/	mol	+0.79	Implied	change	/	mol	–0.79	–0.79	+0.79	+1.58	Equilibrium	amounts	/	mol	1.21	0.21	0.79	4.58	Mole	fractions	0.1163	0.1782
0.0309	0.6745	(i)	Mole	fractions	are	given	in	the	table.	(ii)	K	x	=	∏	xνJ	J	J	Total	6.00	6.79	0.9999	(0.1163)	×	(0.6745)	2	K	x=	(iii)	=	9.61	(0.1782)	×	(0.0309)	pJ	=	xJ	p	.	Assuming	the	gases	are	perfect,	aJ	=	pJ	/	p	O	,	so	(	pC	/p	O	)	×	(	pD	/p	O	)	2	æ	p	ö	=	Kx	ç	O		=	Kx	O	O	(	pA	/	p	)	×	(	p	B	/	p	)	èp	ø	K=	when	p	=	1.00	bar	K=	K	x=	9.61	(iv)	∆	r	G	O	=−	RT	ln
K	=−(8.3145	J	K	−1	mol−1	)	×	(298	K)	×	ln(9.61)	=−5.61	kJ	mol−1	6A.9(b)	The	formation	reaction	is:	U(s)	+	3/2	H2(g)		UH3(s).	1	=	K	=	a	3/2	H	(g)	2	æ	pO	ö	ç		ç	pH		è	2ø	3/	2	=	aU(s)	aUH	pH2	/p	O	.)	(=	1	and,	assuming	perfect	gas	behavior,	a=	H	2	(g)	3	(s)	3/	2	æ	105	Pa	ö	4	=	ç	=	1.93	×	10	139	Pa	è	ø	∆rG	O	=	−	RT	ln	K	[6A.14]	=−	(	8.3145	J	K	−1
mol−1	)	×	(	500	K	)	×	ln	(1.93	×	104	)	=	−41.0	kJ	mol−1	6A.10(b)	P(s,wh)	+	3/2	H2(g)	→	PH3(g)	∆f	G	O	=	+13.4	kJ	mol−1	∆f	G	=	∆	f	G	O	+	RT	ln	Q	[6A.10]	where	Q=	∏	aJ	νJ	[6A.12b]	J	=	∆	f	G	O	+	RT	ln	pPH3	/	p	O	(p	H2	=	/	pO	)	3	[Perfect	gas	assumption]	2	(	+13.4	kJ	mol	)	+	(8.3145	×10	−1	−3	æ	0.60	ö	kJ	K	−1	mol−1	)	×	(	298.15	K	)	×	ln	ç	3		è	12	ø
=	+12.1	kJ	mol−1	Since	∆	f	G	>	0	,	the	spontaneous	direction	of	reaction	is	toward	the	elements	in	their	standard	states.	6A.11(b)	PbI	2	(s)		PbI	2	(aq)	K	s	=	1.4	×	10−8	∆rG	O	=	−	RT	ln	K	s	=	−(8.3145	J	K	−1	mol−1	)	×	(298.15	K)	×	ln	(1.4	×	10−8	)	=	+44.8	kJ	mol−1	=	∆	f	G	O	(PbI	2	,	aq)	−	∆	f	G	O	(PbI	2	,s)	∆	f	G	O	(PbI	2	,	aq)	=	∆	r	G	O	+	∆	f	G	O
(PbI	2	,s)	=	−128.8	kJ	mol−1	(	44.8	−	173.64	)	kJ	mol−1	=	Solutions	to	problems	6A.2	∆	r	G	O	(H	2	CO,	g)	=	∆	r	G	O	(H	2	CO,	l)	+	∆	vap	G	O	(H	2	CO,	l)	where	∆	r	G	O	(H	2	CO,	l)	=	+28.95	kJ	mol	−1	For	H	2	CO(l)		H	2	CO(g),	K	(vap)=	p	pO	where	p=	1500	Torr=	2.000	bar	and	p	O	=	1	bar	∆	vap	G	O	=	−	RT	ln	K	(vap)	=	−	RT	ln	p	pO	)	(	=−(8.3145	J	K
−1	mol−1	)	×	(298	K)	×	ln	2.000	bar	=−1.72	kJ	mol−1	1	bar	Therefore,	for	the	reaction	CO(g)	+	H	2	(g)		H	2	CO(g),	∆rG	O	=	{(+28.95)	+	(−1.72)}	kJ	mol−1	=+27.23	kJ	mol−1	3	J	mol−1	)	/	(8.3145	J	K	−1	mol−1	)×	(298	K)	Hence,	K	=e(	−27.23×10	=e	−10.99	=	1.69	×	10−5	.	6A.4‡	A	reaction	proceeds	spontaneously	if	its	reaction	Gibbs	function	is
negative.	∆rG	=	∆	r	G	O	+	RT	ln	Q	[6A.10]	Note	that	under	the	given	conditions,	RT	=	1.58	kJ	mol−1	{	}	(i)	∆	r	G	/	(	kJ	mol−1	)	=	∆	r	G	O	(	i	)	−	RT	ln	pH2	O	/kJ	mol−1	=	−	23.6	−	1.58	ln	(1.3	×	10−7	)	(ii)	∆	r	G	/	(	kJ	mol	=	+1.5	−1	)=	{∆	G	(	ii	)	−	RT	ln	p	p	}	/	(	kJ	mol	)	=	−57.2	−	1.58ln	éë(1.3	×	10	)	×	(	4.1×	10	)	ùû	−1	O	r	H2	O	HNO3	−7	=	+2.0	(iii)	{
−10	}	∆	r	G	/	(	kJ	mol−1	)	=	∆	r	G	O	(	iii	)	−	RT	ln	pH2	O	2	pHNO3	/	(	kJ	mol−1	)	−7	2	=	−85.6	−	1.58ln[(1.3	×	10	)	×	(4.1×	10−10	)]	=	−1.3	(iv)	{	}	∆	r	G	/	(	kJ	mol−1	)	=	∆	r	G	O	(	iv	)	−	RT	ln	pH2	O	3	pHNO3	/	(	kJ	mol−1	)	=	−112.8	−	1.58ln[(1.3	×	10−7	)3	×	(4.1×	10−10	)]	=	−3.5	So	both	the	dihydrate	and	trihydrate	form	spontaneously	from	the
vapour.	Does	one	convert	spontaneously	into	the	other?	Consider	the	reaction	HNO3	⋅	2H	2	O(s)	+	H	2	O(g)		HNO3	⋅	3H	2	O(s)	which	may	be	considered	as	reaction(iv)	–	reaction(iii).	∆	r	G	for	this	reaction	is	∆	r	G	=	∆	r	G	(iv)	−	∆	r	G	(iii)	=	−	2.2	kJ	mol−1	.	We	conclude	that	the	dihydrate	converts	spontaneously	to	the	trihydrate	,	the	most	stable	solid
(at	least	of	the	four	we	considered).	6B	The	response	to	equilibria	to	the	conditions	Answers	to	discussion	questions	6B.2	(1)	Response	to	change	in	pressure.	The	equilibrium	constant	is	independent	of	pressure,	but	the	individual	partial	pressures	of	a	gas	phase	reaction	can	change	as	the	total	pressure	changes.	This	will	happen	when	there	is	a
difference,	Δv,	between	the	sums	of	the	number	of	moles	of	gases	on	the	product	and	reactant	sides	of	the	balanced	chemical	reaction	equation.	∆	=	v	∑=	vJ	∑	vJ	−	∑	vJ	J	J	product	gases	J	reactant	gases	=	=	The	requirement	of	an	unchanged	equilibrium	constant	implies	that	the	side	with	the	smaller	number	of	moles	of	gas	be	favored	as	pressure
increases.	To	see	this,	we	examine	the	general	reaction	equation	0	=	∑	vJ	J	[6A.9]	in	the	J	special	case	for	which	all	reactants	and	products	are	perfect	gases.	In	this	case	the	activities	equal	the	partial	pressure	of	the	gaseous	species	and,	therefore,	aJ(gas)	=	pJ/p	O	=	xJp/p	O	where	xJ	is	the	mole	fraction	of	gaseous	species	J.	Substitution	into	eqn
6A.13	and	simplification	yields	a	useful	equation.	vJ	ö	æ	ö	æ	vJ	O	K	ç=	aJvJ		=	∏	ç	∏	xJ	(	p	/	p	)		è	J	øequilibrium	è	J	øequilibrium	vJ	ö	∆v	æ	ö	æ	æ	vJ	ö	O	xJvJ		(	p	/	pO	)	∏	ç=	ç∏(	p	/	p	)		ç	∏	xJ		è	J	øequilibrium	è	J	øequilibrium	è	J	øequilibrium	∆v	æ	ö	O	where	K	x	ç	∏	xJvJ		=	K=	x	(p/	p	)	è	J	øequilibrium	Kx	is	not	an	equilibrium	constant.	It	is	a	ratio	of	product	and
reactant	concentration	factors	that	has	a	form	analogous	to	the	equilibrium	constant	K.	However,	whereas	K	depends	upon	temperature	alone,	the	concentration	ratio	Kx	depends	upon	both	temperature	and	pressure.	Solving	for	Kx	provides	an	equation	that	directly	indicates	its	pressure	dependence.	Kx	=	K	(	p	/	p	O	)	−∆v	This	equation	indicates
that,	if	Δv	=	0	(an	equal	number	of	gas	moles	on	both	sides	of	the	balanced	reaction	equation),	Kx	=	K	and	the	concentration	ratio	has	no	pressure	dependence.	An	increase	in	pressure	causes	no	change	in	Kx	and	no	shift	in	the	concentration	equilibrium	is	observed	upon	a	change	in	pressure.	However	this	equation	indicates	that,	if	Δv	<	0	(fewer
moles	of	gas	on	the	product	side	of	the	balanced	reaction	equation),	K	x	=	K	(	p	/	p	O	)	∆v	.	Because	p	is	raised	to	a	positive	power	in	this	case,	an	increase	in	pressure	causes	Kx	to	increase.	This	means	that	the	numerator	concentrations	(products)	must	increase	while	the	denominator	concentrations	(reactants)	decrease.	The	concentrations	shift	to
the	product	side	to	reestablish	equilibrium	when	an	increase	in	pressure	has	stressed	the	reaction	equilibrium.	Similarly,	if	Δv	>	0	(fewer	moles	of	gas	on	the	reactant	side	of	the	balanced	reaction	equation),	K	x	=	K	(	p	/	p	O	)	−	∆v	.	Because	p	is	raised	to	a	negative	power	in	this	case,	the	concentrations	now	shift	to	the	reactant	side	to	reestablish
equilibrium	when	an	increase	in	pressure	has	stressed	the	reaction	equilibrium.	d	ln	K	∆	r	H	O	=	[6B.2(a)]	,	shows	that	K	dT	RT	2	decreases	with	increasing	temperature	when	the	reaction	is	exothermic	(i.e.,	∆	r	H	O	<	0);	thus	the	reaction	shifts	to	(2)	Response	to	change	in	temperature.	The	van	’t	Hoff	equation,	the	left.	The	opposite	occurs	in
endothermic	reactions	(i.e.,	∆	r	H	O	>	0).	See	text	Section	6B.2	for	a	more	detailed	discussion.	Solutions	to	exercises	6B.1(b)	At	1120	K,	∆	r	G	O	=	+22	×	103	J	mol−1	∆	GO	(22	×	103	J	mol−1	)	ln	K1	(1120K)	=	[6A.14]	=	−	r	−	=	−2.363	RT	(8.3145	J	K	−1	mol−1	)	×	(1120	K)	K	e	−2.363	=	=	9.41×	10−2	∆r	H	O	æ	1	1	ö	ç	−		[6B.4]	R	è	T2	T1	ø	Solve	for
T2	at	ln	K2	=	0	(K2	=	1).	1	1	R	ln	K1	1	(8.3145	J	K	−1	mol−1	)	×	(−2.363)	=	+	=	+	=	7.36	×	10−4	T2	1120	K	(125	×	103	J	mol−1	)	∆	r	H	O	T1	ln	K	2	=	ln	K1	−	T2	1.4	×	103	K	=	6B.2(b)	ln	K	=	A	+	B	+	C3	T	T	At	450	K:	A	=−2.04,	B	=−1176	K,	and	C	=2.1×	107	K	3	where	∆rG	O	=	−	RT	ln	K	[6A.14]	=	RT	×	æç	A	+	B	+	C3	ö	T	T	ø	è	7	3	ö	æ	=−	(	8.3145	J	K
−1	mol−1	)	×	(450	K)	×	ç	−2.04	−	1176	K	+	2.1×	10	K3		450	K	(450	K)	ø	è	−1	=	+16.6	kJ	mol	d	ln	K	[6B.2(b)]	∆r	H	O	=	−R	d(1	/	T	)	=−	R	d	æ	3C	ö	æ	B	C	ö	ç	A	+	T	+	3		=−	R	×	ç	B	+	2		d(1	/	T	)	è	T	ø	T	ø	è	ìï	7	3ü	ï	=−	(	8.3145	J	K	−1	mol−1	)	×	í(	−1176	K	)	+	3	×	2.1×	10	K2	ý	=+7.19	kJ	mol−1	(	450	K	)	þï	îï	∆	r	G	O	=∆	r	H	O	−	T	∆	r	S	O	∆	H	O	−	∆	r	G
O	7.19	kJ	mol−1	−	16.6	kJ	mol−1	−	20.9	J	K	−1	mol−1	∆	r	S	O	=r	=	=	T	450	K	6B.3(b)	CH3OH(g)	+	NOCl(g)	→	HCl(g)	+	CH3NO2(g)	=	v	For	this	gas	phase	reaction	∆	v	∑=	J	0	J	v	vJ	ö	æ	ö	æ	æ	æ	vJ	ö	O	K	ç=	aJvJ		[6A.13]	ç	∏	=	=	(γ	J	pJ	/	p	O	)	J	ö	∏	ç	∏γ	J		ç	∏	(	pJ	/	p	)		è	J	øequilibrium	è	J	øequilibrium	è	J	øequilibrium	è	J	øequilibrium	vJ	ö	æ	ö	æ	γ	J	vJ		where	Kγ	ç
∏=	and	K	p	ç	∏	(	pJ	/	p	O	)		=	K=	γ	Kp	è	J	øequilibrium	è	J	øequilibrium	Let	us	assume	that	the	gases	are	perfect	gases.	Then,	the	activity	coefficients	equal	1	and	Kγ	=	1	.	Additionally,	pJ	=	xJ	p	.	Substitution	gives	vJ	ö	vJ	ö	æ	æ	ö	æ	O	O	K	K=	=	=	ç	∏	xJ	vJ		p	ç	∏	(	xJ	p	/	p	)		ç∏(	p	/	p	)		è	J	øequilibrium	è	J	øequilibrium	è	J	øequilibrium	∆v	æ	ö	O	where	K	x	ç	∏	xJ	vJ
	=	K=	x	(p/	p	)	è	J	øequilibrium	For	this	reaction:	K=	Kx	×	(	p	/	p	O	)	=	Kx	0	because	∆v=	0	K	is	independent	of	pressure	so	we	conclude	by	the	above	eqn	that	for	this	reaction	Kx	is	also	independent	of	pressure.	Thus,	the	percentage	change	in	Kx	upon	changing	the	pressure	equals	zero	for	this	reaction.	6B.4(b)	N	2	(g)	+	O	2	(g)		2NO(g)	K	=	1.69	×
10−3	at	2300	K	Initial	modes:	nN2	=	5.0	g	0.1785	mol	=	28.013	g	mol−1	Initial	moles:=	nO2	2.0	g	=	6.250	×	10−2	mol	32.00	g	mol−1	N2	nO2	=	0.0625	0	n	=	0.2410	Change/mol	Equilibrium	amount/mol	–z	nN2	−	z	–z	nO2	−	z	+2z	2z	0	n	=	0.2410	)	2z	/	n	1	(n	(	=	)	(	2	)	(n	−z	/n	N2	∆v	z=	Total	nN2	=	0.1785	æ	p	ö	K	K	x	ç	O	=	K	x	(Because	∆	v	=	=	èp	ø
(2	z	)	2	K=	nN2	−	z	×	nO2	−	z	(1	−	K	)	z	NO	Initial	amount/mol	Mole	fractions	4	O2	v	∑=	J	O2	−z	/n	0	for	this	reaction.	See	Exercise	6B.3(a)	or	(b))	J	)	−	nz	+	nN2	nO2	=	0	n	±	n	2	−	4	(1	−	4	K	)	nN2	nO2	2	(1	−	4	K	)	0.2410	±	0.24102	−	4	(1	−	2	(1	−	=	−2.223	×	10	=	2.121×	10	−3	−3	4	4	or	2.121×	10	1.69×10−3	1.69×10−3	)	)	(	0.1785)(	0.0625)	−3
because	the	negative	value	is	non-physical.	2z	2(2.121×	10−3	)	=	1.8	×	10−2	xNO	=	=	n	0.24	1	6B.5(b)	ln	K2	∆	HO	æ	1	1	ö	=	−	r	−	[6B.4]	K1	R	çè	T2	T1	ø	−1	æ1	1ö	æK	ö	∆	r	H	O	=R	×	ç	−		×	ln	ç	2		T	T	è	K1	ø	2	ø	è	1	−1	1	ö	æ	K2	ö	æ	1	=	(	8.3145	J	K	mol	)	×	ç	−		×	ln	ç	K		è	310	K	325	K	ø	è	1ø	K	æ	ö	=	(	55.85	kJ	mol−1	)	×	ln	ç	2		è	K1	ø	−1	(a)	K2/K1	=	2.00	=	∆r
H	O	(b)	−1	ln	(	2.00	)	(	55.85	kJ	mol	)	×=	K2/K1	=	0.500	−1	38.71	kJ	mol−1	∆r	H	O	=	−38.71	kJ	mol−1	(	55.85	kJ	mol−1	)	×	ln	(	0.500	)	=	6B.6(b)	The	reaction	is	CuSO	4	⋅	5H	2	O(s)		CuSO	4	(s)	+	5	H	2	O(g)	.	For	the	purposes	of	this	exercise	we	may	assume	that	the	required	temperature	is	that	temperature	at	which	K	=	1	at	a	pressure	of	1	bar.	For
K	=	1	,	ln	K	=	0	,	and	∆	r	G	O	=	0.	∆	r	G	O	=∆	r	H	O	−	T	∆	r	S	O	=0	T=	∆r	H	O	∆r	S	O	We	now	estimate	that	the	values	of	both	∆	r	H	O	and	∆	r	S	O	are	not	too	different	then	the	values	at	25	°C	and	calculate	each	with	standard	values	found	in	the	text	Resource	section.	∆r	H	O	=	+299.2	kJ	mol−1	{(−771.36)	+	(5)	×	(−241.82)	−	(−2279.7)}	J	mol−1	=
∑	vJ	∆f,J	H	O	=	J	∑	v	S	=	{(109)	+	(5)	×	(188.83)	−	(300.4)}	J	K	∆r	S=	O	O	J	−1	J	1	mol−=	752.8	J	K	−1	mol−1	J	299.2	×	103	J	mol−1	=	397	K	752.8	J	K	−1	mol−1	Question:	What	would	the	decomposition	temperature	be	for	decomposition	defined	as	the	state	at	which	K	=	½?	T	Vapor	pressures:	p427°C	=	608	kPa	and	6B.7(b)	NH	4	Cl(s)		NH	3	(g)	+
HCl(g)	1	p	.	The	gases	originate	from	the	dissociation	of	the	solid	alone	so	p=	p=	2	NH3	HCl	(i)	Equilibrium	constants	=	K	pNH3	/	p	O	×	pHCl	/	p	O	(	(	=	1	=	1	4	2	p	/	pO	(p/	p	1	[Perfect	gas	assumption]	O	2	2	=	9.24	4	(	608	kPa	/100	kPa	)	=	K	427°C	1	=	K	459°C	1	(ii)	O	)	)	(	)×(	p	/	p	)	)	2	=	31.08	4	(1115	kPa	/100	kPa	)	2	∆	GO	=	−	RT	ln	K	[6A.14]	O	∆
r	G427	−	(	8.3145	J	K	−1mol−1	)	×	(700.15	K)	×	ln	(	9.24	)	=	−12.9	kJ	mol−1	°C	=	(iii)	ln	K2	∆	HO	æ	1	1	ö	=	−	r	−	[6B.4]	K1	R	çè	T2	T1	ø	−1	æ1	1ö	æK	ö	∆	r	H	O	=R	×	ç	−		×	ln	ç	2		T	T	è	K1	ø	2	ø	è	1	(8.3145	J	K	=	−1	−1	(	1	1	æ	ö	31.08	−	mol	)	×	ç		×	ln	9.24	700.15	K	732.15	K	è	ø	−1	)	=	162	kJ	mol−1	(iv)	∆	H	O	−	∆	r	G	O	(162	kJ	mol−1	)	−	(−12.9	kJ	mol−1
)	+250	J	K	−1	mol−1	∆	r	S	O	=r	=	=	T	700.15	K	Solutions	to	problems	6B.2	U(s)	+	3	2	H	2	(g)		UH	3	(s)	p459°C	=	1115	kPa	−3	/	2	=	K	a=	(pH2	/p	O	)	−3/2	[perfect	gas]	H2	=	(=	p/p	O	)	−3/2	[pH2	p	]	−3/	2	d	ln	K	d	d	RT	2	[6B.2(a)]	=	ln	(	p	/	p	O	)	=	−	3	2	RT	2	(	ln	p	/Pa	−	ln	p	O	/Pa	)	dT	dT	dT	d	=	−	3	2	RT	2	(	ln	p	/Pa	)	dT	d	æ	−B	C	ö	A	+	B	/	T	+	C	ln	(T
/	K	)	)	=	=	−	3	2	RT	2	−	3	2	RT	2	×	ç	2	+		(	Tø	dT	èT	RT	2	∆f	H	O	=	3	R	×	B	−	CT	=	(	)	2	where	B=	−1.464	×	104	K	and	C	=	−5.65	d	(	∆f	H	O	)	=	∆	r	CpO	dT	[	from	eqn	2B.6(a)	applied	to	chemical	reactions,	2C.7(a)	]	or	æ	∂∆	H	O	ö	∆	r	C	pO	=	ç	f	−	3	2	CR	=	70.5	J	K	−1	mol−1		=	T	∂	è	øp	6B.4	CaCl2	·	NH	3	(s)		CaCl2	(s)	+	NH	3	(g)	∆rG	O	=	−	RT	ln	K	=	−
RT	ln	p	+78	kJ	mol−1	K=	and	∆	r	H	O	=	pO	p	pO	æ	1.71	kPa	ö	O	=	−(8.3145	J	K	−1	mol−1	)	×	(400	K)	×	ln	ç	1	bar	=	100.0	kPa]		[p	=	è	100.0	kPa	ø	=	+13.5	kJ	mol−1	at	400	K	O	æ1	1ö	∆	r	G	O	(T2	)	∆	r	G	(T1	)	−	=	∆	r	H	O	ç	−		[	6B.4	and	6A.14]	T2	T1	è	T2	T1	ø	Therefore,	taking	T1	=	400	K	and	letting	T	=	T2	be	any	temperature	in	the	range	350	K	to
470	K,	T	ö	æ	T	ö	æ	−1	−1	∆rG	O	=	(T	)	ç		×	(13.5	kJ	mol	)	+	(78	kJ	mol	)	×	ç	1	−		400K	400	Kø	è	ø	è	æ	(13.5	−	78)	kJ	mol−1	ö	æ	T	ö	=	(78	kJ	mol−1	)	+	ç	×ç		400	è	ø	èKø	That	is,	∆	r	G	O	(T	)	(kJ	mol−1	)	=	78	−	0.161×	(T	K	)	.	6B.6	The	equilibrium	we	need	to	consider	is	I	2	(g)		2	I(g)	(MI	=	126.90	g	mol−1).	It	is	convenient	to	express	the	equilibrium	constant
in	terms	of	α,	the	degree	of	dissociation	of	I2,	which	is	the	predominant	species	at	low	temperatures.	Recognizing	that	the	data	nI2	is	related	to	the	total	iodine	mass,	mI,	by	nI2	=	mI	/	M	I2	we	draw	the	following	table.	Equilibrium	amounts	Mole	fraction	Partial	pressure	The	equilibrium	constant	for	the	dissociation	is	I	2α	nI2	I2	(1	−	α	)nI2	2α	1+α	2α
p	1+α	1−α	1+α	æ	1−α	ö	ç	p	è1+α	ø	Total	(1	+	α	)nI2	1	p	(p	K=	I	/	pO	)	2	=	4α	2	(	p	/	p	O	)	pI2	=	pI2	p	O	1−α	2	pI	2	/	p	O	We	also	know	that	pV=	ntotal	RT=	(1	+	α	)nI2	RT	Implying	that	=	α	pV	−	1	where	V	=	342.68	cm3.	The	provided	data	along	with	calculated	values	of	α	and	K(T)	nI2	RT	are	summarized	in	the	following	table.	T/K	p	/	atm	104	nI2	/
mol	α	K	Since	∆r	H	O	973	0.06244	2.4709	0.08459	1.82×10−3	1073	0.07500	2.4555	0.1887	1.12×10−2	1173	0.09181	2.4366	0.3415	4.91×10−2	is	expected	to	be	approximately	a	constant	over	this	temperature	range	and	since	æ	d	ln	K	ö	O	∆r	H	O	=	−R	ç		[6B.2(b)]	,	a	plot	of	lnK	against	1/T	should	be	linear	with	slope	=	−	∆	r	H	/	R	.	The	linear	è	d(1/T
)	ø	regression	fit	to	the	plot	is	found	to	be	lnK	=	13.027−(18809	K)/T	with	R2	=	0.999969.	Thus,	∆	r	H	O	=	−(−18809	K)	R	=	+156	kJ	mol−1	6B.1	H2(g)	+	½O2(g)	→	H2O(l)	∆	f	H	O	=	−285.83	kJ	mol−1	and	∆	f	S	O	=	−163.343	J	K	−1	mol−1	at	298.15	K	Let	the	temperatures	of	interest	be	T1	=	298.15	K	and	T2.	ΔfG(T2)	at	1	bar	can	be	calculated	from
the	reaction	thermodynamic	properties	at	T1	with	the	following	relations.	∆	r	H	(T2	)	=	∆	r	H	(T1	)	+	∫	∆	r	C	p	(T	)	dT	[2	C.7(a)	and	(b);	∆	r	C	p	(T	)	=	∑	vJ	C	p,J	]	T2	T1	∆	r	S	(T2	)	=	∆	r	S	(T1	)	+	∫	T2	∆	r	C	p	(T	)	J	dT	[3A.19	applied	to	reaction	equations]	T	∆	r	G	(T2	)	=∆	r	H	(T2	)	−	T2	∆	r	S	(T2	)	The	computation	is	most	easily	performed	using	the



function	capability	and	numeric	integrations	of	either	the	scientific	calculator	or	a	computer	software	package.	The	following	is	a	Mathcad	Prime	2	worksheet	for	the	calculation	of	ΔfG	for	273.15	K	≤	T2	≤	373.15	K	at	1	bar.	T1	−225.334	kJ	mol−1	.	The	worksheet	also	makes	it	Thus,	with	numerical	integrations	we	have	found	that	∆	f	G	O	=	very	easy
to	examine,	even	plot,	changes	in	the	reaction	thermodynamic	properties.	The	following	worksheet	plot	shows	the	variation	of	the	formation	Gibb’s	energy	with	temperature.	The	plot	shows	a	decrease	with	temperature	in	a	near-linear	manner.	Can	you	explain	why?	6C	Electrochemical	cells	Answers	to	discussion	questions	6C.2	A	salt	bridge
connecting	two	half-cells	is	usually	a	U-tube	filled	with	potassium	chloride	in	agar	jelly.	It	provides	the	mobile	electrolyte	for	completing	the	circuit	of	an	electrochemical	cell.	In	its	absence,	the	cell	cannot	generate	an	electrical	current	through	the	single	wire	that	connects	the	two	electrodes	and	the	circuit	is	said	to	be	"open".	No	electron	can	leave
or	enter	either	half-cell,	because	this	act	would	cause	the	net	electronic	charge	of	the	half-cell	to	be	non-zero.	The	strong	electrostatic	force	prevents	this	from	happening	and	causes	macroscopic	objects	to	normally	have	a	zero	net	electrical	charge.	However,	a	salt	bridge	provides	an	anion	to	the	anodic	half-cell	for	every	electron	that	leaves	while
simultaneously	providing	a	cation	to	the	cathodic	half-cell	for	every	electron	that	enters.	This	is	a	“closed”	electrical	circuit	in	which	the	net	charge	of	each	half-cell	remains	zero	but	an	electric	current	can	be	generated.	6C.4	When	a	current	is	being	drawn	from	an	electrochemical	cell,	the	cell	potential	is	altered	by	the	formation	of	charge	double
layers	at	the	surface	of	electrodes	and	by	the	formation	of	solution	chemical	potential	gradients	(concentration	gradients).	Resistive	heating	of	the	cell	circuits	may	occur	and	junction	potentials	between	dissimilar	materials	both	external	and	external	to	the	cell	may	change.	Solutions	to	exercises	6C.1(b)	The	cell	notation	specifies	the	right	and	left
electrodes.	Note	that	for	proper	cancellation	we	must	equalize	the	number	of	electrons	in	half-reactions	being	combined.	For	the	calculation	of	the	standard	cell	potentials	we	have	O	used	E=	ERΟ	−	ELΟ	,	with	standard	electrode	potentials	from	data	tables.	cell	EO	(i)	R:	L:	Ag	2	CrO	4	(s)	+	2	e	−	→	2	Ag(s)	+	CrO	24	−	(aq)	−	+0.45	V	−	Cl2	(g)	+	2	e	→
2	Cl	(aq	)	+1.36	V	−	2−	4	Overall(R	−	L):	Ag	2	CrO	4	(s)	+	2	Cl	(aq)	→	2	Ag(s)	+	CrO	(aq)	+	Cl2	(g)	(ii)	R:	Sn	4+	(aq)	+	2	e	−	→	Sn	2	+	(aq)	L:	2	Fe	(aq)	+	2e	→	2	Fe	(aq)	Overall	(R	−	L)	:	(iii)	R:	L:	−	3+	Sn	−	0.91	V	+	0.15	V	2+	4+	(aq	)	+	2	Fe	2+	+	0.77	V	(aq	)	→	Sn	2+	(aq	)	+	2	Fe	3+	−0.62	V	(aq	)	MnO	2	(s)	+	4	H	+	(aq	)	+	2	e	−	→	Mn	2	+	(aq	)	+	2
H	2	O(l)	Cu	2+	(aq	)	+	2	e	−	+	1.23	V	→	Cu	(s)	+	0.34	V	+	Overall	(R	−	L)	:	Cu	(s)	+	MnO	2	(s)	+	4	H	(aq	)	→	Cu	2+	(aq	)	+	Mn	2+	(aq	)	+	2H	2	O(1)	+0.89	V	Comment.	Those	cells	for	which	Ecell	>	0	may	operate	as	spontaneous	galvanic	cells	under	standard	conditions.	O	O	O	Those	for	which	Ecell	informs	us	of	the	<	0	may	operate	as
nonspontaneous	electrolytic	cells.	Recall	that	Ecell	spontaneity	of	a	cell	under	standard	conditions	only.	For	other	conditions	we	require	Ecell.	6C.2(b)	The	conditions	(concentrations,	etc.)	under	which	these	reactions	occur	are	not	given.	For	the	purposes	of	this	exercise	we	assume	standard	conditions.	The	specification	of	the	right	and	left	electrodes
is	determined	by	the	direction	of	the	reaction	as	written.	As	always,	in	combining	half-reactions	to	form	an	overall	cell	reaction	we	must	write	half-reactions	with	equal	number	of	electrons	to	ensure	proper	cancellation.	We	first	identify	the	halfreactions,	and	then	set	up	the	corresponding	cell.	EO	−	−	(i)	R:	2	H	2	O(1)	+	2	e	→	2	OH	(aq)	+	H	2	(g)	−
0.83	V	−2.71	V	L:	2	Na	+	(aq)	+	2	e	−	→	2	Na(s)	and	the	cell	is	Na(s)	NaOH	(aq	)	H	2	(g)	Pt	(ii)	R:	+1.88	V	I	2	(s)	+	2	e	−	→	2	I	−	(aq)	L:	2	H	+	(aq)	+	2	e	−	and	the	cell	is	→	+0.54	V	0	H	2	(g)	Pt	H	2	(g)	H	+	(aq),	I	−	(aq)	I	2	(s)	Pt	(iii)	+0.54	V	R	:	2	H	+	(aq)	+	2	e	−	→	H	2	(g)	−	0	−	L	:	2	H	2	O(1)	+	2	e	→	H	2	(g)	+	2	OH	(aq)	and	the	cell	is	Pt	H	2	(g)	OH
−	(aq)	H	+	(aq)	H	2	(	g	)	Pt	−0.83	V	+0.83	V	O	Comment.	All	of	these	cells	have	Ecell	>	0,	corresponding	to	a	spontaneous	cell	reaction	under	standard	conditions.	O	If	Ecell	had	turned	out	to	be	negative,	the	spontaneous	reaction	would	have	been	the	reverse	of	the	one	given,	with	the	right	and	left	electrodes	of	the	cell	also	reversed.	6C.2(b)	Pt|H	2
(g	,	p	O	)	|	HCl(aq,0.010	mol	kg	−1	)|AgCl(s)|Ag	(i)	R:	AgCl(s)	+	e–	→	Ag(s)	+	Cl–(aq)	L:	HCl(aq)	+	e–	→	½	H2(g)	+	Cl–(aq)	2×(R	–	L):	2	AgCl(s)	+	H2(g)	→	2	Ag(s)	+	2	HCl(aq)	E	O	=	+0.22	V	E	O	=	+0.00	V	O	Ecell	=	+0.22	V	and	v	=	2	O	The	cell	reaction	is	spontaneous	toward	the	right	under	standard	conditions	because	Ecell	>	0	.	The	Nernst	equation
for	the	above	cell	reaction	is:	RT	O	E=	Ecell	−	ln	Q	[6C.4]	cell	vF	(	aHCl(aq)	)	Q	=	=	aH2	(g)	2	(	Thus,	)	(γ	2	aH+	(aq)	aCl−	(aq)	=	aH2	(g)	{	2	±	/	bO	)	4	(i.e.,	p	p	O	)	γ	±4	(	bHCl	/	b	O	)=	=	O	p/	p	2	2	HCl	}	4	RT	O	Ecell	=	Ecell	ln	γ	±4	(	bHCl	/	b	O	)	or	−	2F	(ii)	)	(b	{	}	2	RT	O	Ecell	=	Ecell	ln	γ	±	(	bHCl	/	b	O	)	−	F	O	∆	r	G	O	=−ν	FEcell	=−2	×	(9.6485	×
104	C	mol−1	)	×	(0.22	V)	=	−42	kJ	mol−1	(iii)	The	ionic	strength	and	mean	activity	coefficient	are:	I=	1	2	∑	z	(	b	/	b	)	[5F.9]=	{1(0.010)	+	1(.010	)}=	2	i	O	1	2	i	0.010	i	log	γ	±	=−	z+	z−	AI	1/	2	[5F.8]	=−1×	(0.509)	×	(0.010)1/	2	=−0.0509	γ	±	=	0.889	Therefore,	{	}	2	RT	ln	γ	±	(	bHCl	/	b	O	)	F	2	×	(	8.3145	J	mol−1	K	−1	)	×	(	298.15	K	)	ln	{(	0.889	)	×
(	0.010	)}	=0.22	V	+	0.24	V	=0.22	V	−	9.6485	×	105	C	mol−1	=	+0.46	V	O	−	E=	Ecell	cell	Solutions	to	problems	Ecell	=	+0.190	V	6C.2	Cell:	Hg|Hg2Cl2(s)|HCl(aq)|Q·QH2|Au	The	electrode	half-reactions	and	their	standard	potentials	are	and	v=2	EO	R	:	Q(aq)	+	2	H	+	(aq)	+	2	e	−	→	QH	2	(aq)	L	:	Hg	2	Cl2	(s)	+	2	e	−	→	2	Hg(l)	+	2	Cl−	(aq)	0.6994	V
0.2676	V	Overall	(R	−	L)	:	Q(aq)	+	2	H	+	(aq)	+	2	Hg(l)	+	2	Cl	−	(aq)	→	QH	2	(aq)	+	Hg	2	Cl	2	(s)	0.4318	V	The	reaction	quotient	is	directly	related	to	the	pH,	a	relation	that	is	simplified	by	noting	that	for	an	HCl	solution	bH+	=	bCl−	while	for	the	Q·QH2	equimolecular	complex	of	quinone	bQ	=	bQH2	.	Q=	aQH2	aQ	aH2	+	aCl2	−	The	Debye−Hückel
limiting	law	makes	use	of	the	mean	activity	coefficient	for	the	compound	MpXq	defined	by	aJ	=	γ±bJ.	Thus,	aQH2	/	aQ	=	1	,	aH+	=	aCl−	,	and	the	reaction	quotient	becomes	Q	=	aH−4+	The	definition	of	pH	provides	the	relation	to	the	reaction	quotient.	ln	(	aH+	)	ln	(	Q	−1/	4	)	ln	(	Q	)	pH	≡	−log	(	aH+	)	=	−	or	=−	=	ln	(10	)	ln	(10	)	4	ln	(10	)	ln	(	Q	)	=
4	ln	(10	)	pH	The	Nernst	equation	[6C.4]	at	25	°C	is	now	used	to	relate	cell	potentials	to	the	pH.	O	−	E=	Ecell	cell	O	=	Ecell	−	25.693	×	10−3	V	ν	25.693	×	10−3	V	ν	ln	Q	(	4	ln	(10	)	pH	)	ν	(	EcellO	−	Ecell	)	0.23664	V	2	=	×	(0.4318	−	0.190)	V	0.23664	V	=	2.04	=	pH	6D	Electrode	potentials	Answers	to	discussion	questions	6D.2	The	pH	of	an	aqueous
solution	can	in	principle	be	measured	with	any	electrode	having	an	emf	that	is	sensitive	to	H+(aq)	concentration	(activity).	In	principle,	the	hydrogen	gas	electrode	is	the	simplest	and	most	fundamental.	A	cell	is	constructed	with	the	hydrogen	electrode	being	the	right-hand	electrode	and	any	reference	electrode	with	known	potential	as	the	left-hand
electrode.	A	common	choice	is	the	saturated	calomel	electrode.	The	pH	can	then	be	obtained	by	measuring	the	emf	(zero-current	potential	difference),	Ecell,	of	the	cell.	The	hydrogen	gas	electrode	is	not	convenient	to	use,	so	in	practice	glass	electrodes	are	used	because	of	ease	of	handling	(see	Impact	I6.2).	Solutions	to	exercises	6D.1(b)	In	each	case
the	equilibrium	constant	is	calculated	with	the	expression	ln	K	=	(i)	Sn(s)	+	CuSO	4	(aq)		Cu(s)	+	SnSO	4	(aq)	R	:	Cu	2	+	+	2	e	−	→	Cu(s)	2+	−	L	:	Sn	(aq)	+	2	e	→	Sn(s)	=	ln	K	+0.34	V	ïü	O	ý	Ecell	=	+0.48	V	−0.14	V	ïþ	O	vFEcell	(2)	×	(0.48	V)	=	[6C.5]	=	37.4	RT	25.693	mV	=	=	1.7	×	1016	K	e37.4	O	vFEcell	RT	[6C.5]	.	(ii)	Cu(s)	+	Cu	2+	(aq)		2	Cu	+
(aq)	+0.16	V	ïü	O	ý	Ecell	=	−0.36	V	+0.52	V	ïþ	R	:	Cu	2	+	+	e	−	→	Cu	+	(aq)	−	L	:	Cu	(aq)	+	e	→	Cu(s)	+	ln	K	=	O	vFEcell	RT	(1)	×	(−0.36	V)	=	−14.0	25.693	mV	[6C.5]	=	=	K	e	−14.0	=	8.3	×	10−7	6D.2(b)	Bi|Bi2S3(s)|Bi2S3(aq)|Bi	(	aq	)	+	6	e	→	2	Bi	(s	)	L:	Bi	2S3	(s	)	+	6	e	−	→	2	Bi	(s	)	+	3	S2	−	(	aq	)	Overall	(	R	−	L	)	:	2	Bi3+	(	aq	)	+	3	S2	−	(	aq	)	→
Bi	2S3	(s	)	R:	2	Bi	(i)	=	ln	K	−	3+	O	ν	FEcell	=	[6C.5]	RT	EO	+0.20	V	−0.76	V	+0.96	V	v=6	6	(	0.96	V	)	=	224	(	25.693	×10−3	V	)	K	=	e	224	=	1.9	×	1097	The	solubility	equilibrium	is	written	as	the	reverse	of	the	cell	reaction.	Therefore,	the	solubility	product	of	Bi2S3(s)	is	Ksp	=	K–1	=	1	/	1.9	×	1097	=	5.3×10–98	.	(ii)	The	solubility	product	of	Bi2S3(s)
is	very	small.	Consequently,	the	molar	solubility,	s,	of	Bi2S3(s)	must	also	be	very	low	and	we	can	reasonably	take	the	activity	coefficients	of	the	aqueous	ions	to	equal	1.	ùû	éëS2	−	ùû	/	(	c	O	)	K	sp	éë	Bi	2+=	=	2	5	3	2	s	)	(	3s	)	/	(	c	)	(=	2	3	O	5	108	(	s	/	c	O	)	5	1.4	×	10−20	mol	dm	−3	or	7.2	ag	dm	−3	s=	(	Ksp	/108)	c	O	=	(	5.3	×10−98	/108)	mol	dm−3	=	1
1	5	5	Solutions	to	problems	6D.2	The	method	of	the	solution	is	first	to	determine	∆	r	G	O	,	∆	r	H	O	,	and	∆	r	S	O	at	25	°C	for	the	cell	reaction	1	H	(g)	+	AgCl(s)	→	Ag(s)	+	HCl(aq)	v=1	2	2	and	then,	from	the	values	of	these	quantities	and	the	known	values	of	∆	f	G	O	,	∆	f	H	O	,	and	S	O	,	for	all	the	species	other	than	Cl−	(aq)	,	to	calculate	∆	f	G	O	,	∆	f	H	O
,	and	S	O	for	Cl−	(aq)	.	O	O	O	O	Ecell	EAgCl/Ag,Cl	EHO+	/	H	EAgCl/Ag,Cl	=	EAgCl/Ag,Cl	Since=	–	−	=	–	−0	–	,	we	have	(R.G.	Bates	and	V.E.	Bowers,	J.	Res.	Nat.	2	Bur.	Stand.,	53,	283	(1954)):	O	/V	=	0.236	59	−	4.8564	×	10−4	(θ/°C)	−	3.4205	×	10−6	(θ/°C)2	+	5.869	×	10−9	(θ/°C)3	Ecell	and	we	proceed	with	the	calculation	of	the	electrochemical
and	thermodynamic	reaction	properties	at	25	°C.	EcOell	/	V	=(0.23659)	−	(4.8564	×	10−4	)	×	(25.00)	−	(3.4205	×	10−6	)	×	(25.00)	2	+	(5.869	×	10−9	)	×	(25.00)3	=+0.22240	V	∆rG	=	−ν	FEcelO	l	O	=−1×	(96.485	kC	mol−1	)	×	(0.22240	V)	=−21.46	kJ	mol−1	O	O	æ	∂Ecell	ö	æ	∂Ecell	ö	°C	æ	∂∆	G	O	ö	ν	ν	F	F	∆	r	S	O	=−ç	r	=	=	[6C.6]	ç		ç			è	∂T	ø	p	è	∂T	ø	p
è	∂θ	ø	p	K	=	νF	{(	−4.8564	×10	−4	(	)	[	dθ	°C	=dT	K	]	(	°C	)	−	2	×	3.4205	×	10−6	θ	(	°C	)	+	3	×	5.869	×	10−9	θ	2	(	°C	)	2	ì(	−4.8564	×	10−4	)	−	2	×	(	3.4205	×	10−6	)	×	(	25	)	ü	ï	ïV	=×	1	(96.485	kC	mol−1	)	×	í	ý	2	−9	ïî+3	×	(	5.869	×	10	)	×	(	25	)	ïþ	K	=−62.30	J	K	−1	mol−1	∆	r	H	O	=∆	r	G	O	+	T	∆	r	S	O	=−(21.46	kJ	mol−1	)	+	(298.15	K)	×
(−62.30	J	K	−1	mol−1	)	=−40.03	kJ	mol−1	The	cell	reaction	Gibb’s	energy	is	related	to	formation	Gibb’s	energies	by	∆	r	G	O	=	∆	f	G	O	(	H	+	)	+	∆	f	G	O	(	Cl−	)	−	∆	f	G	O	(	AgCl	)	=	∆	f	G	O	(	C1−	)	−	∆	f	G	O	(	AgCl	)	éë	∆	f	G	O	(	H	+	)	=	0	ùû	Hence,	∆	f	G	O	(	Cl	−	)	=	∆	r	G	O	+	∆	f	G	O	(	AgCl	)	=(	−21.46	−	109.79	)	kJ	mol−1	=	−131.25	kJ	mol−1	(	)
Similarly,	∆	f	H	O	Cl−	=	∆	r	H	O	+	∆	f	H	O	(	AgCl	)	=(	−40.03	−	127.07	)	kJ	mol−1	=	−167.10	kJ	mol−1	For	the	entropy	of	Cl−	in	solution	we	use	O	∆	r	S=	S	O	(Ag)	+	S	O	(H	+	)	+	S	O	(Cl−	)	−	½	S	O	(H	2	)	−	S	O	(AgCl)	(	)	with	S	O	H	+	=	0	.	Then,	S	O	(	Cl	−	)	=	∆	r	S	O	−	S	O	(	Ag	)	+	½	S	O	(	H	2	)	+	S	O	(	AgCl	)	={(	−62.30	)	−	(	42.55	)	+	1	2	×
(130.68	)	+	(	96.2	)}	J	K	−1	mol−1	=	+56.7	J	K	−1	mol−1	Integrated	activities	6.3	(a)	1	ìæ	b	ö	2	æ	b	ö	2	ü	æ	b	ö	I=	4ç	O		íç	O		z+	+	ç	O		z−	ý	[5F.9]	=	2	îè	b	ø	+	è	b	ø−	þ	èb	ø	For	CuSO4,	I	=	(4)	×	(1.0	×	10−3	)	=	4.0	×	10−3	For	ZnSO4,	I	=(4)	×	(3.0	×	10−3	)	=	1.2	×	10−2	(b)	log	γ	±	=	−	|	z+	z−	|	AI	1/	2	[5F.8]	log	γ	±	(CuSO	4	)	=	−(4)	×	(0.509)	×	(4.0	×
10−3	)1/	2	=	−0.1288	γ	±	(CuSO	4	)	=	0.74	log	γ	±	(ZnSO	4	)	=	−(4)	×	(0.509)	×	(1.2	×	10−2	)1/	2	=	−0.2230	γ	±	(ZnSO	4	)	=	0.60	(c)	The	reaction	in	the	Daniell	cell	is	Cu	2	+	(aq)	+	SO	24	−	(aq)	+	Zn(s)	→	Cu(s)	+	Zn	2	+	(aq)	+	SO	24	−	(aq)	3	)}	°CKV	Hence,	Q	=	a	(Zn	2	+	)a	(SO	24	−	,	R)	a	(Cu	2	+	)a	(SO	24	−	,	L)	γ	+	b+	(Zn	2	+	)γ	−	b−	(SO	24	−
,	R)	γ	+	b+	(Cu	2	+	)γ	−	b−	(SO	24	−	,	L)	b	é	ù	êb	≡	b	O	here	and	below	ú	ë	û	where	the	designations	R	and	L	refer	to	the	right	and	left	sides	of	the	equation	for	the	cell	reaction	and	all	b	are	assumed	to	be	unitless,	that	is,	b	b	O	.	2−	=	b+	(Zn	2	+	)	b=	b(ZnSO	4	)	−	(SO	4	,	R)	2−	=	b+	(Cu	2	+	)	b=	b(CuSO	4	)	−	(SO	4	,	L)	Therefore,	γ	±2	(ZnSO	4	)b	2
(ZnSO	4	)	(0.60)	2	×	(3.0	×	10−3	)	2	=	=	=	5.92	=	Q	γ	±2	(CuSO	4	)b	2	(CuSO	4	)	(0.74)	2	×	(1.0	×	10−3	)	2	(d)	(e)	5.9	∆	GO	−(−212.7	×	103	J	mol−1	)	O	Ecell	[6C.3]	=	=	−	r	=	+1.102	V	νF	(2)	×	(9.6485	×	104	C	mol−1	)	æ	25.693	×	10−3	V	ö	25.693	×	10−3	V	O	Ecell	=	Ecell	ln	Q	=	−	(1.102	V)	−	ç		ln(5.92)	2	ν	è	ø	=	(1.102	V)	−	(0.023	V)	=	+1.079	V
6.4	Pt|H	2	(	g,p	O	)	|NaOH	(	aq,0.01000	mol	kg	−1	)	,NaCl	(	aq,0.01125	mol	kg	−1	)	|AgCl(s)|Ag(s)	H	2	(g,	p	O	)	+	2	AgCl(s)	→	2	Ag(s)	+	2	Cl−	(aq)	+	2	H	+	(aq)	where	v	2=	[Activities	of	solids	equal	1	and	pH2	p	O	.]	{	}	2	RT	ln	aH+	aCl−	[6C.4	and	6A.12(b)]	2F	RT	K	w	γ	±	bCl−	RT	RT	K	w	aCl−	O	Ecell	EO	−	EO	−	ln	aH+	aCl−	=	ln	ln	=	−	=	F	F	aOH−
F	γ	±	bOH−	O	−	E=	Ecell	cell	{	O	=	−	Ecell	}	RT	bCl−	RT	K	w	bCl−	RT	ln	ln	K	w	−	=	EO	−	ln	F	bOH−	F	F	bOH−	O	=	+	ln10	Ecell	RT	RT	bCl−	×pK	w	−	ln	F	F	bOH−	æb	−	ln	ç	Cl	çb	−	Ecell	−	Ecell	=	+	è	OH	pK	w	Hence,	ln10	RT	/	F	ln10	O	−	ln	K	w	ö	æ	ç	pK	w	=	−	log	K	w	=		ln10	ø	è	ö		ø	ö	ln	(	0.0100	/	0.01125	)	+	ln10	è	ø	O	æ	ö	=	=	(	5039.75	V	−1	)	×	ç
EcellT	−/	KEcell		−	0.05115	è	ø	=	æ	(	5039.75	V	)	×	ç	E	T	−/	KE	−1	cell	O	cell	Using	information	of	the	data	tables,	we	find	that	O	Ecell	=ERO	−	ELO	=E	O	(	AgCl,	Ag	)	−	E	O	(	H	+	/H	2	)	=+0.22	V	−	0	=+0.22	V	.	This	value	does	not	have	the	precision	needed	for	computations	with	the	high	precision	data	of	this	problem.	Consequently,	we	will	use	the
more	precise	value	found	in	the	CRC	Handbook	of	Chemistry	and	Physics(71st	ed):	O	Ecell	=	0.22233	V	.	We	then	draw	up	the	following	table.	θ	/	°C	Ecell	/	V	20.0	1.04774	25.0	1.04864	30.0	1.04942	pK	w	14.14	13.92	13.70	Inspection	of	the	table	reveals	that	for	each	5	K	increase	in	temperature	the	value	of	pKw	decreases	by	0.22	and,	consequently,
d(pKw)/dT	=	−0.22	/	5.0	K	=	−0.044	K−1.	Thus,	at	25°C:	d	ln	K	w	∆	w	H	O	=	[6B.2(a)]	dT	RT	2	d	ln	K	w	d	log	K	w	d	pK	w	∆w	H	O	=	=	=	−	ln10	×	RT	2	RT	2	ln10	×	RT	2	dT	dT	dT	=−	ln10	×	(	8.3145	×	10−3	kJ	mol−1	K	−1	)	×	(	298.15	K	)	×	(	−0.044	K	−1	)	2	=	+74.9	kJ	mol−1	∆wG	O	=	−	RT	1n	K	w	=	ln10	×	RT	×	pK	w	=	+79.5	kJ	mol−1	∆w	H	O	−
∆wG	O	∆w	S	O	=	=	−15.4	J	K	−1	mol−1	T	6.5‡	Electrochemical	Cell	Equation:	1	2	H	2	(g,1	bar)	+	AgCl(s)		H	+	(aq)	+	Cl−	(aq)	+	Ag(s)	with	a	(H	=	1=	bar	p	O	and	=	aCl−	γCl−	b	.	2)	Weak	acid	Equilibrium:	BH	+		B	+	H	+	with	bBH=	b=	b	+	B	(	)	=	K	a	a=	γBba=	/	γBH+	b	γB	aH+	/	γBH+	B	aH	+	/	aBH	+	H+	Thus,	aH+	=	γBH+	K	a	/	γB	.	I	Ionic
strength	(neglect	bH+	because	bH+	0)	O	C	ψ3	=	fψ	O	−	gψC	+	hψN	N	C	O	C	ψ2	=	dψO	−	eψN	N	C	O	C	N	ψ1	=	aψO	+	bψC	+	cψ	N	C	(b)	This	arrangement	only	works	if	the	entire	peptide	link	is	coplanar.	For	starters,	the	O,	C,	and	N	atoms	in	the	peptide	link	must	be	in	the	same	plane	(call	it	the	xy	plane)	if	all	three	atoms	are	to	contribute
unhybridized	p	orbitals	(pz	orbitals)	to	make	the	three	MOs	sketched	in	Figure	10.15(a).	And	if	the	peptide	N	and	C	atoms	contribute	pz	orbitals	in	the	π	system,	then	all	of	the	σ	bonds	they	make	must	be	in	the	xy	plane.	Hence	the	peptide	O	and	H	atoms	as	well	as	the	non-peptide	C	atoms	bound	to	the	peptide	C	and	N	atoms	must	also	lie	in	the	xy
plane.	That	is,	the	entire	peptide	linkage	plus	the	ends	of	the	carbon	chains	that	they	connect.	28	O	O	–	+	C	C	C	N	N	H	H	(c)	The	energy	order	of	the	orbitals	and	their	occupancy	are	shown	in	Figure	10.15(a).	There	are	four	electrons	to	be	distributed.	If	we	look	at	the	neutral	representation	of	the	peptide	link	(on	the	left	side	of	the	resonance
structures	shown	here),	the	two	electrons	represented	by	the	C=O	π	bond	are	obviously	part	of	the	π	system,	leaving	the	two	lone	pairs	on	O,	the	C–O	σ	bond,	and	the	two	other	σ	bonds	of	C	as	part	of	the	σ	system.	Turning	now	to	the	Lewis	octet	of	electrons	around	the	N	atom,	we	must	assign	two	electrons	to	each	of	the	σ	bonds	involving	N;	clearly
they	cannot	be	part	of	the	π	system.	That	leaves	the	lone	pair	on	N,	which	must	occupy	the	other	orbital	that	N	contributes	to	the	molecule,	namely	the	pz	orbital	that	is	part	of	the	π	system.	(d)	The	orbitals	of	the	non-planar	alternative	are	sketched	in	Figure	I10.2(b).	ψ4	is	a	bonding	orbital	with	respect	to	C	and	O,	and	ψ6	is	antibonding	with	respect
to	C	and	O.	ψ5	is	non–	bonding,	involving	only	the	N	atom.	There	are	four	electrons	to	be	placed	in	this	system,	as	before,	two	each	in	a	bonding	and	non–bonding	orbital.	C	Figure	I10.2(b)	Energy	(a,..,g	>	0)	O	C	ψ6	=	fψ	O	−	gψC	N	C	O	C	ψ5	=	eψ	N	N	C	O	C	N	ψ4	=	aψO	+	bψC	C	(e)	This	system	cannot	be	planar.	As	before,	the	end	of	the	chain
connected	to	the	peptide	C	must	be	in	the	xy	plane.	As	before,	the	atoms	bound	to	N	must	be	in	a	plane	perpendicular	to	the	orbital	that	N	contributes	to	this	system,	which	is	itself	in	the	xy	plane.	Only	one	of	the	N	atom’s	σ	bonds	can	be	in	both	the	xy	plane	and	a	plane	perpendicular	to	it	(because	only	a	line	can	be	in	two	perpendicular	planes).
Thus,	the	bonding	partners	of	N	other	than	the	peptide	C	are	forced	out	of	the	xy	plane.	(f)	The	bonding	MO	ψ1	must	have	a	lower	energy	than	the	bonding	MO	ψ4,	for	ψ1	is	bonding	(stabilizing)	with	respect	to	all	three	atoms,	while	ψ4	is	bonding	with	respect	to	only	two	of	them.	Likewise,	the	antibonding	MO	ψ3	must	have	a	higher	energy	than	the
antibonding	MO	ψ6,	for	ψ3	is	antibonding	(destabilizing)	with	respect	to	all	three	atoms	pairwise,	while	ψ6	is	antibonding	only	with	respect	to	two	of	them.	The	non–bonding	MOs	ψ2	and	ψ5	must	have	similar	energies,	not	much	different	than	the	parameter	α,	for	there	is	no	significant	constructive	or	destructive	interference	between	adjacent	atoms
in	either	one.	(g)	Because	bonding	orbital	ψ1	has	a	lower	energy	than	ψ4,	the	planar	arrangement	has	a	lower	energy	than	the	non–planar	one.	The	total	energy	of	the	planar	arrangement	is	Eplanar	=	2E1	+	2E2	.	Compare	this	to	the	energy	of	the	non–planar	arrangement:	29	Enon–planar	=	2E4	+	2E5	>	2E1	+	2E2	=	Eplanar.	The	fact	that	E3	>	E6
is	immaterial,	for	neither	of	those	orbitals	is	occupied.	ψ	trial	=	Ne	−α	r	10.4	2	We	must	find	the	expectation	value	of	the	hydrogenic	hamiltonian:	2	æ	2	2	e	2	ö	−α	r	2	∇	−	τ	Etrial	Ne	−α	r	ç	−	=	H=	ψ	trial	*	Hˆ	ψ	trial	d=		N	e	dτ	4πε	0	r	ø	è	2µ	∫	∫	The	laplacian	operator	is	∂2	2	∂	1	2	∇=	+	+	Λ2	∂r	2	r	∂r	r	2	.	Because	Λ2	contains	derivatives	with	respect	to
angles	only,	we	can	ignore	it	in	applying	the	laplacian	to	our	trial	function,	which	is	independent	of	angles.	Applying	the	kinetic	energy	operator	to	our	trial	function	yields	æ	∂	2	2	∂	ö	−α	r	2		2α	N	æ	∂	2	ö	−α	r	2	2	2	−	∇	ψ	trial	=	ç	2	+	+	re		Ne	=	r	∂r	ø	µ	çè	∂r	r	ø	2µ	è	∂r		2α	N	=	µ	(	)	e	−α	r	−	2α	r	2	e	−α	r	+	2e	−α	r	=	2	2	2		2α	N	µ	(3	−	2α	r	2	)e	−α	r	2
Inserting	this	into	the	energy	expectation	yields:	2	2	2	2	æ		αN	e2	Ne	−α	r	ö	(3−	2α	r	2	)e	−α	r	−	Etrial	=	Ne	−α	r	ç		dτ	4πε	0	r	ø	è	µ	∫	To	actually	evaluate	the	integral,	we	must	write	out	dτ	and	the	limits	of	integration	explicitly.	Here	dτ	=	r2	sin	θ	drdθdφ	.	Other	than	in	dτ,	there	is	no	angular	dependence	in	the	integrand,	so	integrating	over	the	angles
yields	4π.	Thus	the	integral	becomes	2	2	∞	2	æ	3	α	r	2	2α	2	r	4	e2	r	ö	Etrial	=	4π	N	2	e	−2α	r	ç	−	−	dr	0	4πε	0	ø	µ	è	µ	Consult	the	integral	table	in	the	Resource	section	to	find	[G.7	and	G.8]	∞	2	n!	x	2n+1e	−	ax	dx	=	n+1	0	2a	∫	∫	1/2	(2n	−	1)!!	æ	π	ö	(2n	−	1)!!	=	1×	3×	5	×	...×	(2n	−	1)	0	2	n+1	a	n	çè	a	ø	Apply	these	to	the	appropriate	terms	in	the	integral
to	obtain	æ	3	2α	1	ö	e2	3π	1/2	2	2α	2	π	1/2	×	−	×	3	−	×	2	Etrial	=	4π	N	2	ç	5/2	3/2	4πε	0	2(2α	)	ø	µ	2	(2α	)	2	(2α	)	è	µ	∫	∞	x	2ne	−	ax	dx	=	2	æ	3	2π	1/2	e2	ö	=	4π	N	2	ç	9/2	1/2	−		è	2	α	µ	16πε	0α	ø	We	must	now	evaluate	N(α).	Normalization	requires	∫ψ	*ψ	dτ	=	1	=	N	∫	e	2	1	=	4π	N	2	×	Thus,	Etrial	=	π	dτ	=	4π	N	2	3/2	∫	∞	r	2e	−2α	r	dr	2	0	1/2	2	α	7/2	−2α
r	2	4π	N	2	=	or	27/2	α	3/2	π	1/2	27/2	α	3/2	æ	3	2π	1/2	e2	ö	3	2α	e2α	1/2	.	−	−	=	2µ	π	1/2	çè	29/2	α	1/2	µ	16πε	0α	ø	21/2	π	3/2ε	0	The	variation	principle	says	that	the	minimum	energy	is	obtained	by	taking	the	derivative	of	the	trial	energy	with	respect	to	adjustable	parameters,	setting	it	equal	to	zero,	and	solving	for	the	parameters:	dEtrial	3	2	e2	=	−
3/2	3/2	=0	dα	2	µ	2	π	ε	0α	1/2	Solving	for	α	yields	30	2	æ	µe2	ö	æ	1	ö	µ	2	e4	so	α	=	ç	2		ç	3		=	3	4	2	è	3	ε	0	ø	è	2π	ø	18π		ε	0	Substituting	this	back	into	the	energy	expression	yields	the	minimum	energy	for	this	trial	wavefunction:	e2	3	2	=	3/2	3/2	1/2	2	µ	2	π	ε	0α	æ	µ	2	e4	ö	3	2	æ	µ	2	e	4	ö	e2	Etrial	=	−	1/	2	3/	2	ç	ç		3	4	2		2	µ	è	18π		ε	0	ø	2	π	ε	0	è	18π	3	4ε	02	ø
=	1/	2	µ	e4	µ	e4	−	µ	e4	−	=	12π	3ε	02	2	6π	3ε	02	2	12π	3ε	02	2	Notice	that	the	above	expression	indicates	that	V	=	−2	Ek	in	accord	with	the	virial	−1	theorem	for	a	potential	that	goes	as	r	.	Also,	compare	the	above	result	to	the	actual	hydrogenic	energy:	−	µe4	EH	=	32π	2ε	02	2	Etrial	has	12π	in	the	denominator	where	the	true	energy	has	32.	Thus,
the	trial	energy	is	greater	than	(not	as	negative	as)	the	true	energy,	consistent	with	the	variation	principle.	10.6	The	equations	for	studying	the	amplitudes	of	the	1σ	and	2σ*	dihydrogen	ion	states	are	found	in	eqn.	10B2	and	Brief	Illustration	10B.1.	This	approximate	method	uses	a	linear	combination	of	atomic	1s	orbitals	of	the	hydrogen	atoms,	which
are	label	A	and	B.	Atom	A	is	placed	at	the	point	(x,y,z)	=	(0,0,0)	with	atom	B	at	(x,y,z)	=	(0,0,R).	Both	LCAOs	have	cylindrical	symmetrical	around	the	internuclear	z-axis	so	we	examine	amplitudes	as	they	vary	with	z	along	a	cylinder	that	is	the	perpendicular	distance	r	from	the	z-axis	where	r2	=	x2	+	y2.	Calculations	will	be	setup	so	that	the	user	can
select	any	desired	r/a0	ratio.	Identical	results	are	obtained	should	you	wish	to	assign	x	and/or	y	to	arbitrary	values.	A	Mathcad	Prime	2TM	setup	and	amplitude	plots	are	shown	below.	Be	sure	to	explore	changes	in	the	coefficients	of	both	R	and	r	and	explain	the	observed	effects.	The	antibonding	orbital	vanishes	halfway	between	the	nuclei,	so	we	see
antibonding	associated	with	low	internuclear	electron	density.	Similarly,	the	bonding	orbital	is	substantially	non-zero	between	the	nuclei	(although	not	as	large	in	value	as	at	each	nucleus),	so	we	see	bonding	associated	with	high	internuclear	electron	density.	31	32	11	Molecular	Symmetry	11A	Symmetry	Elements	Answers	to	discussion	questions
11A.2	Symmetry	operation	Symmetry	element	Identity,	E	The	entire	object	n-fold	rotation	n-fold	axis	of	symmetry,	Cn	Reflection	Mirror	plane,	σ	Inversion	Centre	of	symmetry,	i	n-fold	improper	rotation	n-fold	improper	rotation	axis,	Sn	There	are	three	kinds	of	mirror	planes.	The	vertical	mirror	plane,	σv,	is	parallel	to	the	principal	axis	while	the
horizontal	mirror	plane,	σh,	is	perpendicular	to	the	principal	axis.	A	mirror	plane	that	bisects	the	angle	between	two	C2	axes	is	called	a	dihedral	plane,	σd.	A	vertical	mirror	plane	that	bisects	bonds	is	also	given	the	σd	designation.	11A.4	A	molecule	may	be	chiral,	and	therefore	optically	active,	only	if	it	does	not	possess	an	axis	of	improper	rotation,
Sn.	An	improper	rotation	is	a	rotation	followed	by	a	reflection	and	this	combination	of	operations	always	converts	a	right-handed	object	into	a	left-handed	object	and	vice-versa;	hence	an	Sn	axis	guarantees	that	a	molecule	cannot	exist	in	chiral	forms.	When	discussing	optical	activity,	it	is	helpful	to	remember	that:	(a)	the	presence	of	both	a	Cn	and	a
σh	is	equivalent	to	an	Sn.	(b)	i	=	S2.	(c)	σ	=	S1.	Thus,	a	molecule	cannot	be	optically	active	if	it	possesses	a	centre	of	symmetry	or	a	mirror	plane.	Solutions	to	exercises	11A.1(b)	CCl4	belongs	to	the	point	group	Td.	It	has	4	C3	axes	(each	C–Cl	axis),	3	C2	axes	(bisecting	Cl–C–Cl	angles),	3	S4	axes	(the	same	as	the	C2	axes),	and	6	dihedral	mirror	planes
(each	Cl–C–Cl	plane).	A	sample	of	each	symmetry	element	is	shown	in	Fig.	11A.1.	7:1	C3	Cl	C2	and	S4	C2	and	S4	C	Cl	Cl	Cl	C3	σd	Figure	11A.1	11A.2(b)	Anthracene	belongs	to	the	point	group	D2h	and	it	has	the	symmetry	elements	shown	in	Fig.	11A.2.	There	are	3C2	axes,	a	centre	of	inversion,	and	3σh	mirror	planes.	C2	i	C2	C2	σh	C2	C2	σh	σh
Figure	11A.2	11A.3(b)	Sketch	a	figure	of	the	object,	identify	symmetry	elements,	and	use	the	flow	diagram	in	Figure	11A.7	of	the	text	when	it	simplifies	the	group	assignment.	(i)	Sharpened	pencil:	(ii)	Propellor:	E,	C∞	,	σ	v	;	therefore	C∞v	E,	C3	,	3C2	;	therefore	D3	(iii)	Square	table:	E,	C4	,	4σ	v	;	therefore	C4v	;	Rectangular	table:	E,	C2	,	2σ	v	;
therefore	C2v	(iv)	Person	with	left-right	symmetry:	E	,	σ	;	therefore	Cs	2	11A.4(b)	Make	a	sketch	of	the	molecule,	identify	symmetry	elements,	and	use	the	flow	diagram	in	Figure	11A.7	of	the	text	when	it	simplifies	the	point	group	assignment.	(i)	furan:	E,	C2,	σv,	σ	v′	;	C2v	(ii)	γ-pyran:	E,	C2,	σv,	σ	v′	;	C2v	(iii)	1,2,5-trichlorobenzene:	E,	σh;	Cs	11A.3(b)
Make	a	sketch	of	the	molecule,	identify	symmetry	elements,	and	use	the	flow	diagram	in	Figure	11A.7	of	the	text	when	it	simplifies	the	point	group	assignment.	(i)	HF:	linear,	no	i,	so	C∞v	(ii)	IF7:	pentagonal	bipyramidal,	E,	C5,	5C2,	S5,	σh,	σv;	D5h	(iii)	XeO2F2:	see-saw,	E,	C2,	σv,	σ	v′	;	C2v	(iv)	Fe2(CO)9:	E,	C3,	2C2,	3C2',	S3,	σh,	σv;	D3h	(v)	Cubane
(C8H8):	E,	8C3,	6C2,	6C4,	i,	6S4,	8S6,	3σh,	6σd;	Oh	(vi)	Tetrafluorocubane:	E,	8C3,	3C2,	6S4,	6σd;	Td	11A.4(b)	Only	molecules	belonging	to	Cs,	Cn,	and	Cnv	groups	may	be	polar,	so	…	(i)	CH	3Cl	(C3v	)	polar	along	the	C–Cl	bond	HW2	(CO)10	(	D4h	)	not	polar	(iii)	SnCl	4	(Td	)	not	polar	(ii)	11A.5(b)	The	parent	of	the	dichloroanthracene	isomers	is
shown	to	the	right.	Care	must	be	taken	when	determining	possible	isomers	because	anthracene	is	a	flat	molecule	that	belongs	to	the	point	group	D2h	as	discussed	in	Exercise	C1	C9	C8	C2	C7	C3	C6	C4	C10	C5	11A.2(b).	It	has	an	inversion	centre,	mirror	planes,	and	rotational	axes	that	cause	superficially	distinct	visual	images	to	actually	be	the	same
molecule	viewed	from	different	angles.	For	example,	Fig.	11A.3	structures	are	all	1,3-dichloroanthracene.	By	drawing	figures	that	avoid	the	redundancy	caused	by	the	symmetry	elements	you	will	find	a	total	of	fifteen	dichloroanthracene	isomers.	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Figure	11A.3	The	names	and	point	groups	of	the	fifteen	isomers	are	summarized	in
the	following	table.	7:3	Isomers	and	Point	Groups	of	m,n-Dichloroanthracene	m,n	1,2	1,3	1,4	1,5	1,6	1,7	1,8	Point	Group	Cs	Cs	C2v	C2h	Cs	Cs	C2v	1,9	Cs	1,10	Cs	2,3	C2v	2,6	C2h	2,7	C2v	2,9	Cs	2,10	Cs	9,10	D2h	11A.6(b)	A	molecule	cannot	be	chiral	if	it	has	an	axis	of	improper	rotation.	The	point	group	Td	has	S	4	axes	and	mirror	planes	(	=	S1	)	,
which	preclude	chirality.	The	Th	group	has,	in	addition,	a	centre	of	inversion	(=	S2).	Therefore,	molecules	belonging	to	these	point	groups	cannot	be	chiral	and	cannot	be	optically	active.	Solutions	to	problems	11A.2‡	(a)	We	work	through	the	flow	diagram	in	the	text	(Fig.	11A.7)	first	noting	that	this	complex	with	freely	rotating	CF3	groups	is	not
linear,	no	Cn	axes	with	n	>	2.	It	does	have	three	mutually	perpendicular	C2	axes	and	each	has	a	perpendicular	mirror	plane.	Therefore,	the	point	group	is	D2h	.	(b)	The	plane	shown	in	Fig.	11A.4	below	is	a	mirror	plane	so	long	as	the	CF3	groups	each	have	a	CF	bond	in	the	plane.	(i)	If	the	CF3	groups	are	staggered,	then	the	Ag–CN	axis	is	an	S2	axis.
The	Ag–CF3	axis	is	also	an	S2	axis,	which	means	that	the	Ag	atom	is	at	an	inversion	centre.	There	is	a	C2	axes	perpendicular	to	the	plane	of	the	molecule	and	the	plane	of	the	molecule	is	a	σh.	So	the	point	group	is	C2h.	(ii)	If	the	CF3	groups	are	eclipsed,	then	the	axis	through	the	Ag	and	perpendicular	to	the	plane	of	the	Ag	bonds	is	no	longer	a	C2
axis;	however,	the	Ag–	CN	axis	is	a	C2	axis.	There	is	no	σh	but	there	are	two	σv	planes	(the	plane	shown	and	the	plane	perpendicular	to	it	and	through	the	Ag–CN	bond).	So	the	point	group	is	C2v	.	S2	F	F	F	F	C	NC	Ag	F	F	C	i	CN	NC	S2	Ag	CN	C2	C2	C	σh	F	F	F	σv	(i)	Staggered	form,	C2h	F	F	C	F	(ii)	Eclipsed	form,	C2v	Figure	11A.4	11B	Group	theory
Answers	to	discussion	questions	11B.2	A	representative	is	a	mathematical	operator	(usually	a	matrix)	that	represents	the	physical	symmetry	operation.	The	set	of	all	these	mathematical	operators	corresponding	to	all	the	operations	of	the	group	is	called	a	representation.	11B.4	A	representation	is	reducible	when	matrices	of	the	set	can	be	transformed
(with	a	similarity	transformation)	into	new	matrices	that	are	the	direct	sum	of	representations	of	smaller	dimension.	The	4	æ	0ö	ç		0		where	only	zero	elements	appear	transformation	brings	each	matrix	into	block-diagonal	form	ç	çç		è0	0	ø	outside	the	blocks.	The	reduction	of	a	three-dimensional	representation	to	the	direct	sum	of	a	two-dimensional
and	a	one-dimensional	representation	is	denoted	symbolically	by	writing	Γ(3)	=	Γ(2)	+	Γ(1).	One-dimensional	representations	Γ(1)	are	necessarily	irreducible.	An	irreducible	representation	cannot	be	transformed	into	matrices	that	are	a	direct	sum	of	representations	of	smaller	dimension.	The	sums	of	their	diagonal	elements	(the	traces)	are	the
characters	of	the	representation	symmetry	operations.	The	set	of	characters	for	an	irreducible	representation	is	called	the	symmetry	species	of	that	representation.	Solutions	to	exercises	11B.1(b)	Since	the	pz	orbitals	are	perpendicular	to	the	molecular	plane,	we	recognize	that	the	set	of	pz	orbitals	on	each	atom	of	BF3	experience	the	C3	change	(p	B
,p	F1	,p	F2	,p	F3	)	D	(C3	)	=	(p	B	,	p	F3	,	p	F1	,	p	F2	).	Consequently,	we	find	by	inspection	that	æ1	ç	0	D(C3	)	=	ç	ç0	ç	è0	0	0	0	1	0	1	0	0	0ö		0	1		0ø	11B.2(b)	The	matrix	representations	of	the	operations	σh	and	C3	are	deduced	in	Exercises	11B.1(a)	and	11B.1(b).	According	to	the	precepts	of	group	theory,	the	successive	application	of	these	operations
yields	another	member	of	the	D3h	group	to	which	BF3	belongs	and,	in	fact,	by	definition	the	operation	C3σh	should	yield	the	S3	symmetry	operation.	The	matrix	representation	of	S3	can	be	found	by	matrix	multiplication	of	the	component	operations.	æ1	ç	0	=	D	(C3	)	D	(σ	h	)	ç	ç0	ç	è0	0	0	0	1	0	1	0	0	0	ö	æ	−1	0	0	0	ö	ç		0		ç	0	−1	0	0		=	1		ç	0	0	−1	0		ç	
0	ø	è	0	0	0	−1	ø	æ	−1	0	0	0	ö	ç		0	0	−1	0		ç=	D	(	S3	)	ç	0	0	0	−1	ç		è	0	−1	0	0	ø	The	result	may	be	checked	by	matrix	operation	on	the	pz	orbital	vector	where	the	effort	should	yield	(p	B	,p	F1	,p	F2	,p	F3	)	D(	S3	)	=	(−p	B	,	−p	F3	,	−p	F1	,	−p	F2	)	and,	as	expected	æ	−1	0	0	0	ö	ç		0	0	−1	0		ç	(p	B	,p	F1	,p	F2	,p	F3	)	(−p	B	,	−p	F3	,	−p	F1	,	−p	F2	)	=	ç	0	0	0
−1	ç		è	0	−1	0	0	ø	Also,	the	symmetry	operations	commute	in	this	particular	case.	11B.3(b)	Consider	the	equilateral	triangle	P1P2P3,	which	belongs	to	the	D3h	point	group	(text	Fig.	11A.8).	The	three	C2	axes	and	the	three	σv	mirror	planes	of	this	triangle	are	shown	in	Fig.	11B.1.	7:5	C2	σv	P1	σv"	P2	P3	σv'	C2'	C2"	Figure	11B.1	The	σv	and	σ	v′	mirror
planes	belong	to	the	same	class	if	there	it	a	member	S	of	the	group	such	that	σ	v′	=	S–1	σv	C2′′	,	an	operator	for	which	S–1	=	C2′′	.	By	comparison	of	the	action	of	S–1	σv	S	upon	the	vector	(P1,P2,P3)	with	the	action	of	σ	v′	upon	the	same	vector	we	can	determine	whether	or	not	the	equality	of	eqn.	11B.1	holds.	If	it	does,	σv	and	σ	v′	mirror	belong	to	the
same	S	[11B.1]	where	S–1	is	the	inverse	of	S.	We	will	work	with	S	=	class.	S	−1σ	v	S	(	P1	,P2	,P3	)	=	C2′′σ	vC2′′	(	P1	,P2	,P3	)	=	C2′′σ	v	(	P2	,P1	,P3	)	=	C2′′	(	P2	,P3	,P1	)	=	(	P3	,P2	,P1	)	σ	v′	(	P1	,P2	,P3	)	=	(	P3	,P2	,P1	)	(i)	(ii)	S	=	C2′′	and	we	conclude	that	σv	and	σ	v′	belong	to	the	same	class.	By	either	using	the	same	argument	or	seeing	the
necessities	of	symmetry	we	find	that	σ	v	and	σ	v′′	also	belong	to	the	same	class.	Consequently,	σ	v	,	σ	v′	and	σ	v′′	all	belong	to	the	same	class.	Eqs.	(i)	and	(ii)	indicate	that	σ	v′	=	S	−1σ	v	S	where	11B.4(b)	Because	the	largest	character	is	5	in	the	column	headed	E	in	the	I	character	table,	we	know	that	the	maximum	orbital	degeneracy	is	5.	11B.5(b)	1,4-
Dichlorobenzene	belongs	to	the	D2h	point	group.	Because	the	largest	character	is	1	in	the	column	headed	E	in	the	D2h	character	table,	we	know	that	the	orbitals	are	nondegenerate.	Solutions	to	problems	11B.1	Consider	Fig.	11B.2.	The	effect	of	σh	on	a	point	P	is	to	generate	σhP,	and	the	effect	of	C2	on	σhP	is	to	generate	the	point	C2σhP.	The	same
point	is	generated	from	P	by	the	inversion	i,	so	C2σhP	=	iP	for	all	points	P.	Hence,	C2σ	h	=	i	,	and	i	must	be	a	member	of	the	group.	6	Figure	11B.2	11B.4	We	examine	how	the	operations	of	the	C3v	group	affect	lz	=	xpy	–	ypx	when	applied	to	it.	The	transformation	of	x,	y,	and	z,	and	by	analogy	px,	py,	and	pz	components	of	momentum,	are	as	follows
(see	Fig.	11B.3).	Figure	11B.3	7:7	E	(x,	y,	z	)	→	(x,	y,	z	)	σ	v	(x,	y,	z	)	→	(	−	x,	y,	z	)	σ	v′	(x,	y,	z	)	→	(x,	–	y,	z	)	σ	v′′(x,	y,z	)	→	(x,	y,	−	z	)	(	C3+	(	x,	y,	z	)	→	−	12	x	+	12	3	y,	−	12	3	x	−	12	y,	z	(	C3−	(x,	y,	z	)	→	−	12	x	−	12	3	y,	1	2	3	x	−	12	y,	z	)	)	The	characters	of	all	σ	operations	are	the	same,	as	are	those	of	both	C3	operations	(see	the	C3v	character	table);
hence	we	need	consider	only	one	operation	in	each	class.	Elz	=	xp	y	−	ypx	=	lz	σ	vlz	=−xp	y	+	ypx	=−lz	[(	x,	y,	z	)	→	(	−x,	y,	z	)]	C3+	lz	=	(	−	12	x	+	12	3	y	)	×	(	−	12	3	px	−	12	p	y	)	−	(	−	12	3	x	−	12	y	)	×	(	−	12	px	+	12	3	p	y	)	[(	x,	y,	z	)	→	(−	12	x	+	12	3	y,	−	12	3	x	−	12	y,	z	)]	=	1	4	(	3	xpx	+	xp	y	−	3	ypx	−	3	yp	y	−	3	xpx	+	3xp	y	−	ypx	+	3	yp	y	)	=	xp
y	−	ypx	=	lz	+	The	representatives	of	E,	σv,	and	C3	are	therefore	all	one-dimensional	matrices	with	characters	1,	–1,	1,	respectively.	It	follows	that	lz	is	a	basis	for	A2	(see	the	C3v	character	table).	11B.6	Using	the	symbolism	defined	in	the	solution	for	Problem	11B.5,	we	find:	æ1	ç	0	+	−	C3A	)	D	(	C3A	)	ç	D	(=	ç0	ç	è0	æ0	ç	0	+	+	S	4AB	)	D	(	C3A	)	ç	D	(=	ç0
ç	è1	æ0	ç	0	+	+	S	4AB	)	D	(	C3C	)	ç	D	(=	ç0	ç	è1	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	0öæ1	0	0	0ö	ç		1ç0	0	1	0	=	0ç0	0	0	1	ç		0øè0	1	0	0ø	0	öæ	1	0	0	0	ö	ç		1	ç	0	0	0	1		=	0	ç	0	1	0	0		ç		0	øè	0	0	1	0	ø	0	öæ	0	0	0	1	ö	ç		1	ç	1	0	0	0		=	0	ç	0	0	1	0		ç		0	øè	0	1	0	0	ø	æ1	0	0	0ö	ç		0	1	0	0	ç=	D(E)	ç0	0	1	0	ç		è0	0	0	1ø	æ0	1	0	0ö	ç		0	0	1	0	−	ç=	D	(	S	4AC	)
ç0	0	0	1	ç		è1	0	0	0ø	æ0	0	1	0ö	ç		0	1	0	0	ç=	D	(σ	dAC	)	ç1	0	0	0	ç		è0	0	0	1ø	11B.8	The	RR'	multiplication	table,	using	σ0	=	1,	is	R\R'	σ0	σx	σy	σz	σ0	σ0	σx	σy	σz	σx	σx	σ0	−i	σz	i	σy	σy	σy	i	σz	σ0	−i	σx	σz	σz	−i	σy	i	σx	σ0	The	matrices	do	not	form	a	group	since	the	products	iσ	z	,	iσ	y	,	iσ	x	and	their	negatives	are	not	among	the	four	8	Pauli	spin
matrices,	σ.	11C	Applications	of	symmetry	Answers	to	discussion	questions	11C.2	Molecular	orbitals	of	specified	symmetry	can	be	generated	from	an	arbitrary	basis	or	set	of	atomic	orbitals	by	the	application	of	group	theory.	The	technique	involves	generating	symmetry-adapted	linear	combinations	(SALCs),	which	serve	as	building	blocks	of	LCAO
molecular	orbitals.	The	method	makes	use	of	a	projection	operator,	P(Γ),	an	operator	that	takes	one	of	the	basis	orbitals	and	generates	from	it	an	SALC	of	the	symmetry	species	Γ:	 	()	=	To	perform	the	projection:	•	•	•	•	1	()	�		()	( ) 	for	 	=	 ()	 	[11C.	5]	ℎ	 	Write	each	basis	orbital	at	the	head	of	a	column	and	in	successive	rows	show	the	effect	of
each	operation	R	on	each	orbital.	Treat	each	operation	individually.	Multiply	each	member	of	the	column	by	the	character,	χ(Γ)(R),	of	the	corresponding	operation.	Add	together	all	the	orbitals	in	each	column	with	the	factors	as	determined	in	(2).	Divide	the	sum	by	the	order	of	the	group,	h.	Text	Example	11C.4	illustrates	the	construction	method.	We
provide	a	further	example	by	constructing	the	E	symmetry-adapted	linear	combinations	of	H1s	orbitals	for	NH3,	which	belongs	to	the	C3v	point	group.	From	the	(sN,sA,sB,sC)	basis	in	NH3	we	form	the	following	table	with	each	row	showing	the	effect	of	the	operation	shown	on	the	left.	sN	sA	sB	sC	E	sN	sA	sB	sC	C3+	sN	sB	sC	sA	C3–	sN	sC	sA	sB	σv
sN	sA	sC	sB	σv′	sN	sB	sA	sC	σv″	sN	sC	sB	sA	To	generate	an	E	combination,	we	take	the	characters	for	E	(2,−1,−1,0,0,0);	then	multiplication	by	the	column	under	sA	leads	to	ψ	∝	2sA	−	sB	−	sC.	Multiplication	by	the	column	under	sB	leads	to	the	second	E	combination:	ψ	∝	2sB	−	sC	−	sA.	Multiplication	by	the	column	under	sC	leads	to	a	combination
that	is	a	linear	combination	of	the	previous	two	so	it	gives	no	further	information.	Notice	that	the	first	SALC	minus	the	second	gives	ψ	∝	sA	−	sB	so,	should	we	wish,	the	pair	ψ	∝	2sA	−	sB	−	sC	and	ψ	∝	sA	−	sB	can	be	chosen	as	the	doubly	degenerate	e	orbitals	as	shown	in	text	Figure	11B.1.	Solutions	to	exercises	11C.1(b)	The	px	orbital	spans	E'	of	the
D3h	point	group	while	z	and	pz	span	A2".	Following	the	Section	11C.1(a)	procedure	for	deducing	the	symmetry	species	spanned	by	the	product	f1f2	and	hence	to	see	whether	it	does	indeed	span	A1,	we	write	a	table	of	the	characters	of	each	function	and	multiply	the	rows.	7:9	D3h	E	σh	2C3	2S3	3C2′	3σv	px	z	pz	pxzpz	2	1	1	2	2	–1	–1	2	–1	1	1	–1	–1	–1	–
1	–1	0	–1	–1	0	0	1	1	0	The	characters	of	the	product	pxzpz	are	those	of	E'	alone,	so	the	integrand	does	not	span	A1.	It	follows	that	the	integral	must	be	zero.	11C.2(b)	For	a	D6h	molecule,	x	and	y	span	E1u	while	z	spans	A2u.	Thus,	the	x	and	y	components	of	the	dipole	moment	[11C.6]	have	transition	integrands	that	span	E2u	×	E1u	×	A1g	for	the
A1g→E2u	transition.	By	inspection	of	the	C6h	character	table	we	find	the	decomposition	of	the	direct	product	to	be:	E2u	×	E1u	×	A1g	=	B1g	+	B2g	+	E1g.	Since	it	does	not	span	A1,	the	x	and	y	components	of	the	transition	integral	must	be	zero.	The	transition	integrand	for	the	z	component	spans	E2u	×	A2u	×	A1g	=	E2g	for	the	A1g→E2u	transition.
Consequently,	the	z	component	of	the	transition	integral	must	also	equal	zero	and	we	conclude	that	the	transition	is	forbidden.	Should	these	considerations	prove	confusing,	write	a	character	table	with	rows	that	correspond	to	the	functions	of	the	transition	integrand	and	multiply.	Here	is	the	table	for	the	x	and	y	components	of	the	dipole	moment:	A1g
E2u	(x,	y)	Integrand	E	2C6	2C3	C2	3C2′	3C2′′	i	1	2	2	4	1	−1	1	−1	1	−1	−1	1	1	2	−2	−4	1	0	0	0	1	0	0	0	1	−2	−2	4	2S3	1	1	−1	−1	2S6	σh	3σ	d	3σ	v	1	1	1	1	1	−2	2	−4	1	0	0	0	1	0	0	0	To	see	whether	the	totally	symmetric	species	A1g	is	present,	we	form	the	sum	over	classes	of	the	number	of	operations	times	the	character	of	the	integrand	[11C.2]:	n(A1g	)
=(4)	+	2(−1)	+	2(1)	+	(−4)	+	3(0)	+	3(0)	+	(4)	+	2(−1)	+	2(1)	+	(−4)	+	3(0)	+	3(0)	=0	Since	the	species	A1g	is	absent,	the	transition	is	forbidden	for	x-	or	y-polarized	light.	A	similar	analysis	leads	to	the	conclusion	that	A1g	is	absent	from	the	product	A1gE2uz;	therefore	the	transition	is	forbidden.	11C.3(b)	The	classes	of	operations	for	D2	are:	E,
C2(x),	C2(y),	and	C2(z).	How	does	the	function	xyz	behave	under	each	kind	of	operation?	E	leaves	it	unchanged.	C2(x)	leaves	x	unchanged	and	takes	y	to	–y	and	z	to	–z,	leaving	the	product	xyz	unchanged.	C2(y)	and	C2(z)	have	similar	effects,	leaving	one	axis	unchanged	and	taking	the	other	two	into	their	negatives.	These	observations	are	summarized
as	follows.	xyz	E	1	C2(x)	1	C2(y)	1	C2(z)	1	A	look	at	the	character	table	shows	that	this	set	of	characters	belongs	to	symmetry	species	A1	.	11C.4(b)	NO3–	and	SO3	both	belong	to	the	D3h	group.	It	is	often	helpful	to	visualize	the	possible	bonding	patterns.	So,	before	using	the	D3h	character	table	we	first	use	our	knowledge	of	wavefunction	behavior	in
the	view	of	simple	molecular	orbital	theory.	With	three	O	atoms	providing	valence	pz	orbitals	(perpendicular	to	the	molecular	plane)	in	the	combination	2pz(A)	–	pz(B)	–	pz(C)	only	π	bonding	is	possible	with	the	N	atom.	This	means	that	only	the	valence	pz	orbital	of	N	may	possibly	have	a	nonzero	overlap	with	this	O	combination.	Furthermore,	only	the
pz,	the	dxz	and	the	dyz	orbitals	of	S	may	possibly	have	nonzero	overlap	in	this	π	system.	To	see	this,	look	for	nonzero	overlap	between	pz(O)	and	px(N)	orbitals	in	Fig.	11C.1(a).	(The	orbital	has	a	positive	wavefunction	sign	in	shaded	lobes	and	a	negative	wavefunction	sign	in	unshaded	lobes.)	Clearly,	the	overlap	of	positive	lobes	(constructive
interference)	is	exactly	cancelled	by	the	overlap	of	a	negative	lobe	with	a	positive	lobe	(destructive	interference)	to	give	a	net	zero	overlap.	The	same	thing	happens	with	the	pz	/dz2	overlap	shown	in	Fig.	11C.1(b).	The	pz/dxz	overlap	shown	in	Fig.	11C.1(c)	yields	a	net	nonzero	overlap	because	both	the	overlap	of	positive	lobes	and	the	overlap	of
negative	lobes	results	in	constructive	interference.	10	(b)p/d	overlap	(a)	pz/px	overlap	(c)	pz/dxz	overlap	Figure	11C.1	Now,	consider	the	non-normalized	combination	of	oxygen	pz	orbitals	to	be:	pz,comb	=	a×pz(A)	+	b×pz(B)	+	c×pz(C)	where	a,	b,	and	c	are	constants.	The	overlap	integral	of	pz,comb	with	pz(N)	is	∫	p	z	,comb	×	p	z	(N)	dτ=	∫	{a	×	p	z
(A)	+	b	×	p	z	(B)	+	c	×	p	z	(C)}	×	p	z	(N)	dτ	=	a	×	∫	p	z	(A)	×	p	z	(N)	dτ	+	b	×	∫	p	z	(B)	×	p	z	(N)	dτ	+	b	×	∫	p	z	(C)	×	p	z	(N)	dτ	The	three	N─O	bond	lengths	are	equivalent	so	∫	p	z	(A)	×	p	z	(N)	dτ	=∫	p	z	(B)	×	p	z	(N)	dτ	=∫	p	z	(C)	×	p	z	(N)	dτ	and	the	overlap	integral	becomes	∫	p	z	,comb	×	p	z	(N)	dτ	=	(	a	+	b	+	c	)	×	∫	p	z	(A)	×	p	z	(N)	dτ	ì	=	0	if	a	+	b
+	c	=	0	(as	in	this	exercise,	which	has	a	+	b	+	c	=	2	−	1	−	1	=	0)	í	î≠	0	if	a	+	b	+	c	≠	2	Thus,	the	overlap	integral	is	generally	nonzero	but	it	is	zero	for	the	very	specific	combination	2pz(A)	–	pz(B)	–	pz(C)	because	the	AO’s	are	in	the	specific	ratio	+2:−1:−1.	We	conclude	that	no	orbital	of	the	central	N	atom	can	have	a	nonzero	overlap	with	the
combination	2pz(A)	–	pz(B)	–	pz(C)	of	the	three	O	atoms	but	that	the	dxz	and	dyz	orbitals	of	S	may	possibly	have	nonzero	overlap	in	this	π	system.	We	now	turn	to	the	application	of	group	theory	and	the	use	of	symmetry-adapted	linear	combinations	(SALCs)	to	gain	a	understanding	of	origin	and	symmetry	species	of	the	2pz(A)	–	pz(B)	–	pz(C)
combination.	The	symmetry	species	spanned	by	the	oxygen	(pz(A),pz(B),pz(C))	basis	is	easily	found	with	use	of	these	quick	rules	for	determining	the	character	of	the	basis	set	under	each	symmetry	operation	of	the	group	D3h:	Count	zero	each	time	a	basis	function	is	changed	by	the	operation	but	count	1	each	time	a	basis	function	is	left	unchanged	by
the	operation,	because	only	these	functions	give	a	nonzero	entry	on	the	diagonal	of	the	matrix	representative.	In	some	cases	there	is	a	sign	change,	(…−	f	…)	←	(…	f	…)	;	then	–1	occurs	on	the	diagonal,	and	so	count	–1.	The	character	of	the	identity	is	always	equal	to	the	dimension	of	the	basis	since	each	function	contributes	1	to	the	trace.	Fig.	11C.2	is
used	to	evaluate	the	effect	of	the	operations	on	the	oxygen	(pz(A),pz(B),pz(C))	basis.	B	A	N	C	Figure	11C.2	Here	is	a	tabulated	summary	of	the	characters:	D3h	(pz(A),pz(B),pz(C))	E	3	σh	–3	7:11	2C3	0	2S3	0	3C2′	–1	3σv	1	Inspection	of	the	D3h	character	table	reveals	that	the	above	characters	of	the	oxygen	(pz(A),pz(B),pz(C))	basis	spans	A	′′2	+	E	′′
because	the	sum	of	the	A	′′2	and	E	′′	characters	yields	those	of	the	above	table.	Further	inspection	of	the	D3h	character	table	reveals	that	z	belongs	to	A	′′2	and	both	xz	and	yz	belong	to	E	′′	.	Consequently,	as	expected,	only	pz,	dxz,	and	dyz	orbitals	of	the	central	atom	may	possibly	have	nonzero	overlap	with	symmetryadapted	basis	formed	from
(pz(A),pz(B),pz(C)).	We	continue	by	finding	the	SALCs	using	the	procedure	of	text	Section	11C.2(b).	In	the	process	we	find	why	the	specific	combination	2pz(A)	–	pz(B)	–	pz(C)	has	been	introduced	in	this	exercise.	We	use	the	D3	subgroup	for	convenience	and	the	following	table	summarizes	the	effect	of	point	group	operations	on	members	of	the
(pz(A),pz(B),pz(C))	basis.	D3,	h	=	6	E	C3+	pz(A)	pz(A)	pz(C)	pz(B)	pz(B)	pz(A)	pz(C)	pz(C)	pz(B)	C3−	pz(B)	pz(C)	pz(A)	C2′	(A	−	N)	C2′	(B	−	N)	C2′	(C	−	N)	−pz(A)	−pz(C)	−pz(B)	−pz(C)	−pz(B)	−pz(A)	−pz(B)	−pz(A)	−pz(C)	To	generate	the	A2	combination	take	χ(A2)	=	(1	1	1	−1	−1	–1)	and	multiply	by	any	column	of	table	transformations,	sum	terms,
and	divide	by	6.	This	gives	the	totally	symmetric	combination.	pz,comb	1	=	⅓×(pz(A)	+	pz(B)	+	pz(C))	A	′′2	:	To	generate	the	E	combinations	take	χ(E)	=	(2	−1	−1	0	0	0)	and	multiply	by	each	column	of	table	transformations,	sum	terms	for	each,	and	divide	each	by	6.	This	gives	three	SALCs.	pz,comb	2	=	1/6×(2pz(A)	−	pz(B)	−	pz(C))	E	′′	:	pz,comb	3	=
1/6×(2pz(B)	−	pz(A)	−	pz(C))	pz,comb	4	=	1/6×(2pz(C)	−	pz(B)	−	pz(A))	pz,comb	4	is	a	linear	combination	of	the	previous	two,	pz,comb	4	=	−(	pz,comb	2	+	pz,comb	3),	so	we	discard	it	and	are	left	with	the	double	degenerate,	orthogonal	pair	pz,comb	2	and	pz,comb	3.	In	the	process	we	have	shown	that	the	combination	of	the	exercise,	which	is
pz,comb	2,	belongs	to	the	E	′′	symmetry	species	of	D3h.	Finally,	inspection	of	the	D3h	character	table	tells	us	that	pz(N)	belongs	to	the	A	′′2	symmetry	species	so	the	integrand	of	the	overlap	integral	between	pz(N)	and	pz,comb	2	has	the	symmetry	A	′′2	×	E	′′	=	E	′	.	The	integrand	does	not	span	the	totally	symmetric	species	A1′	so	the	overlap	integral	is
necessarily	zero.	11C.4(b)	The	product	Γ	f	×	Γ	(	µ	)	×	Γi	must	contain	A1	(Example	11C.5	of	text).	Then,	since	Γi	=B1	and	Γ(	µ	)	=	Γ(	y	)	=	B2	of	the	C2v	character	table,	we	can	draw	up	the	following	table	of	characters.	E	C2	σv	σ	′	v	B2	B1	B1	×	B2	1	1	1	−1	−1	1	Hence,	the	upper	state	is	A	2	,	because	A2	×	A2	=	A1.	11C.5(b)	D2,	h	=	4	A1	B1	B2	E	1	1
1	C2z	1	1	–1	C2y	1	–1	1	C2x	1	–1	–1	12	−1	1	−1	1	−1	−1	=	A2	B3	1	–1	–1	1	1	χ	(	Γ	)	(	R	)	χ	(	R	)	[11C.2]	where	χ	(	R)=	(	6,	−2,	0,	0	)	∑	h	R	n	(	A1=	)	1	4	{1(1×	6	)	+	1(1×	(−2)	)	+	1(1×	0	)	+	1(1×	0	)=}	1	n	(	Γ	)=	n	(=	B1	)	1	n(B	=	2)	1	n	(=	B3	)	1	4	0	)}	{1(1×	6	)	+	1(1×	(−2)	)	+	1(	−1×	0	)	+	1(	−1×=	0	)}	{1(1×	6	)	+	1(	−1×	(−2)	)	+	1(1×	0	)	+	1(
−1×=	0	)}	{1(1×	6	)	+	1(	−1×	(−2)	)	+	1(	−1×	0	)	+	1(1×=	1	4	2	4	2	Thus,	this	set	of	basis	functions	spans	A1	+	B1	+	2B2	+	2B3	.	11C.6(b)	(i)	Anthracene	belongs	to	the	D2h	point	group.	The	components	of	μ	span	B3u(x),	B2u(y),	and	B1u(z).	The	totally	symmetric	ground	state	is	Ag.	Since	A	g	×	Γ	=	Γ	in	this	group,	the	accessible	upper	terms	are
B3u	(x-polarized),	B2u	(y-polarized),	and	B1u	(z-polarized).	(ii)	Coronene,	like	benzene,	belongs	to	the	D6h	group.	The	integrand	of	the	transition	dipole	moment	must	be	or	contain	the	A1g	symmetry	species.	That	integrand	for	transitions	from	the	ground	state	is	A1gqf,	where	q	is	x,	y,	or	z	and	f	is	the	symmetry	species	of	the	upper	state.	Since	the
ground	state	is	already	totally	symmetric,	the	product	qf	must	also	have	A1g	symmetry	for	the	entire	integrand	to	have	A1g	symmetry.	Since	the	different	symmetry	species	are	orthogonal,	the	only	way	qf	can	have	A1g	symmetry	is	if	q	and	f	have	the	same	symmetry.	Such	combinations	include	zA2u,	xE1u,	and	yE1u.	Therefore,	we	conclude	that
transitions	are	allowed	to	states	with	A	2u	or	E1u	symmetry.	11C.8(b)	The	Cs	character	table	indicates	that	x	and	y	are	invariant	under	the	σh	symmetry	operation	while	the	character	of	z	is	−1	under	σh.	Thus,	the	z-axis	is	perpendicular	to	the	σh	plane,	the	x	and	y	axes	are	in	the	plane.	The	character	table	also	indicates	that	x2	belongs	to	the	A'	irrep
so	we	surmise	that	x×x2	=	x3	also	belongs	to	A'	(because	A'×A'	=	A')	and	that	any	polynomial	in	x	must	belong	to	the	totally	symmetric	A'	irrep.	Thus,	the	integral	of	any	polynomial	in	x	may	be	non-zero	when	integrated	over	an	object	of	Cs	symmetry	(methanol,	bromochloromethane,	O=N−Cl,	etc.).	Now,	consider	the	odd	function	f(z)	=	f1(z)×f2(z)	=
z×(3z2−1).	Being	perpendicular	to	the	σh	plane,	the	z	dimension	can	exhibit	a	symmetrical	integration	interval	from	one	side	of	the	plane	to	the	other	side	in	a	Cs	object	so	we	place	the	z-axis	origin	in	the	plane.	The	Cs	character	table	indicates	that	z	belongs	to	A''	while	z2	belongs	to	the	totally	symmetric	A'	irrep.	Thus,	the	function	z×(3z2−1)
belongs	to	A'×A''	=	A''	and,	since	it	does	not	span	the	totally	symmetric	irrep,	integration	of	the	function	over	a	symmetric	interval	around	z	=	0	is	necessarily	zero:	I			f1		z		f	2		z		dz			z	3	z	2	1	dz		0	a	a	a	a	Solutions	to	problems	11C.2	(a)	In	C3v	symmetry	the	H1s	orbitals	span	the	same	irreducible	representations	as	in	NH3,	which	is	A1	+	7:13	A1	+	E.
There	is	an	additional	A1	orbital	because	a	fourth	H	atom	lies	on	the	C3	axis.	In	C3v,	the	d	orbitals	span	A1	+	E	+	E	[see	the	final	column	of	the	C3v	character	table].	Therefore,	all	five	d	orbitals	may	contribute	to	the	bonding.	(b)	In	C2v	symmetry	the	H1s	orbitals	span	the	same	irreducible	representations	as	in	H2O,	but	one	“H2O”	fragment	is
rotated	by	90º	with	respect	to	the	other.	Therefore,	whereas	in	H2O	the	H1s	orbitals	span	A1	+	B2	[H1	+	H2,	H1	–	H2],	in	the	distorted	CH4	molecule	they	span	A1	+	B2	+	A1	+	B1	[H1	+	H2,	H1	–	H2,	H3	+	H4,	H3	–	H4].	In	C2v	the	d	orbitals	span	2A1	+	B1	+	B2	+	A2	[C2v	character	table];	therefore,	all	except	A	2	(d	xy	)	may	participate	in	bonding.
Note:	The	method	used	to	solve	Problem	11C.1	also	works	nicely.	11C.4‡	(a)	For	a	photon	to	induce	a	spectroscopic	transition,	the	transition	moment	(μ)	must	be	nonzero.	The	transition	moment	is	the	integral	∫ψ	∗f	μψ	i	dτ	,	where	the	dipole	moment	operator	has	components	proportional	to	the	Cartesian	coordinates.	The	integral	vanishes	unless	the
integrand,	or	at	least	some	part	of	it,	belongs	to	the	totally	symmetric	representation	of	the	molecule’s	point	group.	We	can	answer	the	first	part	of	the	question	without	reference	to	the	character	table,	by	considering	the	character	of	the	integrand	under	inversion.	Each	component	of	μ	has	u	character,	but	each	state	has	g	character;	the	integrand	is
g	×	g	×	u	=	u,	so	the	integral	vanishes	and	the	transition	is	not	allowed.	(b)	However,	if	a	vibration	breaks	the	inversion	symmetry,	a	look	at	the	I	character	table	shows	that	the	components	of	μ	have	T1	character.	To	find	the	character	of	the	integrand,	we	multiply	together	the	characters	of	its	factors.	For	the	transition	to	T1:	E	12C52	12C5	20C3
15C2	A1	μ(T1)	1	3	1	2	1	(1	+	5)	1	2	1	(1	−	5)	1	0	1	–1	T1	3	1	2	(1	+	5)	1	2	(1	−	5)	0	–1	Integrand	9	1	2	(3	+	5)	1	2	(3	−	5)	0	1	The	decomposition	of	the	characters	of	the	integrand	into	those	of	the	irreducible	representations	is	difficult	to	do	by	inspection,	but	when	accomplished	it	is	seen	to	contain	A1.	Therefore	the	transition	to	T1	would	become
allowed.	It	is	easier	to	use	the	eqn.	11C.2	to	determine	the	coefficient	of	A1	in	the	integrand:	1	(	A1	)	n	(	A1	)	=	h	∑χ	(	R	)	χ	(	R)	R	=	{9	+	12[	12	(3	+	5)]	+	12[	12	(3	−	5)]	+	20(0)	+	15(1)}	=	/	60	1	So	the	integrand	contains	A1,	and	the	transition	to	T1	would	become	allowed.	For	the	transition	to	G:	E	A1	μ(T1)	G	Integrand	1	3	4	12	12C52	12C5	1	2	1	(1
+	5)	–1	−	(1	+	5)	1	2	1	2	1	(1	−	5)	–1	−	(1	−	5)	1	2	20C3	15C2	1	0	1	–1	1	0	0	0	Eqn.	11C.2,	the	little	orthogonality	theorem,	gives	the	coefficient	of	A1	in	the	integrand	as	14	n	(	A1	)	=	1	χ	(	)	(	R	)χ	(	R	)	∑	h	A1	R	=	{12	+	12[−	12	(1	+	5)]	+	12[−	12	(1	−	5)]	+	20(0)	+	15(0)}	/	60	=	0	So	the	integrand	does	not	contain	A1,	and	the	transition	to	G	would
still	be	forbidden.	11C.6	Can	the	Eu	excited	state	be	reached	by	a	dipole	transition	from	the	A1g	ground	state?	Only	if	the	representation	of	the	product	ψ	f	µψ	i	includes	the	totally	symmetric	species	A1g.	The	z	component	of	the	dipole	∗	operator	belongs	to	symmetry	species	A2u,	and	the	x	and	y	components	belong	to	Eu.	So	the	products	we	must
consider	are	Eu×A2u×A1g	and	Eu×Eu×A1g.	For	z-polarized	transitions,	the	relevant	characters	are:	Eu	A2u	A1g	EuA2uA1g	E	2C4	C2	2C2′	2C2′′	i	2S4	σh	2σv	2σd	2	1	1	2	0	1	1	0	–2	1	1	–2	0	–1	1	0	0	–1	1	0	–2	–1	1	2	0	–1	1	0	2	–1	1	–2	0	1	1	0	0	1	1	0	To	see	whether	Eu×A2u×A1g	contains	A1g,	we	would	multiply	the	characters	of	the	Eu×A2u×A1g	by
the	characters	of	A1g,	sum	those	products,	and	divide	the	sum	by	the	order	h	of	the	group;	since	the	characters	of	A1g	are	all	1,	we	can	simply	sum	the	characters	of	Eu×A2u×A1g.	Because	they	sum	to	zero,	the	product	Eu×A2u×A1g	does	not	contain	A1g,	and	the	z-polarized	transition	is	not	allowed.	For	x-	or	y-polarized	transitions:	Eu	Eu	A1g
EuA2uA1g	E	2C4	C2	2C2′	2C2′′	i	2S4	σh	2σv	2σd	2	2	1	4	0	0	1	0	–2	–2	1	4	0	0	1	0	0	0	1	0	–2	–2	1	4	0	0	1	0	2	2	1	4	0	0	1	0	0	0	1	0	Summing	the	characters	of	Eu×A2u×A1g,	yields	16,	the	order	of	the	group.	Therefore	the	product	Eu×A2u×A1g	does	contain	A1g,	and	the	transition	is	allowed.	7:15	12	Rotational	and	vibrational	spectra	Note:	The	masses
of	nuclides	are	listed	in	Table	0.2	of	the	Resource	section.	12A	General	features	of	molecular	spectroscopy	Answers	to	discussion	questions	12A.2	Doppler	broadening.	This	contribution	to	the	linewidth	is	due	to	the	Doppler	effect	which	shifts	the	frequency	of	the	radiation	emitted	or	absorbed	when	the	molecules	involved	are	moving	towards	or	away
from	the	detecting	device.	Molecules	have	a	wide	range	of	speeds	in	all	directions	in	a	gas	and	the	detected	spectral	line	is	the	absorption	or	emission	profile	arising	from	all	the	resulting	Doppler	shifts.	The	shape	of	a	Doppler-broadened	spectral	line	reflects	the	Maxwell	distribution	of	speeds	in	the	sample	at	the	temperature	of	the	experiment;	hence
the	line	broadens	as	the	temperature	is	increased	because	the	molecules	acquire	a	wider	and	higher	range	of	speeds.	Doppler	broadening	can	be	significant	in	gas-phase	samples	but	it	can	be	reduced	by	decreasing	the	sample	temperature.	Lifetime	broadening.	The	Doppler	broadening	is	significant	in	gas-phase	samples,	but	lifetime	broadening
occurs	in	all	states	of	matter.	This	kind	of	broadening	is	a	quantum	mechanical	effect	related	to	the	uncertainty	principle	in	the	form	δE	≈	ħ/τ	(eqn	12A.19)	and	is	due	to	the	finite	lifetimes	τ	of	the	states	involved	in	emission	transitions.	When	τ	is	finite,	the	energy	of	the	states	is	smeared	out	and	hence	the	transition	frequency	is	broadened.	The	rate
of	spontaneous	emission	cannot	be	changed;	hence	it	is	a	natural	limit	to	the	breadth	of	a	spectral	line.	Pressure	broadening	or	collisional	broadening.	Collisional	deactivation,	which	arises	from	collisions	between	molecules	and	from	collision	of	molecules	with	the	walls	of	the	container,	affects	the	rate	of	transition	from	an	upper	to	a	lower	energy
state.	Lowering	the	pressure	can	reduce	this	rate.	For	a	gas	phase	collisional	lifetime	of	τcol,	the	mean	time	between	collisions,	the	resulting	collisional	linewidth	is	δEcol	~		/	τ	col	.	Because	τcol	=	1/z	for	gases	where	z	is	the	collision	frequency,	the	kinetic	model	of	gases	implies	that	z	is	proportional	to	the	pressure	and	that	linewidths	are
proportional	to	the	gas	pressure.	Thus,	gas	phase	linewidths	can	be	reduced	by	decreasing	the	pressure.	The	collisional	frequency	of	liquid	phase	molecules	is	more	difficult	to	define	but,	since	pressure	has	little	effect	upon	liquid	density	and	kinetic	energy,	we	expect	pressure	to	have	little	effect	upon	the	linewidth	of	liquid	samples.	Estimating	that	a
liquid-phase	molecule	experiences	a	deactivating	collision	in	the	period	of	a	vibration,	the	collisional	linewidth	is	something	like	δEcol	~		/	τ	col	~		/	(1.0	×	10−13	s)	~	1.1×	10−21	J	or	~53	cm−1/(τ/ps)	[12A.19]	as	a	wavenumber.	Solutions	to	exercises	12A.1(b)	The	ratio	of	Einstein	coefficients	A/B	is	(i)	8π	(	6.626	×	10−34	Js	)	×	(	500	×	106	s	−1	)	A
8πhv	3	[12A.9]	=	=	=	3	B	c3	(	2.998	×108	m	s−1	)	(ii)	v	=	3	7.73	×	10−32	J	m	−3s	−34	c	A	8πh	8π	(	6.626	×	10	J	s	)	so	=	=	=	3.9	×	10−28	J	m	−3	s	3	−2	B	λ	λ3	(	3.0	×10	m	)	12:1	12A.2(b)	log	I	I	=	−	log	0	=	−	ε	[J]L	[12	A.13	and	12A.14]	I0	I	=(−227	dm3	mol−1	cm	−1	)	×	(2.52	×	10−3	mol	dm	−3	)	×	(0.200	cm)	=−0.114	I	0.114	0.769,	and	the
reduction	in	intensity	is	23.1	per	cent	.	Hence,=	10−=	I0	I	I	=	−	log	0	=	−ε	[J]L	[12	A.13	and	12A.14]	I0	I	ε	=	−	1	log	I	[J]L	I0	12A.3(b)	log	−	log	0.615	=	1.2	×	103	dm3	mol−1	cm	−1	(7.17	×	10−4	mol	dm	−3	)	×	(0.25cm)	=	1.2	×	106	cm3	mol−1	cm	−1	[1dm	=	10	cm]	=	=	1.2	×	106	cm	2	mol−1	12A.4(b)	log	T	=−	A	=−ε	[J]L	[12	A.12-14]	1	−	log	(1	−
0.483)	[J]	=	log	T	=	3	−	εL	(423	dm	mol−1	cm	−1	)	×	(0.650	cm)	=	1.04	mmol	dm	−3	1	I	12A.5(b)	ε	=	log	[12	A.13	and	12A.14]	with	L	=	0.20	cm	−	[J]L	I0	We	use	this	formula	to	draw	up	the	following	table.	[dye]	/	mol	dm–3	I	/	I0	ε	/	(dm–3	mol–1	cm–1)	0.0010	0.68	670	0.0050	0.18	596	0.0100	0.037	573	0.0500	1.03	×	10–7	559	The	table	indicates	that
as	the	dye	concentration	increases	the	molar	absorption	coefficient	does	not	remain	constant.	Rather,	it	significantly	decreases.	The	reason	for	this	is	not	entirely	evident	but	we	may	hypothesize	that	the	dye	molecules	become	associated	at	the	higher	concentrations	and	that	the	associated	state	exhibits	a	lower	absorption	coefficient	than	that	of	the
unassociated	dye	molecule.	Should	this	hypothesis	be	correct,	the	molar	absorption	coefficient	at	the	low	concentration,	670	dm3	mol–1	cm–2	,	is	the	molar	absorption	coefficient	of	the	dye.	I	1	−1	12A.6(b)	ε	=	−	log	[12	A.13,	12A.14]	=	log	(	0.29	)	=	58	dm3	mol−1	cm	−1	−3	[J]L	I0	(0.0185	mol	dm	)	×	(0.500	cm)	T	=	I	=	10−[J]ε	L	[12A.12-14]	I0	=10(
−0.0185	mol	dm	12A.7(b)	log	−3	)	×	(58	dm3	mol−1cm	−1	)×	(0.250	cm)	=10−0.27	=0.54,	or	54	per	cent	I	1	I	[12A.13	and	12A.14]	=	−ε	[J]L	so	L	[J]	=	−	log	I0	I0	ε	(i)	1	1	L	[J]	=	−	×	log	=	0.010	mol	dm	−3	cm	3	−1	−1	2	30	dm	mol	cm	(ii)	1	−	×	log	(	0.10	)	=	L	[J]	=	0.033	mol	dm	−3	cm	3	−1	−1	30	dm	mol	cm	12:2	12A.8(b)	A	parabolic	lineshape,
shown	in	Fig.	12.1	of	the	text,	is	symmetrical,	extending	an	equal	distance	on	either	side	of	its	peak.	It	is	well	known,	and	proven	in	the	note	below,	that	the	area	under	a	parabola	equals	2/3	×	base	width	×	height.	Let	vi	and	vf	be	the	initial	and	final	wavenumbers	of	the	absorption	band.	Then,	the	base	of	the	band	has	the	width	∆v	=	vf	−	vi	and	the
integrated	absorption	coefficient	is	the	area	given	by	A=	νf	[12A.15]	=∫	ε	(	v	)	dv	=2	3	×	(	vf	−	vi	)	×	ε	max	(See	note	below.)	∫	ε	(	v	)	dv	νi	band	−1	Since	ν	λ=	and	ν	/	cm	−1	107	/(λ	/	nm)	,	the	initial	and	final	wavenumbers	of	the	absorption	band	are:	=	vi	/	cm	−1	=	107	/	(275)	=	3.64	×	104	and	vf	/	cm	−1	=	107	/	(156)	=	6.41×	104	.	So	2	×	6.41	×	10
4	cm	−1	−	3.64	×	10	4	cm	−1	×	3.35	×	10	4	dm	3	mol	−1	cm	−1	A=	)	(	)	3	(	=	6.19	×	108	dm3	mol	−1	cm	−2	Note:	The	formula	for	the	area	of	a	parabola	can	be	derived	with	the	equation	for	a	parabola	(see	Fig.	12.1	of	the	text):	{	ε	(	v	)=	ε	max	1	−	κ	(	v	−	vmax	)	2	}	The	symmetry	of	the	parabola	means	that	vmax	=	vi	+	1	2	∆v	=	vf	−	1	2	∆v	.
Because	ε=	(	vi	)	ε=	(	vf	)	0	,	the	constant	κ	is	easily	determined	by	examination	of	the	parabola	equation	at	either	ε	(	vi	)	or	ε	(	vf	)	.	{	}	{	}	0	=	ε	max	1	−	κ	(	vi	−	vmax	)	=	ε	max	1	−	κ	(	vi	−	vi	−	1	2	∆v	)	=	ε	max	{1	−	1	4	κ	∆v	2	}	2	2	or	κ=	4	∆v	2	Thus,	=	A	=	∫	ε	(	v	)	dv	[12A.15]	band	vf	∫	ε	(	v	)	dv	vi	v	=ν	f	vf	ì	4	4	2ü	3ù	é			=	ε	max	∫	í1	−	2	(	v	−	vmax	)
ý	dν	=	ε	max	êv	−	−	v	v	(	)	max	2	ú	vi	î	∆v	þ	ë	3∆v	û	v	=νi	4	4	ìé	3ù	3	ùü	é	=	ε	max	í	êvf	−	v	−	vmax	)	ú	−	êvi	−	v	−	vmax	)	ú	ý	2	(	f	2	(	i	3∆v	3∆v	û	ë	ûþ	îë	3ù	3	ùü	ìé	4	4	é	v	−	(	vf	−	1	2	∆v	)	)	ú	−	ê	vi	−	v	−	(	vi	+	1	2	∆v	)	)	ú	ý	=	ε	max	í	êvf	−	2	(	f	2	(	i	3∆v	3∆v	û	ë	ûþ	îë	ìé	∆v	ù	é	∆v	ù	ü	=	ε	max	í	êvf	−	ú	−	êvi	+	ú	ý=	6	û	ë	6	ûþ	îë	2	3	×	∆v	×	ε	max	12A.9(b)	The	integrated
absorption	coefficient	is	the	area	under	an	absorption	peak	A	=	∫	ε	(ν	)	dν	[12A.15]	band	We	are	told	that	ε	is	a	Gaussian	function,	i.e.	a	function	of	the	form	æ	−	x2	ö	2		è	a	ø	and	a	is	a	parameter	related	to	the	width	of	the	peak.	The	integrated	absorption	coefficient,	then,	ε	=	ε	max	exp	ç	where	x=	ν	−νmax	is	∞	æ	−	x2	ö	=	ε	exp	∫−∞	max	çè	a	2	ø	dx	ε
max	a	π	We	must	relate	a	to	the	half-width	at	half-height,	x1/	2	.	=	A	æ	−	x12/	2	ö	−	x12/	2	1	1	=	=	=	ε	ε	exp	so	ln	and	a	ç		max	2	max	2	2	a2	è	a	ø	So,	A	=	ε	max	x1/	2	(	lnπ2	)	1/	2	x1/	2	ln	2	=	(1.54	×	104	dm3	mol−1	cm	−1	)	×	(4233cm	−1	)	×	12:3	(	lnπ2	)	1/	2	=	1.39	×	108	dm3	mol−1	cm	−2	æ1+	s	/	c	ö	12A.10(b)	vapproach	=	ç		è	1−	s	/	c	ø	1/	2	æ	1−	s	/	c
ö		è1+	s	/	c	ø	v	[12A.16a	]	1/	2	or	λapproach	=	ç	Solve	for	s.	(λ	/	λ	s=	(λ	/	λ	approach	approach	)	)	2	−1	2	+1	λ	c=	2.9979	×	108	m	s	−1	=	1.0793	×	109	km	h	−1	where	æ	(	680	/	530	)2	−	1	ö		c	0.244	c	=	ç=	ç	(	680	/	530	)2	+	1		è	ø	For	this	very	large	Doppler-shift	the	traffic	light	must	be	approached	at	24.4%	the	speed	of	light	in	a	vacuum.	12A.11(b)	δE
≈	ħ/τ	so,	since	E	=	hv,	δv	=	(	2πτ	)	.	Solving	for	τ	:	−1	(	)	(i)	τ=	(	2πδv	)	=2π	(	200	×106	s	−1	)	(ii)	τ=	(	2πδv	)	=	(	2πc	δv)	=2π	(	2.9979	×1010	cm	s	−1	)	×	(	2.45	cm	−1	)	−1	−1	−1	−1	=0.796	ns	(	hv,	δv	12A.12(b)	δE	≈	ħ/τ	so,	since	E	==	2πτ	)	(=	−1	)	−1	=	2.17	ps	deactivation	rate	[i.e.,	τ	1	/	deactivation	rate]	.	=	2π	1.0	×	109	s	−1	=	159	MHz	2π	1.0
×	109	s	−1	δv	=	16	MHz	(ii)	=	2π	×	10	δv	=	(i)	Solutions	to	problems	12A.2	Solutions	that	have	identical	transmittance	must	have	identical	values	of	the	absorbance	[12A.13]	and	identical	values	of	ε[J]L	[12A.14].	Consequently,	[	J	]cell	2	=	[	J	]cell	1	Lcell	1	/	Lcell	2	=	25	µ	g	dm	−3	×	(1.55	cm	)	/	(1.18	cm	)	=	33	µ	g	dm	−3	12A.4	The	absorbance's	A1
and	A2	at	wavelengths	λ1	and	λ2	are	the	sum	of	the	individual	absorbance's	in	the	mixture	of	A	and	B.	=	A1	ε	A1	L[A]	+	ε	B1	L[B]	(i)	=	A2	ε	A2	L[A]	+	ε	B2	L[B]	(ii)	Solving	(i)	for	[A]	gives	A	−	ε	L[B]	[A]	=	1	B1	(iii)	ε	A1	L	Substitution	of	(iii)	into	(ii)	and	solving	for	[B]	gives	æ	A	−	ε	L[B]	ö	A2	ε	A2	L	ç	1	B1	=		+	ε	B2	L[B]	ε	A1	L	è	ø	A	A	L	ε=	ε	ε	ε	ε	A1ε	B2
L[B]	[B]+	−	A1	2	A2	1	A2	B1	[B]	=	ε	A1	A2	−	ε	A2	A1	ε	(	A1ε	B2	−	ε	A2ε	B1	)	L	(iv)	Substitution	of	(iv)	into	(iii)	and	simplifying	gives	12:4	ïì	ε	A1	A2	−	ε	A2	A1	ïü	ý	ïî	(	ε	A1ε	B2	−	ε	A2ε	B1	)	L	ïþ	ε	A1	L[A]	=	A1	−	ε	B1	L	í	[A]	=	=	(ε	A1ε	B2	−	ε	A2ε	B1	)	A1	−	ε	B1	(ε	A1	A2	−	ε	A2	A1	)	(ε	A1ε	B2	−	ε	A2ε	B1	)	=	ε	A1ε	B2	A1	−	ε	A1ε	B1	A2	(ε	A1ε	B2	−	ε
A2ε	B1	)	ε	B2	A1	−	ε	B1	A2	(ε	A1ε	B2	−	ε	A2ε	B1	)	L	(v)	Equations	(iv)	and	(v)	are	the	desired	results.	12A.6	‡	The	integrated	absorption	coefficient	is	A	=	∫	ε	(v	)	dv	[12	A.15]	band	If	we	can	express	ε	as	an	analytical	function	of	v	,	we	can	carry	out	the	integration	analytically.	Following	the	hint	in	the	problem,	we	seek	to	fit	ε	to	an	exponential	function,
which	means	that	a	plot	of	ln	ε	versus	v	ought	to	be	a	ε	m	v	+	b	,	then	straight	line.	So,	if	ln=	ε	=	exp(m	v	)=	exp(b)	and	A	(e	b	/	m	)	{exp(m	vf	)	−	exp(m	vi	)}	We	draw	up	the	following	table,	find	the	best-fit	line,	and	make	the	plot	of	Fig.	12A.1.	The	linear	regression	fit	yields	the	values	of	m	and	b	for	the	computation	of	the	integrated	absorption
coefficient.	/nm	292.0	296.3	300.8	305.4	310.1	315.0	320.0	ε	/(dm3	mol−1	cm	−1	)	1512	865	477	257	135.9	69.5	34.5	v/cm	−1	34248	33748	33248	32748	32248	31746	31250	ln	ε	/(dm3	mol−1	cm	−1	)	4.69	4.13	3.54	2.92	2.28	1.61	0.912	Figure	12A.1	‡	These	problems	were	supplied	by	Charles	Trapp	and	Carmen	Giunta.	12:5	So	A	é	æ	1.26	×	10−3	cm
ö	æ	1.26	×	10−3	cm	ö	ù	3	−1	−1	e	−38.383	−	exp	exp	ê	ç		ç		ú	dm	mol	cm	−7	1.26	×	10−3	cm	ë	è	290	×	10−7	cm	ø	è	320	×	10	cm	ø	û	=	1.24	×	105	dm3	mol−1	cm	−2	Gaussian	distribution:	ε	(	v)	=	ε	max	e	1	æ	v	−	µ	ö	−	ç		2è	σ	ø	2	where	µ	is	the	mean	of	v	and	σ	is	the	standard	deviation	of	the	distribution.	Dividing	by	εmax,	taking	the	natural	logarithm,
and	solving	for	v	−	µ	gives	ε	ö	æ	v	−	µ	=	±	ç	2	ln	max		σ	ε	ø	è	1/	2	The	width	of	the	distribution	at	half-height,	∆	v1/	2	,	equals	2	v	−	µ	evaluated	at	ε	=	εmax/2.	Thus,	2)1/	2	σ	or	σ	=	∆v1/	2	2(2	ln=	∆v1/	2	2(2	ln	2)1/	2	We	can	now	evaluate	the	integrated	absorption	coefficient,	A,	in	terms	of	εmax	and	∆	v1/	2	.	Let	x	=	2	v	−	µ	1	and	dx	=	dv	and	ε	ε	max	e
−½	x	=	σ	σ	∞	Then	=	A	ε	dv	[40.10]	∫=	=	1æ	π	ö	ç		ε	max	∆v1/	2	2	è	ln	2	ø	−∞	∞	ε	max	=	σ	∫	e	−½	x	dx	2	−∞	1/	2	(	2π	)	ε	maxσ	[standard	integral]	1/	2	=	1.064467	ε	max	∆v1/	2	The	Gaussian	distribution	is	symmetric	about	the	mean	value	of	v	,	µ,	which	is	the	value	of	v	at	the	peak	of	the	distribution.	The	absorption	band	of	text	Fig.	12.2	does	not	quite
have	this	symmetry.	It	appears	to	be	a	skewed	slightly	toward	the	higher	wavenumbers.	Never	the	less,	we	estimate	A	by	assuming	that	it	can	be	approximated	as	a	single	Gaussian	characterized	by	εmax	and	∆	v1/	2	values	that	are	coarsely	read	off	text	Fig.	F9.2.	Coarse	estimate:=	A	1.064467	ε	max	∆=	v1/	2	1.064467	×	(10	dm3	mol−1	cm	−1	)	×	(
5.4	×	103	cm	−1	)	=	5.7	×	104	dm3	mol−1	cm	−2	Let	us	now	suppose	that	the	slightly	non-Gaussian	shape	exhibited	by	text	Fig.	12.2	results	from	two	separate	absorption	lines	each	of	which	has	a	molar	absorption	coefficient	that	is	a	Gaussian	function	of	wavenumber.	Text	12:6	Fig.	12.2	is	then	an	'apparent'	molar	absorption	coefficient	that	is	the
sum	of	two	independent	Gaussians	each	characterized	by	an	amplitude	A,	a	mean	value	µ,	and	a	standard	deviation	σ.	That's	a	total	of	6	parameters	to	be	adjusted	to	fit	the	data	of	the	figure.	We	label	the	3	parameters	of	the	predominate	Gaussian,	the	one	with	the	lower	mean	wavenumber,	with	a	'1';	the	low	amplitude,	higher	mean	distribution	is
labeled	with	a	'2'.	A	lot	of	(	v	,ε)	data	pairs	are	needed	to	determine	precise	values	of	the	parameters	so	we	expanded	text	Fig.	12.2	and	used	Photoshop	to	read	a	total	of	20	data	pairs,	several	of	which	are	displayed	in	the	following	Mathcad	Prime	2	worksheet.	Calling	the	sum	of	the	two	Gaussians	Gsum,	the	worksheet	uses	guess	values	for	the	6
parameters	to	calculate	the	difference	εobs	−	Gsum	at	each	of	the	20	vobs	,	the	difference	is	squared	and	summed	over	all	data	pairs,	which	the	worksheet	calls	the	'sum	of	the	squared	errors'	SSE.	The	idea	is	to	systematically	adjust	the	6	parameters	so	as	to	minimize	SSE.	Mathcad	performs	the	minimization	process	with	the	'minerr()'	function
within	a	solve	block.	The	symbol	'v'	is	used	to	represent	wavenumber	within	the	worksheet.	12:7	The	plot	shows	that	the	sum	of	two	Gaussians	with	adjusted	parameters	fits	the	data	very	nicely.	The	values	of	the	six	parameters	are	listed	just	above	the	plot.	The	following	worksheet	section	uses	the	fitted	function	to	calculate	the	integrated	absorption
coefficient	with	eqn	12A.15.	The	earlier,	coarse	estimate	is	seen	to	be	rather	close	to	the	more	precise	calculation.	12A.8‡	(a)	The	integrated	absorption	coefficient	is	(specializing	to	a	triangular	lineshape)	=	ε	dv	½	ε	max	∆v	A	∫	=	band	=	½	(150	dm3	mol−1	cm	−1	)	×	(34	483	−	31250)	cm	−1	=	2.42	×	105	dm3	mol−1	cm	−2	(b)	The	concentration	of
gas	under	these	conditions	is	n	p	2.4	Torr	[CH	3	I]total	=	=	=	=1.03	×	10−4	mol	dm	−3	V	RT	(62.364	Torr	dm3	mol−1	K	−1	)	×	(373K)	Over	99%	of	these	gas	molecules	are	monomers,	so	we	take	this	concentration	to	be	that	of	CH3I	(If	1	of	every	100	of	the	original	monomers	turned	to	dimers,	each	produces	0.5	dimers;	remaining	monomers
represent	99	of	99.5	molecules.)	Beer’s	law	states	A	=	ε	[CH	3	I]L	=	(150	dm3	mol−1	cm	−1	)	×	(1.03	×	10−4	mol	dm	−3	)	×	(12.0	cm)	=	0.185	.	(c)	The	concentration	of	gas	under	these	conditions	is	12:8	n	p	100	Torr	[CH	3	I]total	=	=	=	=4.30	×	10−3	mol	dm	−3	V	RT	(62.364	Torr	dm3	mol−1	K	−1	)	×	(373K)	Because	18%	of	these	CH3I	units	are	in
dimers	(forming	9%	as	many	molecules	as	were	originally	present	as	monomers),	the	monomer	concentration	is	only	82/91	of	this	value	or	3.87	×	10–3	mol	dm–3.	Beer’s	law	is	=	A	ε	[CH	=	(150	dm3	mol−1	cm	−1	)	×	(3.87	×	10−3	mol	dm	-3	)	×	(12=	.0	cm)	3	I]L	6.97	If	this	absorbance	were	measured,	the	molar	absorption	coefficient	inferred	from	it
without	consideration	of	the	dimerization	would	be	ε	=A	/	([CH	3	I]L)	=6.97	/	((4.30	×	10−1	mol	dm	−3	)	×	(12.0	cm))	=	135dm3	mol−1	cm	−1	an	apparent	drop	of	10%	compared	to	the	low-pressure	value.	12A.10	According	to	eqn	12A.16a,	the	Doppler	effect	obeys	æ	1−	s	/	c	ö	vreceding	=	vf	where	f	=	ç		è1+	s	/	c	ø	This	can	be	rearranged	to	yield:	1−
f	2	s=	c.	1+	f	2	We	are	given	wavelength	data,	so	we	use:	vstar	λ	=	f	=	.	v	λstar	The	ratio	is:	654.2	nm	=	f	=	0.9260,	706.5	nm	1/	2	1	−	0.92602	=	c	0.0768	c	2.30	×	107	m	s	−1	=	1	+	0.92602	The	broadening	of	the	line	is	due	to	local	events	(collisions)	in	the	distant	star.	It	is	temperature	dependent	and	hence	yields	the	surface	temperature	of	the
star.	Eqn	12A.17	relates	the	observed	linewidth	to	temperature:	1/	2	2	m	2λ	æ	2kT	ln	2	ö	æ	cδλ	ö	δλ	obs	=	=	,	ç		so	T	ç		c	è	m	ø	è	2λ	ø	2k	ln	2	so	=	s	2	æ	(2.998	×	108	m	s	−1	)	×	(61.8	×	10−12	m)	ö	é	(47.95	u)(1.661×	10−27	kg	u	−1	)	ù	T	=ç		ê	ú,	−23	−1	2(654.2	×	10−9	m)	è	ø	ë	2(1.381×	10	J	K	)	ln	2	û	T	8.34	×	105	K	=	12A.12	On	the	assumption	that	every
collision	deactivates	the	molecule	we	may	write	1	=	τ	col	≈	z	1/	2	1/	2	kT	æ	πm	ö	kT	æ	πM	ö	=	ç		ç		4σ	p	è	kT	ø	4σ	p	è	RT	ø	For	HCl,	with	MHCl	=	36	g	mol−1,	1/	2	τ	col	æ	ö	æ	ö	(1.381×	10−23	J	K	−1	)	×	(298	K)	π	×	(36	×	10−3	kg	mol−1	)	×	ç		ç		−18	−1	−1	2	5	è	(4)	×	(0.30	×	10	m	)	×	(1.013	×	10	Pa)	ø	è	(8.315	J	K	mol	)	×	(298	K)	ø	=	2.3	×	10−10	s	=	δE
h=	δv		τ	The	width	of	the	collision-broadened	line	is	therefore	approximately	12:9	1	1	=	≈	700	MHz	2πτ	col	(2π)	×	(2.3	×	10−10	s)	To	calculate	the	Doppler	width	we	need	the	relation	δvcol	=	1/	2	δvdop	=	1/	2	2v	æ	2kT	ln	2	ö	2v	æ	2	RT	ln	2	ö	−1	=	ç		ç		[40.12,	M	HCl	≈	36	g	mol	]	c	è	m	ø	c	è	M	ø	æ	2	×	(	8.315	J	K	−1	mol−1	)	×	(	298	K	)	×	ln	(	2	)	ö	ç		=	×	
36	×	10−3	kg	mol−1	(	2.998	×108	m	s−1	)	çè	ø	−6	=	2.1×	10	v	1/	2	2	v	HCl	exhibits	a	microwave,	rotational	transition	at	λ	≈	0.016	cm	(v	≈	1.9	×	1012	Hz)	so	the	Doppler	width	is	estimated	to	be	δvdop	=	(	2.1×	10−6	)	×	(1.9	×	1012	Hz	)	=	4.0	MHz	Since	the	collision	width	is	proportional	to	p	[δν	∝	1/τ	and	τ	∝	1/p	]	and,	the	pressure	must	be	reduced
by	a	factor	of	about	4.0/700	=	0.006	before	Doppler	broadening	begins	to	dominate	collision	broadening.	Hence,	the	pressure	5	Torr	must	be	reduced	to	below	(0.006)	×	(760	Torr)	=	12A.14	Our	study	uses	the	discrete	forms	of	eqns	12A.21	and	12A.22	for	the	signal	and	Fourier	transformation.	These	are	described	in	text	Example	12A.2.	Here's	a
Mathcad	Prime	2	worksheet	that	is	suitable	for	the	study.	12:10	By	changing	the	values	of	the	signal	wavenumbers	and	intensities	it	is	found	that	the	Fourier	transform	of	the	interferometer	output	faithfully	reproduces	the	signal.	There	is,	however,	an	exception.	If	the	interferometer	number	of	p	values,	N,	is	set	too	low	(try	20),	the	Fourier	transform
becomes	a	very	bad	distortion	of	the	original	signal	and	spurious	peaks	appear.	12B	Molecular	rotation	Answers	to	discussion	questions	12B.2	A	molecule	has	three	principal	axes	of	rotation;	label	them	a,	b,	and	c.	The	corresponding	moments	of	inertia	are	Ia,	Ib,	and	Ic.	A	prolate	symmetric	rotor	has	I	a	≠	I	b	=	I	c	with	I	a	=	I	<	I	b	=	I	c	=	I	⊥	.	An
oblate	symmetric	rotor	has	I=	I	b	≠	I	c	with	I	a	=	I	b	=	I	⊥	<	I	c	=	I	.	An	American	football	and	a	cigar	a	are	prolate	symmetric	rotors,	a	discus	and	pancake	are	oblate	symmetric	rotors.	CH3Cl	and	CH3CCH	are	prolate.	PF3,	benzene,	C6H6,	and	BCl3	are	oblate.	Solutions	to	exercises	12B.1(b)	PH3	is	a	symmetric	rotor	similar	to	NH3;	we	use	12:11	=	I
2mH	(1	−	cos	θ	)	R	2	[Table	12B.1]	=	2	×1.0079	mu	×1.66054	×10−27	kg/mu	×	(1	−	cos	93.5	)	×	(1.42	×10−10	)	2	=	7.161×10−47	kg	m	2	The	corresponding	rotational	constant	is		=	A		1.05447	×10−34	J	s	=	=	390.9=	m	−1	3.909	cm	−1	4π	cI	4π	×	2.998	×108	m	s	-1	×	7.161×	10−47	kg	m	2	12B.2(b)	In	order	to	conform	to	the	symbols	used	in	the
first	symmetric	rotor	figure	of	Table	12B.1,	we	will	use	the	molecular	formula	BA4.	I		is	along	the	internuclear	axis,	the	unique	AB	bond,	and	I	⊥	is	perpendicular	to	both	I		and	a	molecular	face	that	does	not	contain	I		(see	the	symmetric	rotor	of	text	Fig.	12B.3).	For	our	θ	θ=	π	/	2	+	sin	−1	(1/	3)	where	θ	tetra	is	the	tetrahedral	angle	(approx.	molecule,
mC	=	mA	and	=	tetra	′	109.471°).	You	can	demonstrate	that	cos	(θ	tetra	)	=	−	1	3	and,	using	the	definition	ρ	R=	RAB′	/	R	,	=	AB	/	RAB	the	equations	of	Table	12B.1	simplify	to	8	I		/	mA	R	2	=	2	(1	−	cos	θ	tetra	)	=	3	4	+	m	+m	I	⊥	/	mA	R	2	=	(	A	B	)	/	3m	+	{(	3mA	+	mB	)	ρ	+	2mA	}	ρ	/	m	where	m	=4mA	+	mB	.	3	2	The	I		/	mA	R	moment	of	inertia	ratio
does	not	depend	upon	either	atomic	masses	or	bond	lengths.	It	is	a	constant	8/3	for	all	symmetric	rotors	with	tetrahedral	angles.	However,	the	I	⊥	/	mA	R	2	moment	of	inertia	ratio	does	have	a	specific	atomic	mass	dependency	so	we	will	plot	its	ρ	dependence	for	CH4,	an	important	fuel	and	powerful	greenhouse	gas.	The	computational	equation	is	I	⊥	/
mA	R	2	=77	48	+	(15ρ	+	2	)	ρ	/16	and	its	plot	is	found	in	Fig.	12B.1.	As	ρ	increases,	the	atom	on	the	axis	of	I		moves	away	from	the	axis	of	I	⊥	,	thereby,	increasing	the	moment	of	inertia	around	this	axis.	5.5	5.0	I	⊥	for	CH	4	4.5	I	/	mA	R	2	4.0	3.5	I		all	BA	4	molecules	3.0	2.5	1	1.2	1.4	1.6	ρ	Figure	12B.1	12:12	1.8	2	12B.3(b)(i)	asymmetric,	(ii)	oblate
symmetric,	(iii)	asymmetric,	(iv)	linear	12B.4(b)	This	exercise	is	analogous	to	Exercise	12B.4(a),	but	here	our	solution	will	employ	a	slightly	different	16	algebraic	technique.	Let	=	R	ROC	=	,	R	′	R=	=	O,	C	12	C.	CS	,	O	I=		[See	the	comment	in	the	solution	to	Exercise	12B.4(a)]	4π	B	1.05457	×	10−34	J	s	=	1.3799	×	10−45	kg	m	2	=	I	(	OC32S)	=
8.3101×	10−19	mu	m	2	(	4π	)	×	(	6.0815	×109	s	−1	)	1.05457	×	10−34	J	s	I	(	OC34S)	=	=	1.4145	×	10−45	kg	m	2	=	8.5184	×	10−19	mu	m	2	9	−1	π	4	×	5.9328	×	10	s	(	)	(	)	The	expression	for	the	moment	of	inertia	given	in	Table	12B.1	may	be	rearranged	as	follows.	Im=	mA	mR	2	+	mC	mR	′2	−	(	mA	R	−	mC	R	′	)	2	=	mA	mR	2	+	mC	mR	′2	−	mA2	R
2	+	2mA	mC	RR	′	−	mC2	R	′2	=	mA	(	mB	+	mC	)	R	2	+	mC	(	mA	+	mB	)	R	′2	+	2mA	mC	RR	′	Let	mC	m=	=	′	m34S	32S	and	mC	Im	mA	=	(	mB	+	mC	)	R	2	+	(	mA	+	mB	)	R	′	2	+	2mA	RR	′	mC	mC	(a)	I	′	m′	mA	=	(	mB	+	mC′	)	R	2	+	(	mA	+	mB	)	R	′	2	+	2mA	RR	′	mC′	mC′	(b)	Subtracting	Im	I	′m′	−=	mC	mC′	éæ	mA	ö	ù	2	æ	mA	ö	êç		(	mB	+	mC	)	−	ç		(	mB	+
mC′	)	ú	R	′	êëè	mC	ø	úû	è	mC	ø	Solving	for	R2	(	)	(	)	Im	I	′m	′	mC′	Im	−	mC	I	′m	′	m	C	−	mC′	=	é	mmA	(	mB	+	mC	)	−	mmA′	(	mB	+	mC′	)	ù	mB	mA	(mC′	-mC	)	C	ë	C	û	R2	=	(	)	=	mA	m=	m=	m32S	,	and	=	mC′	m34S	Substituting	the	masses,	with	O	,	mB	C	,	mC	m		(15.9949		12.0000		31.9721)	mu		59.9670	mu	m			(15.9949		12.0000		33.9679)	mu		61.9628	mu
R2		(33.9679	mu	)		(8.31011019	mu	m	2	)		(59.9670	mu	)	(12.0000	mu	)		(15.9949	mu	)		(33.9679	mu		31.9721	mu	)		(31.9721	mu	)		(8.51841019	mu	m	2	)		(61.9628	mu	)	(12.0000	mu	)		(15.9949	mu	)		(33.9679	mu		31.9721	mu	)		51.64461019	m	2	)		1.34821020	m	2	383.071	R		1.16111010	m	=	116.1	pm	=	ROC	12:13	Because	the	numerator	of	the
expression	for	R2	involves	the	difference	between	two	rather	large	numbers	of	nearly	the	same	magnitude,	the	number	of	significant	figures	in	the	answer	for	R	is	certainly	no	greater	than	4.	Having	solved	for	R,	either	equation	(a)	or	(b)	above	can	be	solved	for	R′.	The	result	is	R			1.5591010	m		155.9	pm		RCS	12B.5(b)	The	centrifugal	distortion
constant	is	given	by	B	4		DJ	=	2	3	ν		=	DJ		J	∝	B	D	3	[12B.17,	also	see	Integrated	Activity	I12.2]	4×(0.0809	cm	−1	)3	=	(323.2	cm	−1	)2	∝	B	1	2.028×10−8	cm−1	I	∝	mBr	[Table	12B.1]	I		J	(81	Br)	m793	(78.9183	mu	)3	D	1	Br		=	=	=	Therefore,	D	J	∝	3	and	0.9277		J	(	79	Br)	m813	m	(80.9163	m	)3	D	Br	Br	u	We	have	assumed	that	the	internuclear
distance	remains	constant	upon	substitution.	Solutions	to	problems	12B.2	Figure	12B.2	Atom	A	Atom	C	Atom	B	Let	us	assume	atom	C	is	the	most	massive.	Then	the	center	of	mass,	CM,	will	be	located	at	a	distance,	D,	from	atom	B.	In	the	notation	of	Table	12B.1,	we	must	have	the	relation	mA	(	R	+	D)	+	mB	D	=	mC	(	R	′	−	D)	,	which	may	be
rearranged	into	D(mA	+	mB	+	mC	)=	mC	R	′	−	mA	R	12:14	Solving	for	D,	we	obtain	D	=	mC	R	′	−	mA	R	,	where	m	=	mA	+	mB	+	mC	.	Expanding	m	I	=	∑	mi	ri	2	[12B.1]	gives	i	I	=	mA	R	2	+	mA	D	2	+	2	RDmA	+	mB	D	2	+	mC	R	′2	+	mC	D	2	−	2	R	′DmC	=	mA	R	2	+	mC	R	′2	+	D	2	(mA	+	mB	+	mC	)	+	2	D(mA	R	−	mC	R	′)	After	substituting	the	above



formula	for	D,	and	using	m	=	mA	+	mB	+	mC	we	obtain	2	æ	m	R	′	−	mA	R	ö	æ	m	R	′	−	mA	R	ö	+	2ç	C	I	=	mA	R	2	+	mC	R	′2	+	m	ç	C			×	(mA	R	−	mC	R	′)	m	m	è	ø	è	ø	1	2	=	mA	R	2	+	mC	R	′2	+	(mC	R	′	−	mA	R	)	2	−	(mC	R	′	−	mA	R	)	2	m	m	1	=	mA	R	2	+	mC	R	′2	−	(mC	R	′	−	mA	R	)	2	m	1	=	mA	R	2	+	mC	R	′2	−	(mA	R	−	mC	R	′)	2	m	QED	12C	Rotational
spectroscopy	Answers	to	discussion	questions	12C.2	(1)	Rotational	Raman	spectroscopy.	The	gross	selection	rule	is	that	the	molecule	must	be	anisotropically	polarizable,	which	is	to	say	that	its	polarizability,	α,	depends	upon	the	direction	of	the	electric	field	relative	to	the	molecule.	Non-spherical	rotors	satisfy	this	condition.	Therefore,	linear	and
symmetric	rotors	are	rotationally	Raman	active.	(2)	Vibrational	Raman	spectroscopy.	The	gross	selection	rule	is	that	the	polarizability	of	the	molecule	must	change	as	the	molecule	vibrates.	All	diatomic	molecules	satisfy	this	condition	as	the	molecules	swell	and	contract	during	a	vibration,	the	control	of	the	nuclei	over	the	electrons	varies,	and	the
molecular	polarizability	changes.	Hence	both	homonuclear	and	heteronuclear	diatomics	are	vibrationally	Raman	active.	In	polyatomic	molecules	it	is	usually	quite	difficult	to	judge	by	inspection	whether	or	not	the	molecule	is	anisotropically	polarizable;	hence	group	theoretical	methods	are	relied	on	for	judging	the	Raman	activity	of	the	various	normal
modes	of	vibration.	The	procedure	is	discussed	in	Section	12D.5	and	demonstrated	in	Brief	Illustration	12D.5.	12C.4	Hydrogen	molecules	can	exist	in	two	forms:	the	para-	form	has	antiparallel	nuclear	spins	and	the	orthoform	has	parallel	nuclear	spins.	Because	of	these	arrangements	of	the	nuclear	spins	the	ortho-	form	must	have	rotational
wavefunctions	restricted	to	odd	J	values	only	as	discussed	in	detail	in	Section	12C.3.	Orthohydrogen	cannot	exist	in	the	J	=	0	state.	Hence,	the	lowest	energy	level	of	ortho-hydrogen	has	J	=	1	and	therefore	a	zero-point	energy.	The	conversion	between	the	two	forms	is	very	slow.	12:15	Solutions	to	Exercises	12C.1(b)	Polar	molecules	show	a	pure
rotational	absorption	spectrum.	Therefore,	select	the	polar	molecules	based	on	their	well-known	structures.	Alternatively,	determine	the	point	groups	of	the	molecules	and	use	the	rule	that	only	molecules	belonging	to	Cn,	Cnv,	and	Cs	may	be	polar,	and	in	the	case	of	Cn	and	Cnv,	that	dipole	must	lie	along	the	rotation	axis.	Hence	all	are	polar
molecules.	Their	point	group	symmetries	are	(i)	H	2	O,	C2v	,	(ii)	H	2	O	2	,	C2	,	(iii)	NH	3	,	C3v	,	(iv)	N	2	O,	Cv	All	show	a	pure	rotational	spectrum.	12C.2(b)	The	frequency	of	the	transition	is	related	to	the	rotational	constant	by		=hcB		[	J	(	J	+	1)	−	(	J	−	1)	J	]	=2hcBJ		hv	=∆E	=hc∆	F	where	J	here	refers	to	the	upper	state	(	J	=	2	)	.	The	rotational
constant	is	related	to	molecular	structure	by		B	=		=	4π	cI	4π	cmeff	R	2	where	I	is	moment	of	inertia,	meff	is	effective	mass,	and	R	is	the	bond	length.	Putting	these	expressions	together	yields		=	v	2=	cBJ	J	2π	meff	R	2	The	reciprocal	of	the	effective	mass	is	−1	=	mC−1	+	mO−1	=	meff	=	So	v	(12mu	)	−1	+	(15.9949mu	)	−1	1.66054	×	10−27	kg	mu	−1
(8.78348	×10	=	8.78348	×	1025	kg	−1	kg	−1	)	×	(1.0546	×	10−34	J	s	)	×	(	2	)	=	2	2π	(112.81×	10−12	m	)	25	2.3169	×	1011	s	−1	When	centrifugal	distortion	is	taken	into	account	the	frequency	decreases	as	can	be	seen	by	considering	eqn.	12C.8b.	12C.3(b)	The	wavenumber	of	the	transition	is	related	to	the	rotational	constant	by		=hcB		[	J	(	J	+	1)	−
(	J	−	1)	J	]	=2hcBJ		hcν	=∆E	=hc∆	F	where	J	refers	to	the	upper	state	(J	=	1).	The	rotational	constant	is	related	to	molecular	structure	by	=	B		4π	cI	where	I	is	moment	of	inertia.	Putting	these	expressions	together	yields		BJ	ν	2=	=	(1.0546	×10−34	J	s	)	×	(1)	J	J	I	so	=	=	2π	cI	2π	cν	2π	(	2.998	×	1010	cm	s	−1	)	×	(16.93	cm	−1	)	=	I	3.307	×	10−47	kg	m
2	The	moment	of	inertia	is	related	to	the	bond	length	by	æ	I	ö	2	=	I	m=	eff	R	so	R	çè	m	ø	eff	12	12:16	−1	−1	=	mH−1	+	mBr	=	meff	(1.0078	mu	)	+	(	80.9163	mu	)	−1	1.66054	×	10−27	kg	mu	−1	{(6.0494	×10	and	R=	−1	=	6.0494	×	1026	kg	−1	kg	−1	)	×	(3.307	×	10−47	kg	m	2	)}	12	26	1.414	×	10−10	m	=141.4pm	=	12C.4(b)	The	wavenumber	of	the
transition	is	related	to	the	rotational	constant	by		=hcB		[	J	(	J	+	1)	−	(	J	−	1)	J	]	=2hcBJ		hcv	=∆E	=hc∆	F	where	J	refers	to	the	upper	state.	So	wavenumbers	of	adjacent	transitions	(transitions	whose	upper	states	differ	by	1)	differ	by	=	∆v=	2	B			so	I=	2π	cI	2π	c∆v	where	I	is	the	moment	of	inertia,	meff	is	the	effective	mass,	and	R	is	the	bond	length.	So
I	=	(1.0546	×	10	(	2π	2.9979	×	10	cm	s	10	−34	−1	Js	)	=	×	1.033	cm	−1	)	(	)	5.420	×	10−46	kg	m	2	The	moment	of	inertia	is	related	to	the	bond	length	by	æ	I	ö	=	I	m=	eff	R	so	R	çè	m	ø	eff	12	2	−1	=	mF−1	+	mCl−1	=	meff	and	=	R	(18.9984	mu	)	−1	+	(	34.9688	mu	)	−1	=	4.89196	×	1025	kg	−1	1.66054	×	10−27	kg	mu	−1	{(	4.89196	×10	25	}	kg	−1
)	×	(	5.420	×	10−46	kg	m	2	)	12	=	1.628	×	10−10	m	=162.8	pm	12C.5(b)	See	eqn	12C.9	and	problem	12C.9.The	most	highly	populated	rotational	level	is	given	by	J	max	½	æ	kT	ö	1	≈ç	−		2	ø	è	2hcB	[12C.9]	For	Br2	after	substituting	for	the	constants	this	expression	becomes	J	max	½	æ	T	/K	ö	1	≈ç		−2	0.2328	è	ø	(i)	At	25°C	=	298.15	K,	J	max	½	1	æ	298.15
/	K	ö	≈ç		−2	è	0.2328	ø	½	≈	36	æ	373.15	/	K	ö	1		−2	è	0.2328	ø	(ii)	At	100°C	=	373.15	K,	J	max	≈	ç	Answers	are	rounded	off	to	the	nearest	integer.	12:17	≈	40	12C.6(b)	A	molecule	must	be	anisotropically	polarizable	to	show	a	rotational	Raman	spectrum;	all	molecules	except	spherical	rotors	have	this	property.	So	(i)CH	2	CI	2	,	(ii)CH	3	CH	3	,	and	(iv)N	2
O	can	display	rotational	Raman	spectra;	SF6	cannot.	12C.7(b)	The	wavenumber	of	a	Stokes	line	in	rotational	Raman	is	ν	Stokes		ν	i		2B(2	J		3)	[12C.15]	where	J	is	the	initial	(lower)	rotational	state.	So	ν	Stokes		20623	cm1		2(1.4457	cm1	)	[2(2)		3]		20603	cm1		,	so	B		1		(3.5312	cm1	)		0.88280	cm1	The	separation	of	lines	is	4B	4	12C.8(b)					Then	we	use
R				4π	meff	cB		12	[Exercise	12C.8(a)]	with	meff		12	m		19	F		12		(18.9984	mu	)		(1.66051027	kg	mu	1	)		1.577342	1026	kg			1.05461034	J	s		R			26	1	1		10		4π	(1.57734210	kg)		(2.99810	cm	s	)		(0.88280	cm	)		12		1.41785	1010	m	=	141.78	pm	For	12C32S2,	all	nuclei	are	spin-0.	The	symmetry	considerations	are	identical	to	those	of	12C16O2	discussed
in	the	text;	only	even	values	of	J	are	permissible.	For	13C32S2,	the	symmetry	of	the	molecule	is	unchanged,	so	again	only	even	values	of	J	are	permissible.	12C.9(b)	Solutions	to	problems	12C.2	The	separations	between	neighbouring	lines	are	20.81,	20.60,	20.64,	20.52,	20.34,	20.37,	20.26	mean:20.51cm	−1	=	B	10.26cm	−1	and	(	1	)	×	(20.51cm	−1	)
=	2		1.05457	×10−34	Js	=	=	=	I		(4π	)	×	(2.99793	×1010	cm	s	−1	)	×	(10.26	cm	−1	)	4π	cB	2.728	×10−47	kg	m	2	1/	2	æ	I	ö	=	R	ç		è	meff	ø	[Table	12B.1]	with=	meff	1.6266	×10−27	kg	[Exercise	12C.3(a)]	1/	2	æ	2.728	×10−47	kg	m	2	ö	=	ç=	129.5	pm		−27	è	1.6266	×10	kg	ø	Comment.	Ascribing	the	variation	of	the	separations	to	centrifugal	distortion,
and	not	by	just	taking	a	simple	average	would	result	in	a	more	accurate	value.	Alternatively,	the	effect	of	centrifugal	distortion	could	be	minimized	by	plotting	the	observed	separations	against	J,	fitting	them	to	a	smooth	curve,	and		∝	1	and	I	∝	m	,	B		∝	1	.	Hence,	the	corresponding	lines	in	extrapolating	that	curve	to	J	=	0	.	Since	B	eff	I	meff	2	H	35	Cl
will	lie	at	a	factor	12:18	meff	(1	H	35	Cl)	1.6266	=	=	0.5144	meff	(	2	H	35	Cl)	3.1622	to	low	frequency	of	1	H	35	Cl	lines.	Therefore,	we	expect	lines	at	42.23,	52.79,	63.34,	73.90,	84.46,	95.02,	and	105.57	cm	−1	.	1/	2	12C.4	æ		ö	R	=ç		è	4πµ	cB	ø		(	J	+	1)	[12C.8a,	with	v	=	and	v	=	2cB	cv	]	(63.55)	×	(79.91)	mu	=	35.40	mu	(63.55)	+	(79.91)	and	draw	up
the	following	table:	J	13	14	15	We	use	µ	(CuBr)	≈	v	/	MHz	84421.34	90449.25	96476.72		/	cm	−1	B	0.10057	0.10057	0.10057	æ	ö	1.05457	×	10−34	Js	Hence,	R	=	ç	−27	è	(4π	)	×	(35.40)	×	(1.6605	×	10	kg)	×	(2.9979	×	1010	cm	s	−1	)	×	(0.10057	cm	−1	)	ø	1/	2	=	218	pm	12C.6	The	data	given	is	analyzed	in	the	Excel®	worksheet	below	in	which	a	linear
regression	is	performed	on	the	left	hand	side	of	the	equation	provided	in	the	problem.	See	Fig.	12C.1	below:	J	(J+1)	2(J+1)	(J+1)	0	1	2	3	4	1	2	3	4	5	2	4	6	8	10	1	4	9	16	25	2	ν(J+1←J)/cm	3.845033	7.689919	11.53451	15.378662	19.222223	Figure	12C.1	12:19	-1	ν(J+1←J)/2(J+1)/cm	1.9225165	1.92247975	1.922418333	1.92233275	1.9222223	-1		.	The
slope	−1.2257	x	10-5	cm-1	gives	The	intercept	1.9225287	cm-1	is	the	value	of	the	rotational	constant	B		.	Therefore	D		=	6.1285	x	10-6	cm-1	.	The	equilibrium	bond	length	is	calculated	from	−2	D	J	J	1/	2	æ		ö	R	=ç		è	4πµ	cB	ø	.	We	use	µ	(12	C16	O)	=	(12.0000)	×	(15.9949)	mu	=	6.8562	mu	(12.0000)	+	(15.9949)	=	1.13850	×	10	−26	kg	1/	2	æ	ö	1.05457
×10−34	Js	Hence,	R	=	ç	−26	−1	−1		10	(4	)	(1.13850	10	kg)	(2.99793	10	cm	s	)	(1.9225287	cm	)	π	×	×	×	×	×	è	ø	=	113.09	pm	Comment:	these	values	for	the	rotational	constant	are	slightly	different	from	the	values	given	in	data	table	12D.1.	12C.8	If	we	apply	the	selection	rules	∆J	=±1,	∆K	=0	to	the	formula	for	the	rotational	terms	given	in	the
problem	we	obtain	for	the	frequencies	of	the	allowed	transitions	the	expression	ν	J	+1,	K	←	J	,	K=	F	(	J	+	1,	K	)	−	F	(	J	,	K	=	)	2	B	(	J	+	1)	−	4	DJ	(	J	+	1)3	−	2	DJK	(	J	+	1)	K	2	In	terms	of	wavenumbers,	the	expression	is	similar		(	J	+	1,	K	)	−	F	(J	,	K	=		(	J	+	1)	−	4	D	(	J	+	1)3	−	2	D	(	J	+	1)	K	2	νJ	+1,	K	←	J	,	K=	F	)	2B	J	JK	To	work	with	the	latter
expression	one	must	convert	the	data	given	in	frequency	units	to	wavenumbers.	Here	we	solve	the	problem	in	frequency	units	using	the	former	expression.	We	note	that	A	and	DK	drop	out	of	the	expression	for	the	transition	frequencies,	hence	these	constants	cannot	be	determined	from	the	data	given.	Examination	of	the	data	suggests	that	the
identification	of	the	transitions	as	shown	in	the	table	below	can	be	made.	transition	1	2	3	4	5	transition	frequency,	ν/GHz	51.0718	102.1426	102.1408	153.2103	153.2076	12:20	transition	quantum	numbers	K	=0	J=	0	→	1	K	=0	J=	1→	2	K	=1	J=	1→	2	K	=0	J=	2	→	3	K	=1	J=	2	→	3	transition	frequency	expression	2	B	−	4	DJ	4	B	−	32	DJ	4	B	−	32	DJ	−	4
DJK	6	B	−	108DJ	6	B	−	108DJ	−	6	DJK	Examination	of	these	expressions	reveals	that	the	difference	in	transition	frequencies	between	transitions	3	and	2	and	between	transitions	5	and	4	yield	the	value	of	DJK	directly.	DJK	=	4.5	×	102	kHz	B	and	DJ	can	be	found	from	simultaneous	solution	of	the	equations	for	transitions	1	and	2	and	also	from
transitions	2	and	4.	The	average	value	of	DJ	obtained	in	this	way	is	DJ	=	56	kHz.	The	value	of	B	obtained	from	transition	1	is	then	B	=	25.5360	GHz.	If	desired,	these	results	in	frequency	units,	Hz,	can	be	converted	to	units	of	wavenumber,	cm-1,	by	division	by	c,	the	velocity	of	light,	expressed	in	units	of	cm	s-1.	12C.10	The	question	of	whether	to	use
CN	or	CH	within	the	interstellar	cloud	of	constellation	Ophiuchus	for	the	determination	of	the	temperature	of	the	cosmic	background	radiation	depends	upon	which	one	has	a		0	(CH)	=	14.190	cm	,	the	rotational	spectrum	that	best	spans	blackbody	radiation	of	2.726	K.	Given	B	rotational	constant	that	is	needed	for	the	comparative	analysis	may	be
calculated	from	the	226.9	GHz	−1	12	14	spectral	line	of	the	Orion	Nebula.	Assuming	that	the	line	is	for	the	C	N	isotopic	species	and	J	+1	←	J	=	1	,	which	gives	a	reasonable	estimate	of	the	CN	bond	length	(117.4	pm),	the	CN	rotational	constant	is	calculated	as	follows.		0	B=	=	B	/c	ν	ν	=	2c(	J	+	1)	4c	=	1.892	cm	−1	Blackbody	radiation	at	2.726	K	may
be	plotted	against	radiation	wavenumber	with	suitable	transformation	of	the	equation	for	ρ	(λ	,	T	)	in	section	7A.2(b)	ρ	(ν)	=	Spectral	absorption	lines	of	8π	hcν3	e	hcν	/	kT	−	1	12	C14	N	and		(	J	+	1)	ν	(	J	+	1	←=	J	)	2B	12	C1H	are	calculated	with	eqn	12C.8a.	J	=	0,	1,	2,	3.......	The	cosmic	background	radiation	and	molecular	absorption	lines	are	shown
in	the	graph,	Fig.	12C.2.	It	is	evident	that	only	CN	spans	the	background	radiation.	Figure	12C.2	12:21	12C.12	Rotation	about	any	axis	perpendicular	to	the	C6	axis	may	be	represented	in	its	essentials	by	rotation	of	the	pseudolinear	molecule	in	Fig.	12.3(a)	about	the	x-axis	in	the	figure.	Figure	12C.3(a)	The	data	allow	for	a	determination	of	RC	and
RH(D)	which	may	be	decomposed	into	RCC	and	RCH(D)	.	=	I	H	4mH	RH2	+4mC	RC2	=147.59	×	10−47	kg	m	2	I	D	=4mD	RD2	+4mC	RC2	=178.45	×	10−47	kg	m	2	Subtracting	I	H	from	I	D	(	assume	RH	=	RD	)	yields	4	(	mD	−	mH	)	RH2	=	30.86	×	10−47	kg	m	2	4	(	2.01410	mu	−	1.0078	mu	)	×	(1.66054	×	10−27	kg	mu	−1	)	×	(	RH2	)	=	30.86	×
10−47	kg	m	2	RH2	=×	4.6169	10−20	m	2	RC2	=	RH	=	2.149	×10−10	m	(147.59	×	10−47	kg	m	2	)	−	(4mH	RH2	)	4mC	=	(147.59	×	10−47	kg	m	2	)	−	(4)	×	(1.0078	mu	)	×	(1.66054	×	10−27	kg	mu	−1	)	×	(4.6169	×	10−20	m	2	)	(4)	×	(12.011	mu	)	×	(1.66054	×	10−27	kg	mu	−1	)	=	1.4626×10−20	m2	RC	=	1.209	×	10−10	m	Figure	12C.3(b)	shows
the	relation	between	RH	,	RC	,	RCC	,	and	RCH	.	Figure	12C.3(b)	12:22	R	1.209	×	10−10	m	RCC	=	C		=	=	1.396	×	10−10	m	=139.6	pm	0.8660	cos	30	R	−	RC	0.940	×	10−10	RCH	=	H	=	=	1.085	×	10−10	=	108.5	pm	0.8660	cos	30	RCD	=	RCH	Comment.	These	values	are	very	close	to	the	interatomic	distances	quoted	by	Herzberg	in	Electronic
Spectra	and	Electronic	Structure	of	Polyatomic	Molecules,	p	666,	which	are	139.7	and	108.4	pm	respectively.	12D	Vibrational	spectroscopy	of	diatomic	molecules	Answers	to	discussion	questions	12D.2	The	rotational	constants	in	vibrationally	excited	states	are	smaller	than	in	the	vibrational	ground	state	and	continue	to	get	smaller	as	the	vibrational
level	increases.	Any	anharmonicity	in	the	vibration	causes	a	slight	extension	of	the	bond	length	in	the	excited	state.	This	results	in	an	increase	in	the	moment	of	inertia,	and	a	consequent	decrease	in	the	rotational	constant.	The	equation	that	describes	how	the	rotational	constant	of	a	diatomic	molecule	changes	with	increasing	vibrational	level	is	v	=	B	
e	−	a	(v	+	1	)	,	where	B	2		v	is	the	rotational	constant	in	level	ν.		e	is	a	constant	and	B	B	12D.4	Isotopic	substitution	can	change	the	spin	of	the	nuclei	in	the	molecule	and	the	appearance	of	the	rotational	spectra	of	molecules	is	determined	by	the	nuclear	spin	of	the	atoms	in	the	molecule.	Hence,	in	general	we	expect	that	isotopic	substitution	will
change	rotational	spectra.	See	Section	12C.3	and	Brief	Illustration	12C.2.Vibrational	frequencies	are	determined	by	the	effective	masses	of	the	group	of	atoms	participating	in	the	mode	of	vibration.	Since	isotopes	have	different	masses,	isotopic	substitution	changes	the	effective	mass	of	the	molecule;	hence,	in	general,	the	vibrational	frequencies	are
changed	and	the	vibrational	spectrum	will	be	(slightly)	different.	But	not	all	vibrational	frequencies	are	necessarily	changed	by	isotopic	substitution.	For	example,	since	the	mass	of	13C	is	greater	than	the	mass	of	12C,	in	general	we	expect	that	vibrational	frequencies	would	be	slightly	different	in	13CO2	than	in	12CO2.	However,	in	the	symmetric
stretch	of	CO2,	the	C	atom	is	stationary,	and	the	effective	mass	of	the	mode	depends	only	on	the	O	atoms.	Consequently	we	expect	that	the	vibrational	frequency	of	this	mode	would	be	independent	of	the	mass	of	the	carbon	atom.	12:23	Solutions	to	exercises	12D.1(b)	The	angular	frequency	is	k		ω			f			2πν		m		12	so	kf		(2πν	)	2	m		(2π	)	2		(3.0	s1	)	2	
(2.0103	kg)	kf		0.71	N	m1	12D.2(b)		k	ω			f		m				eff			k	ω				f		m				[prime			eff		12	12	2	H	37	CI]	The	force	constant,	k,	is	assumed	to	be	the	same	for	both	molecules.	The	fractional	difference	is	ω		ω		ω		k		f		m				k					f			m			eff		eff	12		k			f			m		12	12			1			m		eff			1							m			eff		eff	12		1					m		12	12	m				eff		1				meff	12	eff		m	m	(	m		m37	)		ω			ω		meff			1			H	Cl	
2				1		mH		mCl				meff	ω	(	m2		m37	)				12	12	H	Cl	H	Cl			12		(1.0078	m	)		(34.9688	m	)	(2.0140	mu	)+(36.9651	mu	)		u	u					1		(1.0078	mu	)	+	(34.9688	mu	)	(2.0140	mu	)		(36.9651	mu	)					0.284	Thus	the	difference	is	28.4	per	cent	12D.3(b)	The	fundamental	vibrational	frequency	is		k	ω			f		m				2πν		2π	cν		eff		12	so	kf		(2π	cν	)	2	meff	We	need	the
effective	mass	meff1		m11		m2	1		(78.9183	mu	)1		(80.9163	mu	)1		0.0250298	mu	1	kf		[2π	(2.9981010	cm	s1	)		(323.2	cm1	)]2		(1.660541027	kg	mu	1	)	0.0250298	mu	1		245.9	N	m1	12D.4(b)	The	relation	between	vibrational	frequency	and	wavenumber	is	æ	k	ω	ç	=	èm	12	12	ö	1	æ	k	ö	v	π	v	2π	cv	so	=	=	ø=	2=	2	c	çè	meff	ø	π	eff	(	km	)	−1	1	2	eff	2π	c	The
reduced	masses	of	the	hydrogen	halides	are	very	similar,	but	not	identical	−1	m=	mD−1	+	mX−1	eff	We	assume	that	the	force	constants	as	calculated	in	Exercise	12D.4(a)	are	identical	for	the	deuterium	halide	and	the	hydrogen	halide.	For	DF	12:24	(	2.0140mu	)	+	(18.9984	mu	)	=	3.3071×	1026	kg	−1	1.66054	×	10−27	kg	mu	−1	−1	=	meff
{(3.3071×10	−1	−1	}	kg	−1	)	×	(	967.04	kg	s	−2	)	=	3002.3cm	−1	2π	(	2.9979	×	1010	cm	s	−1	)	=	ν	1/	2	26	For	DCl	(	2.0140mu	)	+	(	34.9688mu	)	=	3.1624	×	1026	kg	−1	1.66054	×	10−27	kg	mu	−1	−1	=	meff	{(3.1624	×10	−1	−1	kg	−1	)	×	(515.59	kg	s	−2	)}	=	2π(2.9979	×	1010	cm	s	−1	)	ν	=	12	26	2143.7	cm	−1	For	DBr	(2.0140	mu	)	−1	+
(80.9163mu	)	−1	=	3.0646	×	1026	kg	−1	1.66054	×	10−27	kg	mu	−1	−1	=	meff	{(3.0646	×10	kg	−1	)	×	(411.75	kg	s	−2	)}	=	1885.8cm	−1	2π(2.9979	×	1010	cm	s	−1	)	ν	=	12	26	For	DI	(2.0140	mu	)	−1	+	(126.9045mu	)	−1	=	3.0376	×	1026	kg	−1	1.66054	×	10−27	kg	mu	−1	−1	=	meff	(3.0376	×	10	kg	)	×	(314.21kg	s	)}	{=	26	ν	12D.5(b)	−1	−2	12
2π(2.9979	×	1010	cm	s	−1	)	1640.1cm	−1	The	ratio	of	the	population	of	the	second	excited	state	(N2)	to	the	first	excited	state	(N1)	is		hv			hcν		N2		exp			exp					kT			kT		N1	(i)	(ii)	12D.6(b)	N2	N1	æ	−	(	6.626	×	10−34	J	s	)	×	(	2.998	×	1010	cm	s	−1	)	×	(	321cm	−1	)	ö	=	=	exp	ç	ç		(1.381×10−23	J	K	−1	)	×	(	298	K	)	è	ø	0.212	æ	−	(	6.626	×	10−34	J	s	)	×	(
2.998	×	1010	cm	s	−1	)	×	(	321cm	−1	)	ö	=	=	exp	ç	−23	−1	ç		.	×	×	1	381	10	J	K	800	K	(	)	(	)	è	ø	0.561	N2	N1	Data	on	three	transitions	are	provided.	Only	two	are	necessary	to	obtain	the	value	of	ν	and	xe	The	third	datum	can	then	be	used	to	check	the	accuracy	of	the	calculated	values.		(v	=1	←	0)	=ν	−	2ν	x	=2329.91	cm	−1	[12D.14]	∆G	e		(v	=2	←	0)
=2ν	−	6ν	x	=4631.20	cm	−1	[12D.15]	∆G	e	Multiply	the	first	equation	by	3,	then	subtract	the	second.	ν	=	(3)	×	(2329.91	cm	−1	)	−	(4631.20	cm	−1	)	=	2358.53	cm	−1	Then	from	the	first	equation	=	xe	ν	−	2329.91	cm	−1	(2358.53	−	2329.91)cm	−1	=	=	6.067	×	10−3	2ν	(2)	×	(2358.53	cm	−1	)	12:25	xe	data	are	usually	reported	as	xeν	which	is	xeν	=
14.31	cm	−1		(v	=3	←	0)	=3ν	−	12vx	=(3)	×	(2358.53	cm	−1	)	−	(12)	×	(14.31	cm	−1	)	∆G	e	=	6903.87	cm	−1	Very	close	to	the	given	experimental	value.	12D.7(b)		v	+1	2	=		v	+1	2	=		(v	+	1)	−	G		(v	)	∆G	ν	−	2(v	+	1)	xeν	[12D.14]	where	∆G	G	Therefore,	since		v	+1	2	=	∆G	(1	−	2	xe	)ν	−	2vxeν	a	plot	of	∆Gv	+1	2	against	v	should	give	a	straight	line
which	gives	(1	−	2	xe	)ν	from	the	intercept	at	v	=	0	and	−2xeν	from	the	slope.	We	draw	up	the	following	table	v	0	1	2	3	4		(v)	cm	−1	G	1144.83	3374.90	5525.51	7596.66	9588.35		v	+1	2	cm	−1	∆G	2230.07	2150.61	2071.15	1991.69	The	points	are	plotted	in	Fig.	12D.1.	Figure	12D.1	The	intercept	lies	at	2230.51	and	the	slope	=	−76.65	cm	−1	;	hence
xeν	=	39.83	cm	−1	2230.51	cm	−1	it	follows	that	ν	=	2310.16	cm	−1	Since	ν	−	2	xeν	=	The	dissociation	energy	may	be	obtained	by	assuming	that	a	Morse	potential	describes	the	molecule	and		in	the	expression	for	the	potential	is	an	adequate	first	approximation	for	it.	Then	that	the	constant	D	e	−1	2		=	ν	[12D.12]	=	ν	=	(2310.16	cm	)	=33.50	×	103
cm	−1	=4.15	eV	D	e	4	xe	4	xeν	(	4	)	×	(	39.83	cm	−1	)	2	However,	the	depth	of	the	potential	well	De	differs	from	D0,	the	dissociation	energy	of	the	bond,	by	the	zero-point	energy;	hence	12:26		=	D		−	1	ν	=	(33.50	×	103	cm	−1	)	−	(	1	)	×	(2310.16	cm	−1	)	D	e	2	0	2	=	3.235	×	104	cm	−1	=	4.01	eV	Solutions	to	problems	12D.2	In	order	to	plot	this
potential	function	define	the	variable	y	≡	x	/	a	and	rewrite	the	potential	function	as	v(	y	)	=	V	(	y)	=	V0	(e	−1/	y	2	)	−	1	.	Figure	12D.2	shows	a	plot	of	this	function	against	y.	Figure	12D.2	Note	that	for	small	displacements	from	y	=	0	(x	=	0)	the	potential	energy	function	is	flat	(independent	of	x).	Therefore	the	first	and	second	derivatives	of	V(x)	are
zero	and	the	force	constant	is	zero.	There	is	no	restoring	force	for	small	displacements	from	the	equilibrium	position.	The	particle	cannot	undergo	simple	harmonic	motion.	12D.4	1		=		−ν	′	withν	′	=	D	D	ν	−	14	xeν	[Section	12D.3]	e	2	0	(a)	1	HCl:	ν	′	=	{(1494.9)	−	(	)	×	(	52.05)}	,	cm	1	4	−1	=	1481.8cm	−1	,	or	0.184	eV		=	5.33	−	0.18	=	5.15	eV
Hence,	D	0	12:27	(b)	2	HCl:	ν	2	∝	2	2meff	ω	xe	1		=	ν	;	so	as	a	is	a	constant.	We	also	have	D	=	a	2	[12D.12]	,	so	ν	xe	∝	e	meff		4	xeν	1	1	,	implying	ν	∝	1/	2	.	Reduced	masses	were	calculated	in	Exercises	12D.4(a)	and	12D.4(b),	meff	meff	and	we	can	write	1/	2	æ	m	(1	HCl)	ö	1	(0.7172)	×	(2989.7	cm	−1	)	=	2144.2	cm	−1		×ν	(	HCl)	=	2	m	(	HCl)	è	eff	ø	eff
ν	(	2	HCl)	=	ç	æ	m	(1	HCl)	ö	1	−1	−1	xeν	(	2	HCl)	=ç	eff	2		×	xeν	(	HCl)	=(0.5144)	×	(52.05cm	)	=26.77	cm	(	HCl)	m	è	eff	ø	ν	′	(	2	HCl)	=	(	)	×	(2144.2)	−	(	)	×	(26.77	cm	1	2	1	4	−1	)	=	1065.4	cm	−1	,	0.132	eV		(	2	HCl)	=	(5.33	−	0.132)	eV	=	5.20	eV	Hence,	D	0	12D.6	(a)	In	the	harmonic	approximation		−D		)		=		+	1	v	so	v	=	D	D	2(	D	e	e	2	0	0	2(1.51×
10−23	J	−	2	×	10−26	J)	=	152	m	−1	(6.626	×	10−34	J	s)	×	(2.998	×	108	m	s	−1	)	The	force	constant	is	related	to	the	vibrational	frequency	by	v	12	æ	k	ö	=	=	2=	ω	ç	f		[12D.7]	π	v	2π	cv	so	=	kf	(2π	cv	)	2	meff	m	è	eff	ø	The	effective	mass	is	meff	=12	m	=12	(4.003	mu	)	×	(1.66	×	10−27	kg	mu	−1	)	=3.32	×	10−27	kg	2	kf	éë	2π	(2.998	×	108	ms	−1	)	×
(152	m	−1	)	ùû	×	(3.32	×	10−27	kg)	=	=	2.72	×	10−4	kg	s	−2	The	moment	of	inertia	is	I	=	meff	Re2	=	(3.32	×	10−27	kg)	×	(297	×	10−12	m)	2	=	2.93	×	10−46	kg	m	2	The	rotational	constant	is		1.0546	×	10−34	J	s		=	B	=	=	95.5	m	−1	4π	cI	4π	(2.998	×	108	ms	−1	)	×	(2.93	×	10−46	kg	m	2	)	(b)	In	the	Morse	potential	v		=D		+	1	æ1	−	1	x	ö	v	=	D		+	1
æç1	−	v	ö	v	xe	=	and	D	e		ç	e	0	0				2è	2	ø	2	çè	8	D	4D	e	e	ø	This	rearranges	to	a	quadratic	equation	in	v	1	v	2		−D	=	0	so=	v	−	v	+	D	e	0		16	D	e	2	1	2	−	(	12	)	2	−		−D		)	4(	D	e	0		16	D		)	−1	2(16	D	e	12:28	e	æ		ö		ç1	−	D	0		v	4	D	=	e			ç	D	e	ø	è	æ	4(1.51×	10−23	J)	2	×	10−26	J	ö	ç		1	−	(6.626	×	10−34	J	s)	×	(2.998	×	108	m	s	−1	)	èç	1.51×	10−23	J	ø	=	293	m
−1	and	xe	(293	m	−1	)	×	(6.626	×	10−34	J	s)	×	(2.998	×	108	m	s	−1	)	=	4(1.51×	10−23	J)	0.96		(v	)	=	12D.8	See	Fig.	12D.3	for	a	plot	of	∆G	ν	−	2(v	+	1)	xeν	[12D.14]	against	v	+	1.	Figure	12D.3	The	intercept	gives	ν	=	2170.8	cm-1	and	the	slope	gives	2xeν	12:29	=	27.4	cm-1;	thus,	xeν	=	13.7	cm	−1	.	12D.10	We	note	first	that	only	two	data	are
provided;	yet	we	have	four	distances	to	calculate:	R(CC),	for	both	C2H2	and	C2D2,	R(CH),	and	R(CD).	Consequently	we	must	make	some	reasonable	approximations	in	order	to	solve	this	problem.	We	will	assume	that	the	CC	and	CH	distances	are	the	same	in	both	molecules.	Our	procedure	will	be	first	to	calculate	the	moments	of	inertia	of	the
molecules	from	the	given	rotational	constants	and	then	from	the	moments	of	inertia	and	the	known	masses	of	the	atoms	to	calculate	the	interatomic	distances.		=	B			=	hence	I		4π	cI	4π	cB	The	formulas	for	the	moments	of	inertia	in	terms	of	the	masses	and	distances	are:	I	(C2	H	2	)	=	2mC	a	2	+	2mH	b	2	(eqn	1)	and	I	(C2	D	2	)	=	2mC	a	2	+	2mDb	2
(eqn	2)	where	a	is	the	distance	from	the	center	of	mass	to	the	C	atom,	which	is	half	the	CC	interatomic	distance,	and	b	is	the	distance	from	the	center	of	mass	to	the	H	or	D	atom.	2.352	cm	−1	1.696	cm	−1	−1			B(C2	H	2	)	=	1.176	cm	and=	B(C2	D	2	)	=	0.848cm	−1	=	2	2	Therefore,		=	2.3804	×10−46	kg	m	2	and	−1	4π	c	×1.176	cm		I	(C=	=	3.3010
×10−46	kg	m	2	2	D2	)	−1	4π	c	×	0.848	cm	I	(C=	2H2	)	The	masses	are	mC	=	12.0000	u,	mH	=	1.0078	u,	and	mD	=	2.0140	u;	u	is	the	atomic	mass	unit.	Substituting	these	values	into	eqns.	1	and	2	above	and	solving	the	equations	simultaneously	for	distances	a	and	b	we	obtain:	a=	0.6049	×10−10	m	and	b	=	1.6598	×10−10	m	R(CC)	=	2a	=	1.2098
×10−10	m	=	121.0	pm	and	R(CH)	=	R	(CD)	=	b	−	a	=	1.055	×10−10	m	=	105.5	pm	12D.12	Here	we	make	use	of	results	that	have	been	obtained	in	Chapter	8	for	the	average	value	of	x=	R	−	Re	and	2	x=	(	R	−	Re	)	2	.	x=	0	2	Consider	first	1/	R	x	2	=	(v	+	12	)	.	We	need	to	evaluate		[8B.12a	&	b]	(mk	)½	R	.	R	=	Re	+	x	[Re	is	a	constant]	=	Re	+	x	=	Re
+	0	=	Re	2	1/	R	=	1/	Re	2	Next	consider	1/	R	R2	=	(	Re	+	x)	1/	R	2	2	2	.	We	need	to	evaluate	R	=	Re	2	+	2	xRe	+x	2	=	2	.	1/	R	2	is	the	reciprocal	of	this	quantity.	Re	2	+	2	xRe	+	x	2	=	Re	2	+	2	Re	x	+	x	2	2	2	=R	+	x	e	ö	1	æ	1	ç		=	2	Re	çè	1	+	x	2	/	Re	2	ø	Finally	consider	1/	R	2	2	.	We	need	to	evaluate	1/	R	and	then	take	the	average	of	this	quantity.	12:30
1	1	=	=	2	R	(	Re	+	x	)	2	1	æ	Re	2	çç1+	è	æ	x	ö	è	eø	x	ö		Re	ø	=	2	ö	1	æ	x	x2	ç		1	2	3	...	−	+	+		Re	Re	2	çè	Re	2	ø	−2	We	have	expanded	çç1+		R	in	a	binomial	series	and	dropped	terms	beyond	the	second	power	of	x2	1	1	æ	ç1	+	3	2	Noting	again	that	x	=	0	we	finally	obtain	=	R2	Re	2	çè	Re	x	.	Re	ö		.	Examination	of	these	three		ø	1	1	1	>	>	.	2	2	2	R	R	R	results
shows	that		e	=	0.27971	cm-1	and	a	=	0.187	m-1	=	0.00187	cm-1.	Values	for	B		0	and	B	1	12D.14	For	IF,	the	rotational	constant	B	1	v	=	B		e	−	a	(v	+	)	.	are	calculated	from	B	2	0	=	B	1	=	B		e	−	1	a	=	0.27971	cm	−1	−	1	(0.00187	cm	−1	)	=	B	2	2	3	3	−1		B	e	−	a	=	0.27971	cm	−	(0.00187	cm	−1	)	=	2	2	The	wavenumbers	of	the	12D.18	&	12D.19a.
0.278775	cm	−1	0.276905	cm	−1	J	′	→	3	transitions	of	the	P	and	R	branches	of	the	spectrum	are	given	by	eqns.	1	+	B		0	)J	+	(B	1	−	B		0	)	J	2	and	v	(	J	)	=+	1	+	B		0	)(	J	+	1)	+	(	B	1	−	B		0	)(	J	+	1)	2	vP	(	J	)	=−	v	(	B	v	(	B	R	When	anharmonicities	are	present	ν	in	the	formulas	above	is	replaced	by		(v	)	=	∆G	ν	−	2(v	+	1)	xeν	[12D.14]	.	For	v	=	0,		(v)	=	ν
−	2	x	ν	=	610.258	cm	−1	−	2	×	3.141	cm	−1	=	603.976	cm	−1	∆G	e	For	the	P	branch	J′	=	J	=	4,	and	for	the	R	branch	J′	=	J	=	2.	Substituting	all	of	these	values	into	eqns	12D.18	&	12D.19a	we	obtain		(v	)	−	(	B	1	+	B		0	)J	+	(B	1	−	B		0	)J	2	=	v	(	J	)	=	∆G	601.723	cm	−1	P		(v	)	+	(	B	1	+	B		0	)(	J	+	1)	+	(	B	1	−	B		0	)(	J	+	1)	2	=	605.626	cm	−1	vR	(	J	)	=
∆G		=	The	dissociation	energy	of	the	IF	molecule	may	be	obtained	from	D	e			=	D	D	e	0	−	1	1	ν	+	4	xeν	2	ν	2	[12D.12]	and	the	relation	4	xeν	if	a	Morse	potential	energy	is	assumed.	Substituting	the	values	given	for	ν	and	ν	xe	we	obtain			=	D	=	29641	cm	−1	and	D	29337	cm	−1	e	0	12D.16	We	work	with	eqns.	12D.22	which	give	the	transition	energies
for	the	S	and	O	branches	of	the	vibrational	Raman	spectra.	Transitions	having	νS	(	J	−	2)	and	νO	(	J	+	2)	have	a	common	upper	state;	hence	the	corresponding	combination	difference,	Δ0,	is	a	function	of	B0	only.	Likewise,	transitions	νS	(	J	)	and	νO	(	J	)	have	a	common	lower	state	and	the	combination	difference,	Δ1,	is	a	function	of	B1	only.	Using
eqns.	12D.22	we	obtain	12:31	0		(	J	−	2)	−	6	B	νS	(	J	−	2)	=	νi	−ν	−	4	B	0		(	J	+	2)	−	2	B	0	νO	(	J	+	2)	=	νi	−ν	+	4	B	0	Taking	the	difference	between	νO	(	J	+	2)	and	νS	(	J	−	2)	we	obtain	for	the	combination	difference		0	(J	+	1	)	.	∆=	νO	(	J	+	2)	−νS	(	J	−	=	2)	8	B	0	2	In	a	similar	manner	we	can	obtain	1	(	J	+	1	)	=	∆1	νO	(	J	)	−νS	=	(	J	)	8B	2	12E
Vibrational	spectroscopy	of	polyatomic	molecules	Answers	to	discussion	questions	12E.2	The	gross	selection	rule	is	that	the	polarizability	of	the	molecule	must	change	as	the	molecule	vibrates.	All	diatomic	molecules	satisfy	this	condition	as	the	molecules	swell	and	contract	during	a	vibration,	the	control	of	the	nuclei	over	the	electrons	varies,	and	the
molecular	polarizability	changes.	Hence	both	homonuclear	and	heteronuclear	diatomics	are	vibrationally	Raman	active.	In	polyatomic	molecules	it	is	usually	quite	difficult	to	judge	by	inspection	whether	or	not	the	molecule	is	anisotropically	polarizable;	hence	group	theoretical	methods	are	relied	on	for	judging	the	Raman	activity	of	the	various	normal
modes	of	vibration.	The	procedure	is	discussed	in	Section	12E.4	and	demonstrated	in	the	Brief	Illustration	in	that	section.	Solutions	to	exercises	12E.1(b)	See	Section	12E.2.	Select	those	molecules	in	which	a	vibration	gives	rise	to	a	change	in	dipole	moment.	It	is	helpful	to	write	down	the	structural	formulas	of	the	compounds.	The	infrared	active
compounds	are	(i)	CH3	CH3	(ii)CH4	(iii)	CH3Cl	Comment.	A	more	powerful	method	for	determining	infrared	activity	based	on	symmetry	considerations	is	described	in	Section	12E.4(a).	12E.2(b)	A	nonlinear	molecule	has	3	N	−	6	normal	modes	of	vibration,	where	N	is	the	number	of	atoms	in	the	molecule;	a	linear	molecule	has	3	N	−	5	.	(i	)	C6	H	6	has
3(12)	−	6	=30	normal	modes.	(ii	)	C6	H	6	CH	3	has	3(16)	−	6	=42	normal	modes.	(iii	)	HC	≡	C	−	C	≡	CH	is	linear;	it	has	3(6)	−	5	=	13	normal	modes.	12E.3(b)	This	molecule	is	linear,	and	the	number	of	vibrational	modes	is	3N-5.	N	=	36	in	this	case;	therefore,	the	number	of	vibrational	modes	is	103	.	12:32	½	1	æ	kq	ö	νq	=	ç		[12E.1]	2π	c	çè	mq	ø	1		q
(v	)	=	(v	+	)νq	G	12E.4(b)	2	The	lowest	energy	term	isν2	corresponding	to	the	normal	mode	for	bending.	For	this	mode	the	sulfur	atom	may	be	considered	to	remain	stationary	and	the	effective	mass	is	approximately	mq	=	2mO	mS	.	2mO	+	mS	For	the	other	modes	the	effective	mass	expression	is	more	complicated	and	is	beyond	the	scope	of	this	text.
SO2,	like	H2O,	is	a	bent	molecule	so	it	has	three	normal	modes	(3N	–	6	=	3)	that	have	the	same	motions	as	the	normal	modes	of	H2O	shown	in	text	Fig.	12E.3.	However,	because	of	differences	in	bond	strengths	and	effective	masses,	the	wavenumbers	of	the	two	molecules	differ.	In	the	ground	vibrational	state	all	normal	modes	have	υ	=	0.	Thus,	like
H2O,	the	ground	vibrational	term	of	SO2	is	the	sum	of	eqn.	12E.1	normal	mode	terms:		2	(0)	+	G		3	(	0=		ground=	G	1	(	0)	+	G	G	)	1	(	v	+	v	+	v	)	2	12E.5(b)	(i)	1	2	3	A	planar	AB3	molecule	belongs	to	the	D3h	group.	Its	four	atoms	have	a	total	of	12	displacements,	of	which	6	are	vibrations.	We	determine	the	symmetry	species	of	the	vibrations	by	first
determining	the	characters	of	the	reducible	representation	of	the	molecule	formed	from	all	12	displacements	and	then	subtracting	from	these	characters	the	characters	corresponding	to	translation	and	rotation.	This	latter	information	is	directly	available	in	the	character	table	for	the	group	D3h.	The	resulting	set	of	characters	are	the	characters	of	the
reducible	representation	of	the	vibrations.	This	representation	can	be	reduced	to	the	symmetry	species	of	the	vibrations	by	inspection	or	by	use	of	the	little	orthogonality	theorem.	D3h	σh	E	2C3	2S3	3C2′	3σ	v	χ	(translation)	3	1	0	–2	–1	1	Unmoved	atoms	4	4	1	1	2	2	12	4	0	–2	–2	2	χ	(rotation)	3	–1	0	2	–1	–1	χ	(vibration)	6	4	0	–2	0	2	χ	(total,	product)	χ
(vibration)	corresponds	to	A1′	+A′′2	+2E	′.	Again	referring	to	the	character	table	of	D3h	,	we	see	that	E	′	corresponds	to	x	and	y,	A	′′2	to	z;	hence	A	′′2	and	E	′	are	IR	active.	We	also	see	from	the	character	table	that	E	′	and	A1′	correspond	to	the	quadratic	terms;	hence	A1′	and	E	′	are	Raman	active.	(ii)	A	trigonal	pyramidal	AB3	molecule	belongs	to	the
group	C3v.	In	a	manner	similar	to	the	analysis	in	part	(i)	we	obtain	C3V	χ	(total)	χ	(vibration)	2C3	3σ	V	12	0	2	6	–2	2	E	12:33	χ	(vibration)	corresponds	to	2A1	+	2E	.	We	see	from	the	character	table	that	A1	and	E	are	IR	active	and	that	A1	+	E	are	also	Raman	active.	Thus	all	modes	are	observable	in	both	the	IR	and	the	Raman	spectra.	12E.6(b)	(i)	The
boat-like	bending	of	a	benzene	ring	clearly	changes	the	dipole	moment	of	the	ring,	for	the	moving	of	the	C—H	bonds	out	of	the	plane	will	give	rise	to	a	non-cancelling	component	of	their	dipole	moments.	So	the	vibration	is	IR	active.	(ii)	Since	benzene	has	a	centre	of	inversion,	the	exclusion	rule	applies:	a	mode	which	is	IR	active	(such	as	this	one)	must
be	Raman	inactive.	12E.7(b)	The	displacements	span	A1g	+	2A1u	+	2E1u	+	E1g	.	The	rotations	Rx	and	Ry	span	E1g	,	and	the	translations	span	E1u	+	A1u	.	So	the	vibrations	span	A1g	+	A1u	+	E1u	12E.8(b)	CS2	is	a	linear	AB2	molecule	similar	to	CO2;	therefore	(see	the	solution	to	Exercise	12E.5(a));	the	symmetric	stretch,	A1g,	is	infrared	inactive
but	Raman	active.	The	antisymmetric	stretch,	A1u,	is	infrared	active,	and	(by	the	exclusion	rule)	Raman	inactive.	The	two	bending	modes,	E1u,	are	infrared	active	and	therefore	Raman	inactive.	Solutions	to	problems	12E.2	The	Lewis	structure	is		=	N==	O]		+	[O=			VSEPR	indicates	that	the	ion	is	linear	and	has	a	centre	of	symmetry.	The	activity	of
the	modes	is	consistent	with	the	rule	of	mutual	exclusion;	none	is	both	infrared	and	Raman	active.	These	transitions	may	be	compared	to	those	for	CO2	(Fig.	12E.2	of	the	text)	and	are	consistent	with	them.	The	Raman	active	mode	at	1400	cm−1	is	due	to	a	symmetric	stretch	(v1	)	,	that	at	2360	cm−1	to	the	antisymmetric	stretch	(v3	)	and	that	at	540
cm−1	to	the	two	perpendicular	bending	modes	(v2	)	.	There	is	a	combination	band,	v1	+	v3	=	3760	cm−1	≈	3735	cm−1,	which	shows	a	weak	intensity	in	the	infrared.	12E.4	Summarize	the	six	observed	vibrations	according	to	their	wavenumbers	(v	/	cm	−1	)	:	IR	870	1370	2869	3417	Raman	877	1408	1435	3407.	(i)	If	H	2	O	2	were	linear,	it	would	have
3	N	−	5	=7	vibrational	modes.	(ii)	Follow	the	flow	chart	in	Fig.	11.7.	Structure	1	is	not	linear,	there	is	only	one	Cn	axis	(a	C2	),	and	there	is	a	σ	h	;	the	point	group	is	C2h	Structure	2	is	not	linear,	there	is	only	one	Cn	axis	(a	C2	),	no	σ	h	,	but	two	σ	v	;	the	point	group	is	C2v	.	Structure	3	is	not	linear,	there	is	only	one	Cn	axis	(a	C2	),	no	σ	h	,	no	σ	v	;	the
point	group	is	C2	.	12:34	(iii)	The	exclusion	rule	applies	to	structure	1	because	it	has	a	center	of	inversion:	no	vibrational	modes	can	be	both	IR	and	Raman	active.	So	structure	1	is	inconsistent	with	observation.	The	vibrational	modes	of	structure	2	span	3A1	+	A	2	+	2B2	.	(The	full	basis	of	12	cartesian	coordinates	spans	4A1	+	2A	2	+	2B1	+	4B2	;
remove	translations	and	rotations.)	The	C2v	character	table	says	that	five	of	these	modes	are	IR	active	(3A1	+	2B2	)	and	all	are	Raman	active.	All	of	the	modes	of	structure	3	are	both	IR	and	Raman	active.	(A	look	at	the	character	table	shows	that	both	symmetry	species	are	IR	and	Raman	active,	so	determining	the	symmetry	species	of	the	normal
modes	does	not	help	here.)	Both	structures	2	and	3	have	more	active	modes	than	were	observed.	This	is	consistent	with	the	observations.	After	all,	group	theory	can	only	tell	us	whether	the	transition	moment	must	be	zero	by	symmetry;	it	does	not	tell	us	whether	the	transition	moment	is	sufficiently	strong	to	be	observed	under	experimental
conditions.	Integrated	activities	12.2	Because	the	centrifugal	force	and	the	restoring	force	balance,	kf	(rc	−=	re	)	meff	ω	2	rc	,	we	can	solve	for	the	distorted	bond	length	as	a	function	of	the	equilibrium	bond	length:	rc	=	re	1	−	meff	ω	2	/	kf	Classically,	then,	the	energy	would	be	the	rotational	energy	plus	the	energy	of	the	stretched	bond:	J	2	kf	(rc	−
re	)	2	J	2	kf	2	(rc	−	re	)	2	J	2	(meff	ω	2	rc	)	2	E=	+	=	+	=	+	.	2I	2	2I	2k	2I	2kf	How	is	the	energy	different	form	the	rigid-rotor	energy?	Besides	the	energy	of	stretching	of	the	bond,	the	larger	moment	of	inertia	alters	the	strictly	rotational	piece	of	the	energy.	Substitute	meff	rc2	for	I	and	substitute	for	rc	in	terms	of	re	throughout:	So	E=	J	2	(1	−	meff	ω
2	/	kf	)	2	meff	2ω	4	re2	+	.	2meff	re2	2kf	(1	−	meff	ω	2	/	kf	)	2	Assuming	that	meff	ω2/kf	is	small	(a	reasonable	assumption	for	most	molecules),	we	can	expand	the	expression	and	discard	squares	or	higher	powers	of	meff	ω2/kf:	E≈	J	2	(1	−	2meff	ω	2	/	kf	)	2meff	re	2	+	meff	2ω	4	re2	.	2kf	(Note	that	the	entire	second	term	has	a	factor	of	meff	ω2/kf	even
before	squaring	and	expanding	the	denominator,	so	we	discard	all	terms	of	that	expansion	after	the	first.)	Begin	to	clean	up	the	expression	by	using	classical	definitions	of	angular	momentum:	=	J	I=	ω	meff	r	2ω	so	=	ω	J	/	meff	re	,	2	which	allows	us	to	substitute	expressions	involving	J	for	all	ω	s:	E≈	J2	J4	J4	−	+	.	2	6	6	meff	2	re	kf	2meff	2	re	kf	2meff
re	(At	the	same	time,	we	have	expanded	the	first	term,	part	of	which	we	can	now	combine	with	the	last	term.)	Continue	to	clean	up	the	expression	by	substituting	I/meff	for	r2,	and	then	carry	the	expression	over	to	its	quantum	mechanical	equivalent	by	substituting	J	(	J	+	1)	2	for	J2:	12:35	E≈	J	2	J	4	meff	J	(	J	+	1)	2	J	2	(	J	+	1)	2		4	meff	−	3	⇒E≈	−	.	2	I
2	I	kf	2I	2	I	3	kf	(J	)	:	Dividing	by	hc	gives	the	rotational	term,	F	2	2	4	2	2	3	2		(	J	)	≈	J	(	J	+	1)	−	J	(	J	+	1)		meff	=J	(	J	+	1)	−	J	(	J	+	1)		meff	,	F	2hcI	4πcI	2hcI	3	kf	4πcI	3	kf	where	we	have	used		=	h	/	2π	to	eliminate	a	common	divisor	of	h	.	Now	use	the	definition	of	the	rotational	constant,	=	B	2	2			(	J	)	≈	J	(	J	+	1)	B		−	J	2	(	J	+	1)	2	B		3	16π	c	meff	.	⇒F
4πcI	kf	Finally,	use	the	relationship	between	the	force	constant	and	vibrational	wavenumber:	1/	2	æ	kf	ö	2π	v	2πcv	so	=	ç	=	ω=	vib	è	meff	ø	meff	1	=	2	2	2	kf	4π	c	v	3	2		(	J	)	≈	BJ		(	J	+	1)	−	4	B	J	2	(	J	+	1)=		(	J	+	1)	−	D		J	J	2	(	J	+	1)	2	leaving	F	BJ	v	2			J	=	4B	.	where	D	v	2	3	12.4	Figure	I12.1	is	a	plot	of	the	total	electronic	energy	(w/r/t	the	free	atoms)
profile	for	each	of	the	hydrogen	halides.	Calculations	are	performed	with	Spartan	'10	using	the	MP2	method	with	the	6-311++G**	basis	set.	In	a	6311G	basis	set	each	atomic	core	basis	function	is	expanded	as	a	linear	combination	of	six	Gaussian	functions.	Valence	orbitals	are	split	into	three	basis	set	functions	consisting	of	three,	one,	and	one
Gaussians.	The	6-311++G	basis	set	adds	both	an	s-type	and	three	p-type	diffuse	functions	for	each	atom	other	than	hydrogen	and	one	s-type	diffuse	function	for	each	hydrogen	atom.	The	6-311++G**	basis	set	adds	a	set	of	five	d-type	polarization	functions	for	each	atom	other	than	hydrogen	and	a	set	of	three	p-type	polarization	functions	for	each
hydrogen	atom.	The	plot	clearly	shows	that	in	going	down	the	halogens	from	HI	to	HBr	to	HCl	to	HF	the	equilibrium	bond	length	decreases	and	the	depth	of	the	potential	well	decreases.	The	equilibrium	properties	of	each	molecule	are	summarized	in	the	following	table.	The	calculated	bond	lengths	and	enthalpies	of	formation	are	in	excellent
agreement	with	experimental	values.	The	dipole	moments	of	HCl,	HBr,	and	HI	are	surprisingly	high.	Equilibrium	Properties	of	Hydrogen	Halides	Calculated	with	Spartan	'10	using	MP2/6-311++G**	HF	HCl	HBr	Re	/	pm	91.7	127.3	141.3	Re(exp)	/	pm	91.680	127.45	141.44	−1	4198.162	3086.560	2729.302		/	cm	v	ELUMO	/	eV	1.16	1.09	1.14	EHOMO	/
eV	−17.72	−12.99	−11.83	∆fHθ	/	kJ	mol−1	−272.55	−92.31	−36.44	∆fHθ(exp)	/	kJ	mol−1	−271.1	−92.31	−36.40	Dipole	/	D	1.97	1.38	1.10	Dipole(exp)	/	D	1.91	1.08	0.80	12:36	HI	161.2	160.92	2412.609	1.50	−10.54	+26.36	+26.48	0.79	0.42	Total	Energy	in	eV	(w/r/t	free	atoms)	10	8	HI	HBr	6	HCl	4	2	0	HF	−2	−4	−6	−8	0	50	100	150	200	250	300	350
R	/	pm	Figure	I12.1	(b)	The	calculated	fundamental	vibrational	wavenumbers,	reported	in	the	above	table,	increase	in	going	down	the	halogens	from	HI	to	HBr	to	HCl	to	HF.	Since	the	bonding	force	constant	kf	is	proportional	to	v2	by	eqn	43.8,	kf	and	the	bond	strength	also	increase	in	going	down	the	halogens	from	HI	to	HBr	to	HCl	to	HF.	12.6	These
calculations	were	performed	with	Spartan	’06	using	the	both	MP2	and	DFT(B3LYP)	methods	with	both	6-31G*	and	6-311G*	basis	sets	(see	problems	F9.4	and	F9.5	for	an	explanation	of	these	basis	sets).	(a)	and	(b)	The	following	tables	summarize	the	calculated	equilibrium	properties	of	H2O	and	CO2	and	present	experimental	values	for	comparison.
H2O	Ground	State	MP2/6-311G*	DFT/6-31G*	24	19	95.7	96.8	–2074.5	–2074.6	106.58	103.72	3858.00	3731.72	Basis	fns	R	/	pm	E0	/	eV	Angle	/	°	v1	/	cm–1	MP2/6-31G*	19	96.9	–2073.4	104.00	3774.25	v2	/	cm–1	1735.35	1739.88	v3	/	cm–1	μ/D	3915.76	n.s.	3994.30	n.s.	Basis	fns	R	/	pm	E0	/	eV	Angle	/	°	v1	/	cm–1	MP2/6-31G*	45	118.0	–5118.7	180.00
1332.82	v2	/	cm–1	636.22	657.60	641.47	666.39	667	v3	/	cm	μ/D	2446.78	n.s.	2456.16	n.s.	2438.17	0.0000	2437.85	0.0000	2349	0	–1	DFT/6-311G*	24	96.3	–2079.9	105.91	3764.70	104.45	3652	1709.79	1705.47	1595	3853.53	2.0950	3877.60	2.2621	3756	1.854	DFT/6-311G*	54	116.0	–5133.2	180.00	1376.55	Exp.	CO2	Ground	State	MP2/6-311G*
DFT/6-31G*	54	45	116.9	116.9	–5121.2	–5131.6	180.00	180.00	1341.46	1373.05	Exp.	95.8	116.3	180	1388	(c)	Except	for	the	dipole	moment,	all	calculations	are	typically	within	a	reasonable	1-3%	of	the	experimental	value.	12:37	The	dipole	moment	is	very	sensitive	to	the	distribution	of	charge	density.	The	significant	difference	between	the	dipole
moment	calculations	and	the	experimental	dipole	moment	may	indicate	that	the	computation	methods	do	not	adequately	account	for	charge	distribution	in	the	very	polar	water	molecule.	12.8	1ö	æ		(	J	+	1)	[12	D.18]	S	(υ	,	J	)	=	çυ	+		v	+	BJ	2ø	è	O		(2	J	−	1)	[∆υ	=	1,	∆J	=	−	2]	∆	S	J	=v	−	2	B	S		(2	J	+	3)	∆	S	J	=v	+	2	B	[∆υ	=1,	∆J	=+2]	The	transition	of
maximum	intensity	corresponds,	approximately,	to	the	transition	with	the	most	probable	value	of	J,	which	was	calculated	in	Problem	12C.9.	æ	kT	ö	J	max	ç	=		ø	è	2hcB	1/	2	−	1	2	The	peak-to-peak	separation	is	then	S	O		(2	J	+	3)	−	{−2	B		(2	J	−	1)}	=	8	B		(J	+	1)	∆	S	=	∆	S	J	max	−	∆	S	J	max	=	2	B	max	max	max	2	12		ö1	2	æ	32	BkT	æ	kT	ö		=	8=	Bç	ç			ø	è
2hcB	è	hc	ø	To	analyze	the	data	we	rearrange	the	relation	to		2		=	hc(∆	S	)	B	32kT	=	and	convert	to	a	bond	length	using	B	1/	2	æ	ö		R=ç	ç	8πcm	B			X	è	ø		,	with	I	=	2mX	R	2	(Table	12B.1)	for	a	linear	rotor.	This	gives	4π	cI	1/	2	æ	1	ö	æ	2kT	ö	=ç		×ç	è	πc∆	S	ø	è	mX	ø	We	can	now	draw	up	the	following	table.	HgCl2	HgBr2	HgI2	T/K	555	565	565	mX	/	u	35.45
79.1	126.90	∆	S	/	cm–1	23.8	15.2	11.4	R	/	pm	227.6	240.7	253.4	Hence,	the	three	bond	lengths	are	approximately	230,	240,	and	250	pm	.	12:38	13	Electronic	transitions	13A	Electronic	spectra	Answers	to	discussion	questions	13A.2	The	Franck–Condon	principle	states	that	because	electrons	are	so	much	lighter	than	nuclei,	an	electronic	transition
occurs	so	rapidly	compared	to	vibrational	motions	that	the	internuclear	distance	is	relatively	unchanged	as	a	result	of	the	transition.	This	implies	that	the	most	probable	transitions	vf	←	vi	are	vertical	in	the	sense	that	bond	lengths	do	not	change	during	the	transition.	This	vertical	line	(Fig.	13A.7)	will,	however,	intersect	any	number	of	vibrational
levels	vf	in	the	upper	electronic	state.	Hence	transitions	to	many	vibrational	states	of	the	excited	state	will	occur	with	transition	probabilities	proportional	to	the	Franck–Condon	factors.	These	are	in	turn	proportional	to	the	overlap	integral	of	the	wavefunctions	of	the	initial	and	final	vibrational	states.	This	creates	the	band	structure,	a	progression	of
vibrational	transitions	that	is	observed	in	electronic	spectra.	The	band	shape	is	determined	by	the	relative	horizontal	positions	(Fig.	13A.7)	of	the	two	electronic	potential	energy	curves.	The	most	probable	transitions	are	those	to	excited	vibrational	states	with	wavefunctions	having	a	large	amplitude	at	the	internuclear	position	Re	.	13A.4	Color	can
arise	by	emission,	absorption,	or	scattering	of	electromagnetic	radiation	by	an	object.	Many	molecules	have	electronic	transitions	that	have	wavelengths	in	the	visible	portion	of	the	electromagnetic	spectrum.	When	a	substance	emits	radiation,	the	perceived	color	of	the	object	will	be	that	of	the	emitted	radiation,	and	it	may	be	an	additive	color
resulting	from	the	emission	of	more	than	one	wavelength	of	radiation.	When	a	substance	absorbs	radiation	its	color	is	determined	by	the	subtraction	of	those	wavelengths	from	white	light.	For	example,	absorption	of	red	light	results	in	the	object	being	perceived	as	green.	Scattering,	including	the	diffraction	that	occurs	when	light	falls	on	a	material
with	a	grid	of	variation	in	texture	or	refractive	index	having	dimensions	comparable	to	the	wavelength	of	light	(for	example,	a	bird’s	plumage)	may	also	form	color.	Solutions	to	exercises	13A.1(b)	The	1σg21σu21πu21πg2	valence	configuration	has	four	unpaired	electrons	because	both	the	1π	u	and	1π	g	levels	are	doubly	degenerate	(see	text	Figure
13C.11);	each	with	two	electrons.	Although	Hund’s	rule	does	not	apply	to	excited	states,	we	examine	the	state	of	maximum	spin	multiplicity.	Thus,	S	=	½	+	½	+	½	+	½	=	2	and	the	spin	multiplicity	is	given	by	2S	+	1	=	2(2)	+	1	=	5.	Because	u	×	u	=	g	and	g	×	g	=	g,	the	net	parity	of	two	electrons	paired	in	an	orbital	is	always	gerade.	Consequently,	the
overall	parity	is	found	by	multiplying	the	parity	of	unpaired	electrons.	For	this	configuration,	u	×	u	×	g	×	g	=	g.	13A.2(b)	The	electronic	spectrum	selection	rules	concerned	with	changes	in	angular	momentum	are	(eqn	13A.4):	=	∆Λ	0,	±	1	∆S=	0	∆Σ=	0	∆Ω=	0,	±	1	where	Ω=	Λ	+	Σ	.	Λ	gives	the	total	orbital	angular	momentum	about	the	internuclear
axis	and	Σ	gives	the	total	spin	angular	momentum	about	the	internuclear	axis.	The	±	superscript	selection	rule	for	reflection	in	the	plane	along	the	internuclear	axis	is	+↔+	or	–↔–	(i.e.,	+↔–	is	forbidden).	The	Laporte	selection	rule	states	that	for	a	centrosymmetric	molecule	(those	with	a	center	of	inversion)	the	only	allowed	transitions	are	transitions
that	are	accompanied	by	a	change	of	parity:	u↔g.	Λ	0,	∆S	=	0,	∆Σ	=	0,	∆Ω	=	0	,	u↔g,	and	+↔+	so	the	transition	(i)	The	changes	in	the	transition	1	Σ	g+	↔	1	Σ	+u	are	∆=	is	allowed.	Λ	0,	∆S	=	0,	∆Σ	=	0,	∆Ω	=	0	,	u↔g,	and	+↔+	so	the	transition	(ii)	The	changes	in	the	transition	3	Σ	g+	↔	3	Σ	+u	are	∆=	is	allowed.	(iii)	The	transition	π*	↔	n	is	forbidden.
For	example,	in	a	carbonyl	group,	where	the	non-bonding	orbital	of	the	lone	pair	on	the	oxygen	does	not	change	sign	(+)	under	reflection	in	the	plane	that	contains	the	σ	bond	while	the	π*	orbital	does	change	sign	(–),	the	+↔–	transition	is	forbidden.	13A.3(b)	We	begin	by	evaluating	the	normalization	constants	N0	and	N .	13:1	1/	2	N	02	=	1	æ	2a	ö	=	ç
	∞	−2	ax	2	∫	e	dx	è	π	ø	−∞	Likewise,	=	Nυ	1	2	∫	∞	x2e	−∞	1/	4	æ	2a	ö	N0	ç		(standard	integral);	=	è	π	ø	(	2b	)	(	2b	)	;	Nυ	=	1/	2	=	Γ	(3	/	2)	π	/	2	3/	2	=	2	dx	−2	b	(	x	−	x0	)	3/	2	æ	2	(	2b	)3/	2	ç	ç	π1/	2	è	1/	2	ö			ø	Furthermore,	we	can	easily	check	that	ax	2	+	b	(	x	−	x0	)	=z	2	+	2	ab	2	x0	a+b	where	z	=(	a	+	b	)	1/	2	x−	b	(a	+	b)	1/	2	x0	and	dx	=	1	(a	+	b)	1/	2
dz	Then,	the	vibration	overlap	integral	between	the	vibrational	wavefunction	in	the	upper	and	lower	electronic	states	is:	S	(=	υ	,	0)	=	∞	∞	−b	x	−	x	)	|	0	N	0	Nυ	∫	xe	−	ax	e	(	=	dx	N	0	Nυ	∫	xe	υ=	2	2	0	−∞	N	0	Nυ	a+b	{	−	ax	2	+	b	(	x	−	x0	)	−∞	2	}	dx	ìï	bx	üï	−	ìí	z	2	+	ab	x02	üý	a	+b	þ	0	+	z	dz	í	ý	∫−∞	(	a	+	b	)1/	2	e	î	ïî	ïþ	∞	−	ab	N	0	Nυ	e	a	+	b	=	a+b
−	ab	x02	ïì	bx0	í	1/	2	îï	(	a	+	b	)	∫	∞	−∞	∞	2	2	ïü	e	−	z	dz	+	∫	z	e	−	z	dz	ý	−∞	þï	x02	ìï	æ	π	ö1/	2	üï	∞	−	z2	íbx0	ç		+	∫−∞	ze	dz	ý	îï	è	a	+	b	ø	þï	The	integral	of	the	above	expression	is	necessarily	zero	because	on	the	z	axis	the	function	z	has	ungerade	symmetry	N	N	e	a	+b	=	0	υ	a+b	while	the	function	e	−	z	has	gerade	symmetry.	Thus,	u	×	g	=	u	and
the	integral	over	the	complete	z	axis	of	an	ungerade	function	equals	zero.	2	−	ab	x02	N	0	Nυ	bx0	e	a	+	b	æ	π	ö	æ	2a	ö	S	(υ	,	0	)	=	=	ç		ç		a+b	è	a+bø	è	π	ø	1/	2	1/	4	æ	2	(	2b	)3/	2	ç	ç	π1/	2	è	1/	2	ö			ø	3/	2	ab	2	x0	−	æ	2	ö	1/	4	7/	4	a	+b	=ç		a	b	x0	e	è	a+bø	For	the	case	b	=	a/2,	this	simplifies	to	3/	2	7/	4	1/	4	æ	4	ö	æ	32	ö	−	ax02	/3	1/	4	æ	a	ö	S	(υ	,	0	)	ç=	=		a	ç		x0	e
ç		3	a	2	è	ø	è	ø	è	729	ø	The	Franck-Condon	factor	is	a1/	2	x0	e	−	ax0	/3	2	1/	2	2	æ	32	ö	S	(υ	,	0	)	=	ç		è	729	ø	1/	2	æ2ö	13A.4(b)	ψ	0	ç		=	èLø	ax02	e	−2	ax0	/3	æ	πx	ö	sin	ç		è	Lø	2	for	0	≤	x	≤	L	and	0	elsewhere.	L	öü	ìπ	æ	æ2ö	=	ψ	v	ç		sin	í	ç	x	−		ý	L	L	2	øþ	è	ø	î	è	1/	2	S	(=	v,	0	)	=	v|0	for	L	3L	≤x≤	and	0	elsewhere.	2	2	2	L	L	öü	æ	πx	ö	ì	π	æ	sin	ç		sin	í	ç	x	−		ýdx	∫	/	2	L
L	2	øþ	è	L	ø	îL	è	13:2	−	ab	x02	bx0	e	a	+	b	æ	π	ö	ç		a+b	è	a+bø	1/	2	The	above	integral	is	recognized	as	the	standard	integral	(see	math	handbook):	sin	(	2ax	+	b	)	x	with	the	transformations	a	=	π/L	and	b	=	–π/2.	Thus,	∫	sin	(	ax	)	sin	(	ax	+	b	)	d=x	2	cos(b)	−	4a	=	x	L=	x	L	2	éx	æ	π	ö	sin	(	2πx	/	L	−	π	/	2	)	ù	S	(	v,	0	)	=	ê	cos	ç	−		−	ú	L	ë2	=	4π	/	L	è	2ø	ûx	2	é	sin	(
2πx	/	L	−	π	/	2	)	ù	ê−	ú	Lë	4π	/	L	ûx	/2	L=	=	L/2	1	=	−	ëésin	(	3π	/	2	)	−	sin	(	π	/	2	)	ûù	2π	1	=	π	The	Franck-Condon	factor	is	S	(	v,	0	)	=	2	1	π2	(	)	(	)	2	+1)	:	vR	(	J	)	=	v	+	B	'+	B	(	J	+	1)	+	B	'−	B	(	J	+	1)	[13A.8c]	13A.5(b)	R	branch	(	∆J	=	When	the	bond	is	longer	in	the	excited	state	than	in	the	ground	state,	B	'	<	B	and	B	'−	B	is	negative.	In	this	case,	the
lines	of	the	R	branch	appear	at	successively	increasing	energies	as	J	increases,	begin	to	converge,	go	through	a	head	at	Jhead,	begin	to	decrease	with	increasing	J,	and	become	smaller	than	v	when	(	J	+	1)	>	B	'+	B	/	B	'−	B	(see	(	)	(	)	Section	13A.1(d)	and	Discussion	question	13A.3;	the	quadratic	shape	of	the	vP	against	J	curve	is	called	the	Fortrat
parabola).	This	means	that	vR	(	J	)	is	a	maximum	when	J	=	Jhead.	It	is	reasonable	to	deduce	that	Jhead	is	the	closest	integer	to	1	2	(	B	'+	B	)	/	(	B	'−	B	)	−	1	because	it	takes	twice	as	many	J	values	to	reach	the	maximum	line	of	the	R	branch	and	to	return	to	v	.	We	can	also	find	Jhead	by	finding	the	maximum	of	the	Fortrat	parabola:	=	dvR	/	dJ	0=	when	J
J	head	.	dvR	d	2	=v	+	B	'+	B	(	J	+	1)	−	B	'−	B	(	J	+	1)	=	+	B	'+	B	−	2	B	'−	B	(	J	+	1)	dJ	dJ	B	'+	B	−	2	B	'−	B	(	J	+	1)	=	0	{	(	(	=	J	head	)	(	)	)	(	)	}	(	)	(	)	head	(	B	'+	B	)	−	1	2	(	B	'−	B	)	13A.6(b)	Since	B	'	>	B	and	B	'−	B	is	positive,	the	P	branch	shows	a	head	at	the	closest	integer	to	the	value	of					(see	Exercise	13A.5(a)).	1	2	B	'+	B	/	B	'−	B	(	)(	)	(	B	'+	B	)
(10.470	+	10.308)	=	=	2	(	B	'−	B	)	2	(10.470	−	10.308	)	64.2	J	head	=	64	13A.7(b)	When	the	P	branch	has	a	head,	Jhead	is	the	closest	integer	to	1	2	(	B	'+	B	)	/	(	B	'−	B	)	(see	Exercise	13A.5(a)).	Thus,	if	we	are	only	given	that	Jhead	=	25	and	B	=	5.437	cm	−1	,	we	know	only	that	24.5	<	1	2	B	'+	B	/	B	'−	B	<	25.5	(	)(	because	the	fractional	value	of	a	)	1
2	(	B	'+	B	)	/	(	B	'−	B	)	calculation	must	be	rounded-off	to	give	the	integer	value	J	Algebraic	manipulation	of	the	inequality	yields	13:3	head.	{2	(	24.5)	+	1}	B	>	B	'	>	{2	(	25.5)	+	1}	B	{2	(	24.5)	−	1}	{2	(	25.5)	−	1}	1.042	B	>	B	'	>	1.040	B	5.665	cm	−1	>	B	'	>	5.654	cm	−1	When	B	'	>	B	,	the	bond	length	in	the	electronically	excited	state	is	shorter
than	that	in	the	ground	state.	Below	is	an	alternative	solution	that	gives	the	same	answer	with	insight	into	the	band	head	concept:	At	the	head	of	a	P	band,	vJ	head	+1	>	vJ	head	where	vJ	head	+1	is	the	transition	J	head	←	J=	J	head	+	1	.	Substitution	of	eqn.	13A.8(a)	into	this	inequality	yields	the	relationship	B	'	>	(	J	head	+	1)	B	/	J	head	.	Similarly,	vJ
head	<	vJ	head	−1	where	vJ	head	−1	is	the	transition	J	head	−	2	←	J=	J	head	−	1	.	Substitution	of	eqn.	13A.8(a)	into	this	inequality	B	'	<	J	head	B	/(	J	head	−	1)	.	Consequently,	(	J	head	+	1)	B	/	J	head	<	B	'	<	J	head	B	/(	J	head	−	1)	.	yields	the	relationship	1	=	32.8	×	103	cm	−1	.	λ	305	nm	The	cyano	ligand	(CN–)	is	a	strong	ligand	field	splitter,	so	we
expect	the	d5	electrons	of	Fe3+	to	have	the	t	52g	low	spin	ground	state	configuration	in	the	octahedral	[Fe(CN)6]3–	complex.	The	d-orbital	electron	spins	are	expected	to	be	paired	in	two	of	the	orbitals	of	the	t2g	level	with	one	unpaired	electron	in	the	third	orbital.	This	gives	S	=	1/2	and	2S	+	1	=	2	in	the	ground	state.	We	also	expect	that	P	<	ΔO
where	P	is	the	energy	of	repulsion	for	pairing	two	electrons	in	an	orbital.		13A.8(b)	The	transition	wavenumber	is	v=	1	=	Hypothesis	1.	A	d−d	transition	to	the	t	42g	e1g	octahedral	excited	state	with	S	=	1/2	and	2S	+	1	=	2	is	expected	to	be	parity	forbidden	and,	therefore,	have	a	small	molar	absorption	coefficient.	This	transition	requires	the	energy
ΔO	and	releases	the	energy	P	because	the	excited	electron	will	come	from	a	t2g	orbital	that	has	paired	electrons	in	the	ground	state.	Thus,	v	=∆	O	−	P	and	∆	O	=v	+	P	.	Using	the	typical	value	P	~	28	×	103	cm–1	yields	the	estimate	ΔO	~	63	×	103	cm–1.	See	F.A.	Cotton	and	G.	Wilkinson,	Advanced	Inorganic	Chemistry,	4th	ed.,	(New	York:
WileyInterscience	Publishers,	1980),	p.	646,	for	electron-pairing	energies.	This	ΔO	value	is	much	too	large	so	we	conclude	that	this	transition	is	unlikely	to	be	a	satisfactory	description	of	the	observed	transition.	Hypothesis	2.	Bonding	molecular	orbitals	may	form	from	the	LUMOs	of	the	CN–	ligands	and	the	t2g	orbitals	of	Fe3+	to	produce	complex-
wide	MOs	that	drastically	reduce	the	electron	pairing	energy.	Assuming	that	CN–	has	a	ground	electronic	configuration	that	is	similar	to	that	of	N2,	1σ22σ*21π42σ21π*0	(see	text	Fig.	10C.12),	we	see	that	the	cyanide	ligand	has	an	antibonding	1π*	MO	LUMO	that	has	the	correct	symmetry	to	form	a	π	bond	with	an	Fe3+	t2g	orbital.	This	possibility	is
depicted	in	Fig.	13A.1	with	the	LUMO	polarized	toward	the	carbon	as	expected	for	an	antibonding	MO.	Fig.	13A.2	depicts	a	reasonable	energy	level	diagram	for	the	Fe3+−CN−	π	bond.	Fe	C	N	−	dxy	π∗	LUMO	of	CN	Figure	13A.1	13:4	π∗	1	π∗	F	e	3+	2σ	eg	C	N−	eg	∆	t	2g	O	π	Figure	13A.2	Since	the	Fe3+−CN−	π	bond	electron	pair	are	more	disperse
than	either	a	t2g	electron	or	a	2σ	ligand	electron,	it	now	seems	reasonable	to	assume	that	the	electron	pairing	energy	is	small	enough	to	ignore	yielding	the	estimate	ΔO	~	33	×	103	cm–1	.	This	value	seems	acceptable.	13A.9(b)	The	normalized	wavefunctions	are:	1/	2	æ1ö	=	ψi	ç		èaø	for	0	≤	x	≤	a	and	0	elsewhere.	1/	2	æ	1	ö	=	ψf	ç		è	a	−	ca	ø	for	ca	≤	x	≤
a	and	0	elsewhere;	0	≤	c	<	1	1/	2	1/	2	1/	2	1/	2	a	æ1ö	æ	1	ö	æ1ö	æ	1	ö	x	x	x	x	d	d	=	=	ψ	ψ		ç		çç	∫	f	i	çè	a	ø	çç	a	(1	−	c	)		∫ca	è	a	ø	è	a	(1	−	c	)	ø	è	ø	1/	2	æ1ö	=	ç		èaø	1/	2	æ	1	ö	ì	a2	2	ü	=	çç		í	(1	−	c	)	ý	þ	è	a	(1	−	c	)	ø	î	2	x2	2	x=a	x	=	ca	2	a	(1	−	c	)	2	(1	−	c	)1/	2	Thus,	the	dipole	transition	integral	is	a	concave-down	function	of	c	with	a	maximum	at	c	=	1/3.
13A.10(b)	The	normalized	wavefunctions	are:	1/	2	æ	1	ö	=	ψi	ç		èa	πø	e−	x	2	/	2	a2	for	−	∞	≤	x	≤	∞	and	width	a.	1/	2	æ	2	ö	=	ψf	ç		èa	π	ø	e	−2	x	2	/	a2	for	−	∞	≤	x	≤	∞	and	width	a	/	2.	æ	21/	2	ö	∞	−	x2	/	2	a2	−2	x2	/	a2	æ	21/	2	ö	∞	−5	x2	/	2	a2	d	e	e	d	dx	=	=	ψ	x	ψ	x	x	x	ç		∫	xe	∫	f	i	çè	a	π	ø	−∞∫	è	a	π	ø	−∞	The	factors	within	the	integral	have	ungerade	and
gerade	symmetry.	Because	u	×	g	=	u,	the	integrand	has	ungerade	symmetry	and	the	dipole	transition	integral	is	necessarily	zero	(the	integral	of	an	ungerade	function	over	a	symmetric	interval	equals	zero).	13A.11(b)	The	weak	absorption	at	320	nm	is	typical	of	a	carbonyl	chromophore	of	an	enol.	The	assignment	is	π*←n	where	a	non-bonding	electron
comes	from	one	of	the	two	lone	pair	of	the	oxygen	valence.	The	two	lone	pair	of	oxygen	are	in	sp2	hybrid	orbitals,	which	define	the	xy	plane	that	contains	the	σ	bond	of	the	carbonyl.	The	π*	molecular	orbital	is	perpendicular	to	this	plane.	There	is	little	overlap	between	the	n	and	π*	orbitals,	thereby,	producing	a	low	value	for	the	dipole	transition
integral	and	a	low	molar	absorption	coefficient.	13:5	The	strong	absorption	at	213	nm	has	the	π*←π	assignment.	The	conjugation	of	the	π	bonds	of	the	ethenic	chromophore	and	the	carbonyl	chromophore	causes	this	transition	to	be	shifted	to	lower	energies	w/r/t	both	the	π*←π	transition	of	ethene	(165	nm)	and	the	π*←π	transition	of	propanone	(190
nm).	This	shift	can	be	understood	in	terms	of	the	simple	Hückel	theory	of	π	molecular	orbitals	using	the	butadiene	π	energy	model	shown	in	text	Fig.	10E.2	and	the	simple	MO	energy	diagram	for	C=C─C=O	in	Fig.	13A.3	below.	The	figure	demonstrates	a	broad	principle:	the	difference	between	neighboring	energy	levels	becomes	smaller	as	the
number	of	adjacent,	overlapping	orbitals	becomes	larger.	165	nm	pz(C)	pz(C)	213	nm	320	nm	190	nm	sp2(O)	sp2(O)	C=C	C=C−C=O	pz(C)	pz(O)	C=O	Figure	13A.3	Problems	13A.2	The	potential	energy	curves	for	the	X	3	Σ	g−	and	B	3	Σ	u−	electronic	states	of	O2	are	represented	schematically	in	Fig.	13A.4	along	with	the	notation	used	to	represent
the	energy	separation	of	this	problem.	Curves	for	the	other	electronic	states	of	O2	are	not	shown.	Ignoring	rotational	structure	and	anharmonicity	we	may	write	æ	8065.5	cm	−1	ö	1	−1	′	−	v	)	6.175	eV	×	ç	v00	≈	Te	+	1	2	(	v=		+	2	(	700	−	1580	)	cm	1	eV	è	ø	≈	49364	cm	−1	Comment:	Note	that	the	selection	rule	∆v	=	±1	does	not	apply	to	vibrational
transitions	between	different	electronic	states.	Question:	What	is	the	percentage	change	in	v	00	if	the	anharmonicity	constants	xe	v	,	12.0730	cm–1	and	8.002	cm–1	for	the	ground	and	excited	states,	respectively,	are	included	in	the	analysis?	13:6	Figure	13A.4	13A.4	The	ionization	is	HBr	→	HBr+	+	e–	with	the	accompanying	electronic	energy	change
given	by	the	equation	=	hv	1	2	mev	2	+	I	i	+	∆Eυ	'←	υ	=0	.	This	modified	form	of	eqn	10C.6	accounts	for	the	possibility	of	an	excitation	change	in	the	vibrational	energy	in	going	from	the	ground	electronic	vibrational	state	 	=	0,	in	which	a	majority	of	molecules	start,	to	the	ionized	electronic	vibrational	state	 '	=	0,1,2...	The	vibrational	transition
'=0← =0	is	called	an	adiabatic	transition.	Fig.	13A.5	shows	the	potential	energy	relationships	between	the	ground	electronic	state	and	two	possible	ionized	electronic	states.	13:7	Molecular	Potential	Energy	+	H	+	Br	Iσ	HBr	+	In	HBr	Internuclear	Separation	Figure	13A.5	(a)	The	photoelectron	spectrum	band	between	15.2	eV	and	16.2	eV	is	the

ejection	of	a	bonding	σ	electron	of	HBr	(see	text	Fig.	13.1).	Loss	of	this	electron	reduces	the	bond	order	from	1	to	½,	reduces	the	magnitude	of	the	bond	force	constant,	and	lengthens	the	equilibrium	bond	length	of	the	ionized	molecule.	The	electronic	transition	is	labeled	as	Iσ	in	Fig.	13A.5.	The	longer	bond	length	of	the	ionized	state	cause	the
Franck-Condon	factor	for	the	adiabatic	transition	( '=0← =0)	to	be	small.	This	is	the	lowest	energy	transition	of	the	band	at	about	15.3	eV.	The	increasing	spectral	intensity	for	the	 '=1← =0	and	 '=2← =0	transitions	indicates	that	these	vertical	transitions	have	successively	larger	Franck-Condon	factors.	The	separation	of	lines	(~0.162	eV)
corresponds	to	an	ionized	vibrational	wavenumber	of	about	1300	cm–1,	which	is	considerably	lower	than	the	2648.98	cm–1	of	the	neutral	ground	state.	The	presence	of	one	unpaired	electron	in	the	bonding	σ	orbital	means	that	the	ionized	molecule	is	in	a	2	+	Σ	state.	(b)	The	lines	between	11.6	eV	and	12.3	eV	involve	transitions	of	a	non-bonding
electron	of	the	chlorine	p	valence	subshell	to	two	very	closely	spaced	electronic	states	of	the	ionized	molecule.	The	ionization	energy	of	these	states	is	labeled	as	In	in	Figure	13A.5.	The	unpaired	electron	of	the	ionized	state	makes	it	a	doublet	with	spin-orbit	coupling	producing	j	=	|l+s|,...,|l–s|	=	|1	+	½|,	|1	–	½|	=	3/2,	1/2.	Consequently,	the	term
symbols	of	these	states	are	2	Π1/	2	and	2	Π	3	/	2	and	Hund's	rule	predicts	that	2	Π	3	/	2	is	lowest	in	energy	because	the	subshell	is	more	than	halffilled.	Excitation	of	a	non-bonding	electron	does	not	affect	the	molecular	bond,	nor	does	it	affect	the	bonding	force	constant	or	the	equilibrium	bond	length.	Only	the	vertical,	adiabatic	transition
( '=0← =0)	has	an	appreciable	Franck-Condon	factor.	The	transition	 '=1← =0	of	the	2	Π	3	/	2	transition	has	a	very	small	vertical,	vibrational	overlap	integral;	it	cannot	be	seen	in	the	spectrum	because	it	lies	below	the	2	Π1/	2	adiabatic	transition	at	12.0	ev.	The	transition	 '=1← =0	of	the	2	Π1/	2	transition	has	a	very	small	vertical,	vibrational
overlap	integral	and	it	is	located	at	12.3	eV.	The	0.3	eV	line	separation	corresponds	to	an	ionized	vibrational	wavenumber	of	about	2400	cm−1.	This	is	consistent	with	the	vibrational	wavenumber	of	the	ground	state	(2648.98	cm–1)	and	confirms	the	expectation	that	excitation	of	a	non-bonding	electron	does	not	affect	the	σ	bond.	13A.6	The	spectrum
gives	the	peak	and	half-height	points:	−1	=	ε	peak	250	dm3	mol−1	cm	=	,	λpeak	284	=	nm	(	v	35200	cm	−1	)	=	=	=	ε1/2	125	dm3	mol−1	=	cm	−1	,	λ1/2	305	nm	(	v	32800	cm	−1=	nm	(	v	37700	cm	−1	)	)	and	λ1/2	265	We	estimate	that	the	wavenumber	band	has	a	normal	Gaussian	shape:	13:8	=	ε	ε	max	e	=	A	(	−	v	−	vpeak	)	2	/	a2	where	a	is	a
constant	related	to	the	half-width	∆v1/=	2	∞	−	(	v	−	v	peak	)	=	∫	ε	(	v	)	dv	[12	A.15]	ε	max	∫	e	−∞	2	/	a2	(	37700	−	32800	)	−1	cm=	4900	cm	−1	dv	band	=	ε	max	a	π	(standard	integral)	The	relationship	between	the	half-width	and	a	is	found	by	evaluation	of	the	line	shape	at	ε(	v1/	2	)	=	εmax/2.	−	v	ε	max	/	2	=	ε	max	e	(	1	/	2	−	vpeak	)	2	/	a2	−	(	v1/	2	−
vpeak	)	/	a	2	ln(1/	2)	=	2	v	−	v	)	(=	(	∆v	2	=	a	2	a=	1/	2	peak	ln(2)	/	2)	ln(2)	2	1/	2	∆v1/	2	2	ln	2	Thus,	1	∆v	1/	2ε	max	π	/	ln(2)	=	A=	1.0645	∆v1/	2ε	max	2	−1	3	−1	1	A=	cm	−1	)	π	/	ln(2)	=	1.30	×	106	dm3	mol−1	cm	−2	2	(	4900	cm	)	×	(	250	dm	mol	Since	the	dipole	moment	components	transform	as	A1	(	z	),	B1	(	x)	,	and	B2	(	y	)	,	excitations	from	A1	to
A1	,	B1	,	and	B2	terms	are	allowed.	13A.8	Modeling	levels	of	the	π	electrons	of	1,3,5-hexatriene	as	free	electrons	in	a	linear	box	yields	non-degenerate	energy	En	=	n2	h2	[8A.7b]	8me	L2	The	molecule	has	six	π	electrons,	so	the	lowest	energy	transition	is	from	n	=	3	to	n	=	4	.	The	length	of	the	box	is	5	times	the	C	−	C	bond	distance	R.	So	(42	−	33	)h	2
∆Elinear	=	8me	(5	R)	2	Modeling	the	π	electrons	of	benzene	as	free	electrons	on	a	ring	of	radius	R	yields	energy	levels	of	ml2		2	=	[8C.5]	where	the	moment	of	inertion	is	I	me	R	2	Eml	2I	These	energy	levels	are	doubly	degenerate,	except	for	the	non-degenerate	ml	=	0	.	The	six	π	electrons	fill	the	ml	=	0	and	1	levels,	so	the	lowest-energy	transition	is
from	ml	=	1	to	ml	=	2	(22	−	12	)	2	(22	−	12	)h	2	=	2me	R	2	8π	2	me	R	2	Comparing	the	two	shows	7	æ	h2	ö	3	=	∆Elinear	=	ç		<	∆Ering	25	è	8me	R	2	ø	π2	∆	=	Ering	æ	h2	ö	ç	2		è	8me	R	ø	Therefore,	the	lowest-energy	absorption	will	rise	in	energy	when	the	molecule	is	converted	from	a	linear	to	a	ring	structure.	13A.10	Tryptophan	(Trp)	and	tyrosine	(Tyr)
show	the	characteristic	absorption	of	a	phenyl	group	at	about	280	nm.	Cysteine	(Cys)	and	glycine	(Gly)	lack	the	phenyl	group	as	is	evident	from	their	spectra.	13:9	13B	Decay	of	excited	states	Answers	to	discussion	questions	13B.2	The	characteristics	of	fluorescence	which	are	consistent	with	the	accepted	mechanism	are:	(1)	it	ceases	as	soon	as	the
source	of	illumination	is	removed;	(2)	the	time	scale	of	fluorescence,	~10–9	s,	is	typical	of	a	process	in	which	the	rate	determining	step	is	a	spontaneous	radiative	transition	between	states	of	the	same	multiplicity;	slower	than	a	stimulated	transition,	but	faster	than	phosphorescence;	(3)	it	occurs	at	longer	wavelength	(lower	frequency)	than	the
inducing	radiation;	(4)	its	vibrational	structure	is	characteristic	of	that	of	a	transition	from	the	ground	vibrational	level	of	the	excited	electronic	state	to	the	vibrational	levels	of	the	ground	electronic	state;	and	(5)	the	observed	shifting	and	in	some	instances	quenching	of	the	fluorescence	spectrum	by	interactions	with	the	solvent.	Solutions	to	exercises
13B.1(b)	After	some	vibrational	decay	the	benzophenone	(which	does	absorb	near	360	nm)	can	transfer	its	energy	to	naphthalene.	The	latter	then	emits	the	energy	radiatively.	13B.2(b)	When	the	steeply	repulsive	section	of	the	H2	potential	energy	curve	for	the	excited	state	lies	slightly	toward	the	short	side	of	the	equilibrium	bond	length	and	the
minimum	of	the	excited	state	lies	to	the	longer	side	(as	shown	in	text	Fig.	13B.7),	a	great	many	excited	vibrational	states	overlap	with	the	lowest	energy	vibration	of	the	ground	state	thereby	making	the	Franck-Condon	factor	appreciable	for	many	vertical	transitions	(see	text	Fig.	13A.7).	This,	combined	with	continuous	absorption	above	the
dissociation	limit,	yields	a	relatively	broad	absorption	band.	Furthermore,	predissociation	to	the	unbound	1	Σ	+u	state	shortens	the	lifetime	of	excited	vibrational	states.	This	causes	the	high	resolution	lines	of	rotational	transitions	to	be	broad	through	the	Heisenberg	uncertainty	principle	∆E	∆t	≥		/	2	.	13C	Lasers	Answers	to	discussion	questions
13C.2	Strong	and	short	radiation	pulses	from	a	Q-switched	or	mode-locked	laser	can	be	used	to	study	ultrafast	chemical	reactions	by	promoting	a	molecule	A	to	an	excited	state	A*,	which	may	either	emit	a	photon	or	react	with	another	molecule	B	to	form	an	intermediate	species	AB.	AB	may	even	be	an	activated	complex.	A	second	pulse	of	radiation
that	is	synchronized	to	pass	through	the	sample	at	a	specific	time	after	the	excitation	pulse	is	used	to	monitor	the	appearance	and	disappearance	of	the	various	species.	Reaction	progress	and	rates	on	the	nanosecond-topicosecond	scale	can	be	examined	by	varying	the	time	delay	between	the	excitation	pulse	and	the	monitor	pulse.	Text	13C.10	is	a
schematic	of	a	time-resolved	absorption	spectrometer.	A	beamsplitter	directs	a	portion	of	the	excitation	beam	to	a	continuum	generator,	which	converts	the	monochromatic	laser	pulse	to	a	wide-frequency	pulse	suitable	for	monitoring	reaction	species.	The	time	delay	is	selected	by	changing	the	position	of	the	motorized	stage	in	the	directions	shown
by	the	double	arrow.	The	monitor	pulse	is	directed	through	the	sample	to	the	monochromator	along	a	path,	which	avoids	coincidence	with	the	intense	excitation	pulse,	to	the	monchromator	and	detector.	Solutions	to	exercises	13C.1(b)	Only	an	integral	number	of	half-wavelengths	fit	into	the	cavity.	These	are	the	resonant	modes.	λ	=	2	L	/	n	[13C.1]
where	n	is	an	integer	and	L	is	the	length	of	the	cavity.	13:10	The	resonant	frequencies	are	given	by=	v	c=	/	λ	nc	/	2	L	.	The	lowest	energy	resonant	modes	(n	=	1)	in	a	3.0	m	cavity	are	λ	=	6.0	m	(v	=	50.0	MHz).	13C.2(b)	Referring	to	Example	13C.1,	we	have	Ppeak=	Epulse/tpulse	and	Paverage=	Etotal/t	=	Epulse×	vrepetition	where	vrepetition	is	the
pulse	repetition	rate.	20	μJ	/	Ppeak	=	tpulse	Epulse=	=	200	ps	100	kW	0.40	mW	=	vrepetition	Paverage	=	/	Epulse	=	20	Hz	20.0	μJ	Solutions	to	problems	13C.2	This	Mathcad	Prime	2	worksheet	simulates	the	output	of	a	mode-locked	laser.	The	radiation	intensity	is	analyzed	in	text	Justification	13C.1	and	we	take	the	constant	of	proportionality	to	equal
1	(see	eqn	13C.3).	The	worksheet	plots	for	N	=	5,	20,	and	75	demonstrate	that	the	superposition	of	many	modes	creates	very	narrow	spikes	separated	by	t	=	2L/c	=	2	nm.	Integrated	activities	13.2	(a)	Ethene	(ethylene)	belongs	to	D2h.	In	this	group	the	x,	y,	and	z	components	of	the	dipole	moment	transform	as	B3u,	B2u,	and	B1u	respectively.	The	π
orbital	is	B1u	(like	z,	the	axis	perpendicular	to	the	plane)	and	π*	is	B3g.	Since	B3g	×	B1u	=	B2u	and	B2u	×	B2u	=	A1g,	the	transition	is	allowed	(and	is	y-polarized).	13:11	(b)	Regard	the	CO	group	with	its	attached	groups	as	locally	C2v.	The	dipole	moment	has	components	that	transform	as	A1(z),	B1(x),	and	B2(y),	with	the	z-axis	along	the	C==O
direction	and	x	perpendicular	to	the	R2CO	plane.	The	n	orbital	is	py	(in	the	R2CO	plane),	and	hence	transforms	as	B2.	The	π*	orbital	is	px	(perpendicular	to	the	R2CO	plane),	and	hence	transforms	as	B1.	Since	Γf	×	Γi	=	B1	×	B2	=	A2,	but	no	component	of	the	dipole	moment	transforms	as	A2,	the	transition	is	forbidden.	13.4	EHOMO	calculations,
performed	with	Spartan	'10	using	the	DFT/B3LYP/6-31G*	method,	are	reported	in	the	following	table	along	with	the	energy	of	experimentally	determined	I2−aromatic	hydrocarbon	charge	transfer	bands.	Figure	13.1	is	a	plot	of	the	charge	transfer	energy	against	EHOMO	along	with	the	linear	regression	fit.	hvmax(exp)	/	eV	EHOMO	/	eV	Benzene	4.184
−6.70	Biphenyl	3.654	−5.91	Naphthalene	3.452	−5.78	Phenanthrene	3.288	−5.73	Pyrene	2.989	−5.33	Anthracene	2.890	−5.23	Hydrocarbon	The	plot	shows	a	clear	correlation	between	the	energy	of	charge	transfer	and	the	HOMO	of	hydrocarbon	electron	donor:	as	EHOMO	increases,	the	energy	of	charge	transfer	decreases.	The	correlation	appears
to	be	linear	and	the	correlation	coefficient	(R	=	0.988)	indicates	that	about	98.8%	of	the	variation	is	explained	by	the	linear	correlation.	This	supports	the	hypothesis	that	for	π-donor	hydrocarbons	hvmax	=	ELUMO(I2)	–	EHOMO(π).	−5	EHOMO	/	eV	−5.5	−6	y	=	−1.0912x	−	2.0594	R²	=	0.9755	−6.5	−7	2.5	3	3.5	hvmax	/	eV	Figure	13.1	13:12	4	4.5	14
Magnetic	Resonance	14A	General	principles	Answers	to	discussion	questions	D14A.2	The	magnetogyric	ratio	of	the	electron	is	much	larger	in	magnitude	than	the	magnetogyric	ratios	of	nuclei;	therefore,	the	magnetic	moment	of	the	electron	is	much	larger	than	the	magnetic	moments	of	nuclei.	Compare	the	Bohr	magneton	to	the	nuclear	magneton.
Hence	the	energy	of	interaction	of	an	electron	with	a	magnetic	field	is	much	greater	than	the	energies	of	interaction	of	nuclei	with	a	magnetic	field,	on	the	order	of	magnitude	by	a	factor	of	1000.	Solutions	to	exercises	µN	E14A.1(b)	Since=	e	/	=	2mp	5.051×10−27	J	T	-1	and	knowing	the	SI	base	units	of	e,	,	and	mp	,	we	can	solve	for	the	units	of	T	in
terms	of	the	base	units	of	the	SI	system.	In	terms	of	units,	the	above	equation	for	µN	can	be	written	(A	s	J	s)/kg	=	(J	T-1).	Or	T	=	kg	s-2	A-1.	In	the	solution	to	E47.1(a)	it	is	shown	that	therefore,	γ	N	=	s	−1T	−1	;	γ	N	=	A	s	kg	−1	E14A.2(b)	The	magnitude	of	the	angular	momentum	is	given	by	Magnitude	=	{I	(	I	+	1)}1/	2		.	For	a	14	N	nucleus	I	=	1,
hence	=	2	1.491×10−34	J	s	.	The	components	along	the	z	–	axis	are	0,	±	=	0,	±	1.055	×10−34	J	s	.	The	angles	that	the	projections	of	the	angular	momentum	make	with	the	z-axis	are		=	0,	±	0.7854	rad	=	0	,	±	45	2	θ=	0,	±	cos	−1	E14A.3(b)	For	19	ν=	ν=	L	Hence,	=	ν	µ	F,	µ	=2.62887,	g	=5.2567	N	γ	N	0	g	I	µN	with	γ	=	N	2π		gI	µN	0	(5.2567)	×
(5.0508	×	10−27	J	T−1	)	×	(17.1T)	=	h	(6.626	×	10−34	J	s)	=6.85	×	108	s	−1	=	685	MHz	g	I	µN	]	−γ	N	0	mI	=	−	g	I	µ	N	0	mI	[eqns	14A.4c,	γ	N		=	E14A.4(b)	EmI	=	mI	=	1,	0,	−	1	Em	=−(0.404)	×	(5.0508	×	10−27	J	T	−1	)	×	(10.50	T)mI	I	(	)	=	−	2.1425	×	10−26	J	mI	=−2.14	×	10−26	J,	0,	+2.14	×	10−26	J	14:1	E14A.5(b)	The	energy	separation
between	the	two	levels	is	∆=	E	hν	ν	where=	γ	N	0	(1.93	×	107	T	−1	s	−1	)	×	(14.4	T	)	=	2π	2π	=4.42	×	107	s	−1	=	44.2	MHz	E14A.6(b)	A	600	MHz	NMR	spectrometer	means	600	MHz	is	the	resonance	field	for	protons	for	which	the	magnetic	field	is	14.1	T.	In	high-field	NMR	it	is	the	field,	not	the	frequency,	that	is	fixed.	(i)	A	N	nucleus	has	three
energy	states	in	a	magnetic	field	corresponding	to	mI	=	+1,	0,	−1	.	But	14	∆E	(+1	→	0)	=	∆E	(0	→	−1)	∆E	=Em′I	−	EmI	=−γ	N	0	mI′	−	(−γ	N	0	mI	)	=	−γ	N	0	(m′I	−	mI	)	=	−γ	N	0	∆mI	The	allowed	transitions	correspond	to	∆m	I	=	±1	;	hence	∆E	=	hν	=	γ	N	0	=	g	I	µ	N	0	=	=	(	0.4036	)	×	(	5.051×10−27	JT	−1	)	×	(14.1	T	)	2.88	×	10−26	J	(ii)	We
assume	that	the	electron	g-value	in	the	radical	is	equal	to	the	free	electron	g-value,	ge	=	2.0023.	Then	∆E	=	hν	=	g	e	µ	B	0	[14A.12]	=	(2.0023)	×	(9.274	×	10−24	J	T	−1	)	×	(0.300	T)	=	5.57	×	10−24	J	Comment.	The	energy	level	separation	for	the	electron	in	a	free	radical	in	an	ESR	spectrometer	is	far	greater	than	that	of	nuclei	in	an	NMR
spectrometer,	despite	the	fact	that	NMR	spectrometers	normally	operate	at	much	higher	magnetic	fields.	E14A.7(b)	The	relative	population	difference	for	spin	δN	Nα	−	N	β	γ	0	g	I	µ	N	0	=	≈	=	N	Nα	+	N	β	2kT	2kT	=	(i)	For	0.50	T	(ii)	For	2.5T	(iii)	For	15.5T	E14A.8(b)	δN	≈	1	2	nuclei	is	given	by	[	Justification	14A.1	and	E14A.7(a)]	1.405	(	5.05	×
10−27	J	T	−1	)	0	=	8.62	×	10−7	(	0	/	T	)	2	(1.381×	10−23	JK	−1	)	×	(	298	K	)	δN	=	(8.62	×	10−7	)	×	(0.50)	=	4.3	×	10−7	N	δN	=	(8.62	×	10−7	)	×	(2.5)	=	2.2	×	10−6	N	δN	=	(8.62	×	10−7	)	×	(15.5)	=	1.34	×	10−5	N	Ng	I	µ	N	0	Nhv	[Exercises	14A.7(a)	&	(b)]	=	2kT	2kT	Thus,	δ	N	α	v	δ	N	(450MHz)	450MHz	=	=	7.5	60MHz	δ	N	(60MHz)	This	ratio	is
not	dependent	on	the	nuclide	as	long	as	the	approximation	∆E		kT	holds.	(Exercise	14A.7(a))	14:2	=	0	E14A.9(b)	hν	hc	=	ge	µB	ge	µB	λ	(6.626	×	10−34	J	s)	×	(2.998	×	108	m	s	−1	)	1.3	T	=	(2.0023)	×	(9.274	×	10−24	J	T	−1	)	×	(8	×	10−3	m)	Solutions	to	problems	µ=	g	I	µ	N	|	I	|	[µ	N	=	5.05079	×	10−27	JT	−1	]	P14A.2	(a)	Using	the	formulas	é	µ
(nuclide)	ù	Rv	(nuclide)	2	(	I	+	1)	ê	=	ú	1	1	3	Rv	(	H)	ë	µ	(	H)	û	Sensitivity	ratio(=	v)	R	(nuclide)	1	æ	I	+	1	ö	é	µ	(nuclide)	ù	=	Sensitivity	ratio(	)	=	ç	ê	ú	6	è	I	2	ø	ë	µ	(	1	H)	û	R	(	1	H)	3	We	construct	the	following	table:	Nuclide	2	Sensitivity	ratio(	v	)	Sensitivity	ratio	(		)	1	0.85745	0.409	0.00965	1	2	0.7023	0.251	0.01590	N	1	0.40356	0.193	0.00101	19	F	1	2
2.62835	0.941	0.83350	31	P	1	2	1.1317	0.405	0.06654	H	1	2	2.79285	H	13	C	14	1	(b)	µ	µN	Spin	I	=	µ	γ=	g	I	µN	|	I	|	N	I	Hence	γ	N	=	µ	I	At	constant	frequency	Rν	∝	(	I	+	1)	µω02	or	Rν	∝	(	I	+	1)	µ	[ω0	is	constant	between	the	nuclei]	Thus	Sensitivity	ratio(v)	=	Rν	(nuclide)	Rν	(1	H)	é	µ	(nuclide)	µ	N	ù	é	µ	(nuclide)	ù	2	2	(	I	+	1)	ê	(	I	+	1)	ê	=	ú	ú=	3	3	1	1	ë	µ
(	H)	û	ë	µ	(	H)	µ	N	û	as	above.	Substituting	ω0	=γ	N	B0	and	γ	N	=	RB	∝	µ	I	,	ω0	=	(	I	+	1)	µ	3	B02	I2	14:3	µ	B0	I	so	R	(nuclide)	=	Sensitivity	ratio(	)	=	R	(1	H)	1	6	æ	I	+	1	ö	é	µ	(nuclide)	ù	ç	2	ê	ú	1	è	I	ø	ë	µ	(	H)	û	æ	I	+	1	ö	é	µ	(nuclide)	/	µ	N	ù	=	16	ç	2		ê	ú	1	è	I	ø	ë	µ	(	H)	/	µ	N	û	3	3	as	in	part	(a).	14B	Features	of	NMR	spectra	Answers	to	discussion	questions
D14B.2	Detailed	discussions	of	the	origins	of	the	local,	neighbouring	group,	and	solvent	contributions	to	the	shielding	constant	can	be	found	in	Sections	14B.2(a),	(b),	and	(c)	as	well	as	books	on	NMR.	Here	we	will	merely	summarize	the	major	features.	The	local	contribution	is	essentially	the	contribution	of	the	electrons	in	the	atom	that	contains	the
nucleus	being	observed.	It	can	be	expressed	as	a	sum	of	a	diamagnetic	and	paramagnetic	parts,	that	is	σ	(local)	=	σ	d	+	σ	p	.	The	diamagnetic	part	arises	because	the	applied	field	generates	a	circulation	of	charge	in	the	ground	state	of	the	atom.	In	turn,	the	circulating	charge	generates	a	magnetic	field.	The	direction	of	this	field	can	be	found	through
Lenz’s	law	which	states	that	the	induced	magnetic	field	must	be	opposite	in	direction	to	the	field	producing	it.	Thus	it	shields	the	nucleus.	The	diamagnetic	contribution	is	roughly	proportional	to	the	electron	density	on	the	atom	and	it	is	the	only	contribution	for	closed	shell	free	atoms	and	for	distributions	of	charge	that	have	spherical	or	cylindrical
symmetry.	The	local	paramagnetic	contribution	is	somewhat	harder	to	visualize	since	there	is	no	simple	and	basic	principle	analogous	to	Lenz’s	law	that	can	be	used	to	explain	the	effect.	The	applied	field	adds	a	term	to	the	hamiltonian	of	the	atom	which	mixes	in	excited	electronic	states	into	the	ground	state	and	any	theoretical	calculation	of	the
effect	requires	detailed	knowledge	of	the	excited	state	wave	functions.	It	is	to	be	noted	that	the	paramagnetic	contribution	does	not	require	that	the	atom	or	molecule	be	paramagnetic.	It	is	paramagnetic	only	in	the	sense	in	that	it	results	in	an	induced	field	in	the	same	direction	as	the	applied	field.	The	neighbouring	group	contributions	arise	in	a
manner	similar	to	the	local	contributions.	Both	diamagnetic	and	paramagnetic	currents	are	induced	in	the	neighbouring	atoms	and	these	currents	result	in	shielding	contributions	to	the	nucleus	of	the	atom	being	observed.	However,	there	are	some	differences:	The	magnitude	of	the	effect	is	much	smaller	because	the	induced	currents	in	neighbouring
atoms	are	much	farther	away.	It	also	depends	on	the	anisotropy	of	the	magnetic	susceptibility	(see	Chapter	18)	of	the	neighbouring	group	as	shown	in	eqn	14B.10(b).	Only	anisotropic	susceptibilities	result	in	a	contribution.	Solvents	can	influence	the	local	field	in	many	different	ways.	Detailed	theoretical	calculations	of	the	effect	are	difficult	due	to



the	complex	nature	of	the	solute-solvent	interaction.	Polar	solvent–polar	solute	interactions	are	an	electric	field	effect	that	usually	causes	deshielding	of	the	solute	protons.	Solvent	magnetic	anisotropy	can	cause	shielding	or	deshielding,	for	example,	for	solutes	in	benzene	solution.	In	addition,	there	are	a	variety	of	specific	chemical	interactions
between	solvent	and	solute	that	can	affect	the	chemical	shift.	D14B.4	See	Section	14B.3(d)	for	a	detailed	discussion	of	chemical	and	magnetic	equivalence	as	applied	to	NMR	and	the	distinction	between	them.	Here	we	will	summarize	the	basic	concepts.	Two	nuclei	are	chemically	equivalent	if	they	are	related	by	a	symmetry	operation	of	the	molecule.
Symmetrically	equivalent	nuclei	will	have	the	same	resonance	frequency,	i.e.	the	same	chemical	shift.	Examples	are	the	protons	in	benzene	and	the	protons	meta-	to	each	other	(H-2,	H-6	and	H-3,	H-5)	in	para-nitrophenol.	In	benzene	the	protons	are	related	by	a	C6	operation	(as	well	as	others)	and	in	para-nitrophenol	the	protons	are	related	by	a	plane
of	symmetry	and	a	C2	operation.	Two	nuclei	are	magnetically	equivalent	if	in	addition	to	being	chemically	equivalent	they	have	identical	spin-spin	interactions	with	all	other	magnetic	nuclei	in	the	molecule.	Examples	are	CH2CF2	and	1,2,3-trichlorobenzene.	Chemical	equivalence	does	not	imply	magnetic	equivalence.	In	the	case	of	para-nitrophenol,
the	protons	H-2	and	H-6,	though	chemically	equivalent,	are	14:4	not	magnetically	equivalent	because	the	coupling	of	H-2	to	H-3	is	different	from	the	coupling	of	H-6	to	H3.	Solutions	to	exercises	E14B.1(b)	See	the	solution	to	Exercise	14B.1(a).	(i)	δ	is	independent	of	both		and	v.	(ii)	Rearranging	[48.4]	we	see	v	–	vº	=	vºδ	×	10–6	and	the	relative
chemical	shift	is	(	450	MHz	)	=	(	60	MHz	)	ν	−ν	º	(	450	MHz	)	=	ν	−ν	º	(	60	MHz	)	7.5	loc=	(1	−	σ	)0	E14B.2(b)	|	∆loc	|=|	(∆σ	)	|	0	≈|	[δ	(CH	3	)	−	δ	(CH	2	)]	|	×10−6	0	=|	1.16	−	3.36	|	×10−6	0	=	2.20	×	10−6	0	(i)	0	=	1.9	T,|	∆loc	|=	(2.20	×	10−6	)	×	(1.9	T)	=	(ii)	0=	16.5T,	E14B.3(b)	4.2	×	10−6	T	|	∆loc=|	(2.20	×	10−6	)	×	(16.5T)=	3.63	×	10−5	T	v	–
vº	=	vºδ	×	10–6	|	∆ν	|	≡	(ν	−	ν	º	)(CH	2	)	−	(ν	−	ν	º	)(CH	=	ν	(CH	2	)	−	ν	(CH	3	)	3)	=	ν	º[δ	(CH	2	)	−	δ	(CH	3	)]	×	10−6	=	(3.36	−	1.16)	×	10−6ν	º	=	2.20	×	10−6ν	º	(i)	ν	=º	400	MHz	|	∆ν=|	(2.20	×	10−6	)	×	(400	MHz)=	880	Hz	[Fig.14B.1]	(ii)	ν	º	=	650	MHz	|	∆ν	|=	(2.20	×	10−6	)	×	(650	MHz)	=	1.43kHz	Figure	14B.1	At	650	MHz,	the	spin–spin
splitting	remains	the	same	at	6.97	Hz,	but	as	Δν	has	increased	to	1.43	kHz,	the	splitting	appears	narrower	on	the	δ	scale	E14B.4(b)	See	section	14B.3	of	the	text	for	the	splitting	pattern	of	the	A	resonance	of	an	AXn	NMR	spectrum.	Here	A	=	31P	and	n	=	6.	The	6	fluorine	nuclei	split	the	A	resonance	into	a	septet	of	lines	with	intensities	in	the	ratio
1:6:15:20:15:6:1.	See	Fig.	14B.2.	14:5	Figure	14B.2	δΑ	E14B.5(b)	ν=	Hence,	g	I	µ	N	0	h	[Solution	to	exercises	14A.3(a)	&	(b)]	v(31	P	)	g	(31	P	)	=	v(1	H	)	g	(1	H	)	2.2634	or	ν	(31	P)	=	×	500	MHz	=203MHz	5.5857	The	proton	resonance	consists	of	2	lines	(2	×	12	+	1)	and	the	P	resonance	of	5	lines	[2	×	(4	×	12	)	+	1]	.	31	The	intensities	are	in	the	ratio
1:4:6:4:1	(Pascal’s	triangle	for	four	equivalent	spin	1	2	nuclei,	Section	5.5857	=	2.47	times	greater	in	the	phosphorus	region	than	the	proton	2.2634	region.	The	spectrum	is	sketched	in	Fig.	14B.3.	48.3).	The	lines	are	spaced	Figure	14B.3	E14B.6(b)	See	Section	14B.3(a),	Example	14B.3	and	Figs.	14B.12	and	14B.13	for	the	approach	to	the	solution	to
this	exercise.	Also	see	Example	14D.1	and	Figs.	14D.4	and	14D.5.	That	latter	example	and	those	figures	are	applied	specifically	to	EPR	spectra,	but	the	process	of	determining	the	intensity	pattern	in	the	fine	structure	of	an	NMR	spectrum	is	the	same.	See	the	table	below	for	the	version	of	Pascal’s	triangle	for	up	to	3	spin-5/2	nuclei.	Each	number	in
the	table	is	the	sum	of	the	six	(I	=	5/2,	2I	+	1	=	6)	numbers	above	it	(3	to	the	right	and	3	to	the	left).	14:6	1	1	1	1	3	6	2	1	3	10	4	15	21	1	5	25	1	6	27	1	5	27	1	4	25	3	21	2	15	1	10	6	3	E14B.7(b)	Look	first	at	A	and	M,	since	they	have	the	largest	splitting.	The	A	resonance	will	be	split	into	a	widely	spaced	triplet	(by	the	two	M	protons);	each	peak	of	that
triplet	will	be	split	into	a	less	widely	spaced	sextet	(by	the	five	X	protons).	The	M	resonance	will	be	split	into	a	widely	spaced	triplet	(by	the	two	A	protons);	each	peak	of	that	triplet	will	be	split	into	a	narrowly	spaced	sextet	(by	the	five	X	protons).	The	X	resonance	will	be	split	into	a	less	widely	spaced	triplet	(by	the	two	A	protons);	each	peak	of	that
triplet	will	be	split	into	a	narrowly	spaced	triplet	(by	the	two	M	protons).	(See	Fig.	14B.4.)	Only	the	splitting	of	the	central	peak	of	Fig.	14B.4(a)	is	shown	in	Fig.	14B.4(b).	Figure	14B.4	E14B.8(b)	(i)	Since	all	JHF	are	equal	in	this	molecule	(the	CH2	group	is	perpendicular	to	the	CF2	group),	the	H	and	F	nuclei	are	both	chemically	and	magnetically
equivalent.	(ii)	Rapid	rotation	of	the	PH3	groups	about	the	Mo–P	axes	makes	the	P	and	H	nuclei	chemically	and	magnetically	equivalient	in	both	the	cis-	and	trans-forms.	E14B.9(b)	τ	≈	2	[4B.16,	with	δν	written	as	∆ν	]	π∆v	∆=	ν	ν	º	(δ	′	−	δ	)	×	10−6	[Exercise	14B.3(a)]	τ≈	Then	≈	2	πν	0	(δ	′	−	δ	)	×	10−6	2	≈	9.9	×	10−4	s	(π	)	×	(350	×	10	Hz)	×	(5.5	−
4.2)	×	10−6	6	Therefore,	the	signals	merge	when	the	lifetime	of	each	isomer	is	less	than	about	0.99	ms,	corresponding	to	a	conversion	rate	of	about	1.0	×	103	s	−1	Solutions	to	problems	14:7	1	P14B.2	See	Figures	14B.5(a),	14B.5(b),	and	14B.5(c).	In	Figure	14B.5(a),	J1	has	A	=	+7.0	Hz,	B	=	−1.0	Hz,	and	C	=	+5.0	Hz.	These	are	the	suggested	initial
values	of	the	parameters	A,	B,	and	C.	For	J2	in	the	figure,	we	have	changed	C	to	+6.0	Hz.	We	see	that	a	small	change	in	C	makes	a	relatively	large	change	in	J,	but	the	overall	shape	of	the	curve	remains	similar;	the	crossover	point	remains	at	π/2.	In	Figure	14B.5(b),	we	have	changed	B	from	its	initial	value	of	−1	Hz	to	−2	Hz.	This	curve	is	shown	in	the
figure	as	J3.	There	is	not	a	large	change	in	J	and	the	shape	remains	the	same,	as	does	the	crossover	point.	In	Figure	14B.5(c),	we	have	changed	A	to	+8.0	Hz	from	its	initial	value	of	+7.0	Hz.	This	curve	is	shown	in	the	figure	as	J4.	Here	we	see	that	a	small	change	in	A	eliminates	the	crossover	of	the	curves,	although	again	the	general	shape	of	the	curve
is	similar.	Figure	14B.5(a)	Figure	14B.5(b)	14:8	Figure	14B.5(c)	P14B.4	(a)	The	Karplus	equation	[14B.14]	for	3	J	HH	is	a	linear	equation	in	cos	φ	and	cos	2φ	.	The	experimentally	determined	equation	for	3	J	SnSn	is	a	linear	equation	in	3	J	HH	.	In	general,	if	F	(	f	)	is	linear	in	f	,	and	if	f	(	x)	is	linear	in	x,	then	F	(	x)	is	linear.	So	we	expect	demonstrated	in
(b).	(b)	3	3	J	SnSn	to	be	linear	in	cos	φ	and	cos	2φ	.	This	is	J	SnSn	/Hz	=	78.86(3	J	HH	/Hz)	+	27.84	Inserting	the	Karplus	equation	for	3	J	HH	we	obtain	3	J	SnSn	/Hz	=	78.86{	A	+	B	cos	φ	+	C	cos	2φ	}	+	27.84	.	Using	A	=	7,	B	=	–1,	and	C	=	5,	we	obtain	3	J	SnSn	/Hz	=	580	--	79	cos	φ	+	395cos	2φ	The	plot	of	3	J	SnSn	is	shown	in	Fig.14B.6.	14:9	Figure
14B.6	(c)	A	staggered	configuration	(Fig.14B.7)	with	the	SnMe3	groups	trans	to	each	other	is	the	preferred	configuration.	The	SnMe3	repulsions	are	then	at	a	minimum.	Figure	14B.7	P14B.6	Equation	14B.15	may	be	written	nuc	=	k	(1	−	3cos	2	θ	)	where	k	is	a	constant	independent	of	angle.	Thus	π	2π	0	0	(nuc	)	∝	∫	(1	−	3cos	2	θ	)	sin	θ	dθ	∫	dφ	−1	∝	∫
(1	−	3	x	2	)	dx	×	2π	[	x	=	cos	θ	,	dx	=	−	sin	θ	dθ	]	1	∝	(	x	−	x3	)	−1	1	=	0	14:10	14C	Pulse	techniques	in	NMR	Answers	to	discussion	questions	D14C.2	Both	spin–lattice	and	spin–spin	relaxation	are	caused	by	fluctuating	magnetic	and	electric	fields	at	the	nucleus	in	question	and	these	fields	result	from	the	random	thermal	motions	present	in	the
solution	or	other	form	of	matter.	These	random	motions	can	be	a	result	of	a	number	of	processes	and	it	is	hard	to	summarize	all	that	could	be	important.	In	theory	every	known	nuclear	interaction	coupled	with	every	type	of	motion	can	contribute	to	relaxation	and	detailed	treatments	can	be	exceedingly	complex.	However,	they	all	depend	on	the
magnetogyric	ratio	of	the	atom	in	question	and	the	magnetogyric	ratio	of	the	proton	is	much	larger	than	that	of	13C.	Hence	the	interaction	of	the	proton	with	fluctuating	local	magnetic	fields	caused	by	the	presence	of	neighboring	magnetic	nuclei	will	be	greater,	and	the	relaxation	will	be	quicker,	corresponding	to	a	shorter	relaxation	time	for	protons.
Another	consideration	is	the	structure	of	compounds	containing	carbon	and	hydrogen.	Typically	the	C	atoms	are	in	the	interior	of	the	molecule	bonded	to	other	C	atoms,	99%	of	which	are	nonmagnetic,	so	the	primary	relaxation	effects	are	due	to	bonded	protons.	Protons	are	on	the	outside	of	the	molecule	and	are	subject	to	many	more	interactions	and
hence	faster	relaxation.	D14C.4	In	the	nuclear	Overhauser	effect	(NOE)	in	NMR,	spin	relaxation	processes	are	used	to	transfer	the	population	difference	typical	of	one	species	of	nucleus	X	to	another	nucleus	A,	thereby	enhancing	the	intensity	of	the	signal	produced	by	A.	Eqns.	14C.8	and	14C.9	show	that	the	signal	enhancement	is	given	by	IA	γ	=1	+
η	=1	+	X	0	IA	2γ	A	NOE	can	be	used	to	determine	interproton	distances	in	biopolymers.	This	application	makes	use	of	the	fact	that	when	the	dipole-dipole	mechanism	is	not	the	only	relaxation	mechanism,	the	NOE	is	given	by	IA	T1	γ	=1	+	η	=1	+	X	×	0	IA	2γ	A	T1,dip-dip	where	T1	is	the	total	relaxation	time	and	T1,dip-dip	is	the	relaxation	time	due	to
the	dipole-dipole	mechanism.	Here	A	and	X	are	both	protons.	The	enhancement	depends	strongly	on	the	separation,	r,	of	the	two	spins,	for	the	strength	of	the	dipole-dipole	interaction	is	proportional	to	1/r3	,	and	its	effect	depends	on	the	square	of	that	strength	and	therefore	on	1/r6.This	sharp	dependence	on	separation	is	used	to	build	up	a	picture	of
the	conformation	of	the	biopolymer	by	using	NOE	to	identify	which	protons	can	be	regarded	as	neighbors.	Solutions	to	exercises	E14C.1(b)	Analogous	to	precession	of	the	magnetization	vector	in	the	laboratory	frame	due	to	the	presence	of	0	that	is	vL	=	γ	N	0	[14A.7],	2π	there	is	a	precession	in	the	rotating	frame,	due	to	the	presence	of	1	,	namely	γ	N
1	or	ω	γ		=	N	1	1	2π	Since	ω	is	an	angular	frequency,	the	angle	through	which	the	magnetization	vector	rotates	is	νL	=	14:11	=	θ	γ=	N	1t	g	I	µN	1t		(π	/	2)	×	(1.0546	×	10−34	J	s)		=	=	1.08	×	10−3	T	1	gθµ	So=	−	1	−	27	−	I	Nt	(5.586)×(5.0508×10	J	T	)×(5×10	6	s)	a	180º	pulse	requires	2	×	5	μs	=	10	μs	E14C.2(b)	The	effective	transverse	relaxation
time	is	given	by	T2*	=	1	1	[14C.7]	=	0.027	s	=	π∆ν	½	π	×12	s	−1	E14C.3(b)	The	maximum	enhancement	is	given	by	=	η	γ	1H	26.752	×107	T	−1s	−1	=	[14C.9]	[Table	=	14A.2]	0.5312	2	×	γ	19	F	2	×	25.177	×107	T	−1s	−1	E14C.4(b)	See	Fig.	14C.1.	Only	the	H(N)	and	H(Cα)	protons	and	the	H(Cα)	and	H(Cβ)	protons	are	expected	to	show	coupling.
This	results	in	a	simple	COSY	spectrum	with	only	two	off-diagonals,	one	at	(8.25	ppm,	4.35	ppm)	and	the	other	at	(4.35	ppm,	1.39	ppm).	CβH	δ	Cα	H	NH	δ	Figure	14C.1	14:12	Solutions	to	problems	P14C.2	The	FID	signals	from	the	three	nuclei	are	all	of	the	form	of	eqn	14C.1	which	we	will	write	as	F	(t	)	=	∑	S0	j	cos(2πν	Lj	t	)e	−	t	/	T2	j	.	For	simplicity
we	will	assume	that	all	T2	values	are	the	same	at	1.0	s	j	and	that	the	maximum	signal	intensity	S0j	is	the	same	for	each	nucleus.	No	information	is	given	in	the	problem	statement	about	the	number	of	nuclei	with	the	specific	values	of	δ	given,	so	again	for	simplicity	we	will	assume	only	one	nucleus	corresponds	to	each	value	of	δ.	The	total	FID	can	then
be	expressed	as	F	(t	)	=	S0	∑	cos(2πν	Lj	t	)e	−	t	/T2	j	The	solution	is	contained	in	the	following	MathCadâ	worksheet.	Definitions:	6	12	MHz	:=	10	⋅	Hz	N	:=	2	m	:=	0	,	1	..	N	−	1	Time	domain:	t	max	:=	10⋅	s	Relaxation	time:	T2	:=	1⋅	s	Chemical	shifts:	δ1	:=	3.2	Larmor	frequencies:	m	:=	δ2	:=	4.1	S2	:=	1	S1	:=	1	æ	ç	è	ν	1	:=	ç	1	+	S3	:=	1	ö		⋅ν	6	0	10	ø	δ1
ν	2	:=	δ	ö	æ	ç	1	+	2		⋅ν	6	0	ç	10	ø	è	(	)	F1	:=	S1⋅	cos	2⋅	π⋅	ν	1⋅	t	⋅	e	m	m	T2	−	tm	FID	of	signal	2:	⋅t	N	max	δ3	:=	5.0	−	tm	FID	of	signal	1:	m	ν	0	:=	800⋅	MHz	Spectrometer	frequency:	Relative	intensities:	t	(	)	F2	:=	S2⋅	cos	2⋅	π⋅	ν	2⋅	t	⋅	e	m	m	T2	−	tm	(	)	FID	of	signal	3:	F3	:=	S3⋅	cos	2⋅	π⋅	ν	3⋅	t	⋅	e	m	m	Total	FID	signal:	F	:=	F1	+	F2	+	F3	T2	14:13	ν	3	:=	δ
ö	çæ	1	+	3		⋅	ν	6	0	ç	10	ø	è	Figure	14C.2(a)	Figure	14C.2(b)	14:14	The	FIDs	of	the	signal	from	this	compound	with	the	values	of	the	chemical	shifts	given	in	this	problem	are	just	a	jumble	of	lines	with	intensities	decreasing	with	time;	the	FIDs	themselves	contain	very	little	direct	information	about	the	compound.	The	desired	information	is	extracted	by
Fourier	transformation	of	the	FIDs	from	the	time	domain	to	the	frequency	domain.	Increasing	the	frequency	of	the	spectrometer	from	200	MHz	to	800	MHz	has	no	effect	upon	the	chemical	shift	expressed	as	δ	values,	but	does	increase	the	chemical	shift	expressed	as	(νL	–	ν0)	values	and	that	is	the	main	reason	for	building	spectrometers	operating	at
higher	and	higher	frequencies.	Increasing	the	frequency	(and	hence	the	field)	allows	for	greater	resolution	of	spin-spin	splittings	in	the	spectrum	as	the	chemical	shift	(νL	–	ν0)	increases.	That	would	not	be	obvious	in	this	example	because	no	information	is	given	about	spin-spin	splittings.	As	an	example	of	this	problem	in	a	real	substance,	ethanol,
where	spin-spin	splittings	occur,	examine	Figures	14C.7	and	14B.2	of	the	text	P14C.4	(a)	The	Lorentzian	function	in	terms	of	angular	frequencies	is	I	L	(ω	)	=	S0T2	1	+	T	(ω	−	ω0	)	2	2	2	The	maximum	in	this	function	occurs	when	ω	=	ω0.	Hence	IL,max	=	S0T2	and	I	L	(∆ω1/	2	)	=	where	∆ω	=	∆ω½	;	1	2	I	L,max	2	hence	=	S0T2	S0T2	S0T2	=	=	2	2	2	1
+	T2	(ω1/	2	−	ω0	)	1	+	T22	(∆ω	)	2	2	2	=1	+	T22	(∆ω	)	2	and	∆ω	=1/	T2	.	Therefore	∆ω	=	½	T2	(b)	The	Gaussian	function	in	terms	of	angular	frequencies	is	I	G	(ω	)	=	S0T2	e	−T2	(ω	−ω0	)	2	2	The	maximum	in	this	function	occurs	when	ω	=	ω0.	Hence	IG,max	=	S0T2	and	I	G	(∆ω1/	2	)	=	where	∆ω	=	∆ω½	;	1	2	Therefore	I	G,max	2	=	2	2	2	2	S0T2	=
S0T2	e	−T2	(ω½	−ω0	)	=	S0T2	e	−T2	(	∆ω	)	2	hence	ln	2	=	T2	2	(∆ω	)	2	and	∆ω	=	(ln	2)½	/	T2	2(ln	2)½	∆ω	=	½	T2	(c)	If	we	choose	the	same	values	of	S0,	T2,	and	ω0	for	both	functions	we	may	rewrite	them	as	2	1	and	I	G	(ω	)	=	I	L	(ω	)	=	L(	x)	∝	G	(	x)	∝	e	−	x	where	x	=	T2	(ω	−	ω0	)	2	1+	x	These	functions	are	plotted	against	x	in	the	following
Mathcad	worksheet.	Note	that	the	Lorentzian	function	is	slightly	sharper	in	the	center,	although	this	is	difficult	to	discern	with	the	scale	of	x	used	in	the	figure,	and	decreases	much	more	slowly	in	the	wings	beyond	the	half	amplitude	points.	Also	note	that	the	functions	plotted	in	the	figure	are	not	normalized	but	are	matched	at	their	peak	amplitude	in
order	to	more	clearly	display	the	differences	in	their	shapes.	If	the	curves	had	been	normalized	the	areas	under	the	two	curves	would	be	equal,	but	the	peak	height	in	the	Lorentzian	would	be	lower	than	the	Gaussian	peak	height.	14:15	Figure	14C.3	x	:=	−5	,	−4.95	..	5	1	L(	x)	:=	G(	x)	:=	e	2	2	−x	1+	x	1	L(	x)	G(	x)	0.5	0	6	4	2	0	2	4	6	x	P14C.6	We	have
seen	(Problem	14C.5)	that	if	G	∝	cos	ω0	t	,	then	I	(ω	)	∝	1	which	peaks	at	ω	≈	ω0.	é1	+	(ω0	−	ω	)2	τ	2	ù	ë	û	Therefore,	if	G	(t	)	∝	a	cos	ω1t	+	b	cos	ω2	t	we	can	anticipate	that	I	(ω	)	∝	a	b	+	2	2	1	+	(ω1	−	ω	)	τ	1	+	(ω2	−	ω	)	2	τ	2	and	explicit	calculation	shows	this	to	be	so.	Therefore,	I(ω)	consists	of	two	absorption	lines,	one	peaking	at	ω	≈	ω1	and	the
other	at	ω	≈	ω2.	14:16	P14C.8	Methionine-105	is	in	the	vicinity	of	both	tryptophan-28	and	tyrosine-23	but	the	latter	two	residues	are	not	in	the	vicinity	of	each	other.	The	methionine	residue	may	lay	between	them	as	represented	in	figure	14C.4	Figure	14C.4	methionine	residue	.....C	H	O	......N	OH	HN	S	H	.....N	H	.....N	......C	.....C	tyrosine	residue	O	O
tryptophan	residue	14D	Electron	paramagnetic	resonance	Answers	to	discussion	questions	D14D.2	The	hyperfine	parameter	a	due	to	a	nucleus	in	an	aromatic	radical,	which	is	easily	measured	from	the	splittings	of	the	lines	in	the	EPR	spectrum	of	the	radical,	as	illustrated	in	Fig.	14D.3	of	the	textbook,	for	the	benzene	anion	radical,	can	be	related	to
the	spin	density	ρ	of	the	unpaired	electron	on	the	nuclei	in	the	aromatic	radical.	For	the	hyperfine	splitting	due	to	protons	in	aromatic	systems,	the	relationship	required	is	the	McConnell	equation,	eqn.	14D.5.	The	process	of	obtaining	ρ	from	the	McConnell	equation	is	illustrated	in	Brief	Illustration	14D.3	following	eqn.	14D.5	in	the	text.	For	nuclei
other	than	protons	in	aromatic	radicals	similar,	although	more	complicated	equations	arise;	but	in	all	cases	the	spin	densities	can	be	related	to	the	coefficients	of	the	basis	functions	used	to	describe	the	molecular	orbital	of	the	unpaired	electron.	Solutions	to	exercises	E14D.1(b)	The	g	factor	is	given	by	hν	g=	;	µB	0	=	g	6.62608	×	10−34	J	s	=	=
7.1448	×	10−11	T	Hz	−1	=	71.448	mT	GHz	−1	µB	9.2740	×	10−24	J	T	−1	h	71.448	mT	GHz	−1	×	9.2482	GHz	=	330.02	mT	2.0022	E14D.2(b)	The	hyperfine	coupling	constant	for	each	proton	is	2.2	mT	,	the	difference	between	adjacent	lines	in	the	spectrum.	The	g	value	is	given	by	14:17	g	=	E14D.3(b)	(71.448	mT	GHz	−1	)	×	(	9.332	GHz	)	hν	=	=
1.992	334.7	mT	µB	0	If	the	spectrometer	has	sufficient	resolution,	it	will	see	a	signal	split	into	eight	equal	parts	at	±1.445	±	1.435	±	1.055	mT	from	the	centre,	namely	328.865,	330.975,	331.735,	331.755,	333.845,	333.865,	334.625	and	336.735	mT	If	the	spectrometer	can	only	resolve	to	the	nearest	0.1	mT,	then	the	spectrum	will	appear	as	a	sextet
with	intensity	ratios	of	1:1:2:2:1:1.	The	four	central	peaks	of	the	more	highly	resolved	spectrum	would	be	the	two	central	peaks	of	the	less	resolved	spectrum.	E14D.4(b)	(i)	If	the	CH2	protons	have	the	larger	splitting	there	will	be	a	triplet	(1:2:1)	of	quartets	(1:3:3:1).	Altogether	there	will	be	12	lines	with	relative	intensities	1(4	lines),	2(2	lines),	3(4
lines),	and	6(2	lines).	Their	positions	in	the	spectrum	will	be	determined	by	the	magnitudes	of	the	two	proton	splittings	which	are	not	given.	(ii)	If	the	CD2	deuterons	have	the	larger	splitting	there	will	be	a	quintet	(1:2:3:2:1)	of	septets	(1:3:6:7:6:3:1).	Altogether	there	will	be	35	lines	with	relative	intensities	1(4	lines),	2(4	lines),	3(6	lines),	6(8	lines),	7(2
lines),	9(2	lines),	12(4	lines),	14(2	lines),	18(2	lines),and	21(1	line).	Their	positions	in	the	spectrum	will	determined	by	the	magnitude	of	the	two	deuteron	splittings	which	are	not	given.	E14D.5(b)	The	g	value	is	given	by	g	=	hν	hν	h	=	so	0	=	,	71.448	mT	GHz	−1	µB	0	µB	g	µB	(i)	0	=	(71.448	mT	GHz	−1	)	×	(	9.501GHz	)	=	339.0	mT	2.0024	(ii)	0	=
(71.448	mT	GHz	−1	)	×	(	34.77	GHz	)	=	1241mT	2.0024	E14D.6(b)	Two	nuclei	of	spin	I	=	1	give	five	lines	in	the	intensity	ratio	1:2:3:2:1	(Fig.	14D.1).	Figure	10D.1	E14D.7(b)	The	X	nucleus	produces	four	lines	of	equal	intensity.	Three	H	nuclei	split	each	into	a	1:3:3:1	quartet.	The	three	D	nuclei	split	each	line	into	a	septet	with	relative	intensities
1:3:6:7:6:3:1	(see	Exercise	14D.4(a).	(see	Fig.	14D.2.)	14:18	Figure	10D.2	Solutions	to	problems	P14D.2	=	g	hν	(7.14478	×	10−11	T)	×	(ν	/	Hz)	=	[14D.2]	0	µB	0	(7.14478	×	10−11	T)	×	(9.302	×	109	)	0.6646	1	=	0	0	/	T	0.6646	1	=.	1	992	g	=	0.33364	0.6646	1	=.	2	002	g⊥	=	0.33194	P14D.4	Construct	the	spectrum	by	taking	into	account	first	the	two
equivalent	14	N	splitting	(producing	a	1	:	2	:	3	:	2	:	1	quintet	)	and	then	the	splitting	of	each	of	these	lines	into	a	1	:	4	:	6	:	4	:	1	quintet	by	the	four	equivalent	protons.	The	resulting	25-line	spectrum	is	shown	in	Fig.14D.3.	Note	that	Pascal’s	triangle	does	not	apply	to	the	intensities	of	the	quintet	due	to	14	N	,	but	does	apply	to	the	quintet	due	to	the
protons.	Figure	10D.3	14:19	P14D.6	Write	P=	(	N2s	)	P	(=	N2pz	)	5.7mT	=	55.2mT	0.10	(10	percent	of	its	time	)	1.3mT	=	0.38	3.4	mT	(	38	percent	of	its	time	)	The	total	probability	is	(	48	percent	of	its	time	)	.	(a)	P(N)	=	0.10	+	0.38	=	0.48	(b)	P(O)	=	1−	P	(	N)	=	0.52	(	52	percent	of	its	time	)	.	The	hybridization	ratio	is	P	(	N2p	)	0.38	=	=	3.8	P	(N2	s	)
0.10	The	unpaired	electron	therefore	occupies	an	orbital	that	resembles	an	sp3	hybrid	on	N,	in	accord	with	the	radical’s	nonlinear	shape.	From	the	discussion	in	Section	10A	we	can	write	a2	=	1	+	cos	φ	1	−	cos	φ	−2	cos	φ	b	2	=−	1	a2	=	1	−	cos	φ	=	λ	b′2	−1cos	φ	λ	=	φ	,	implying	that	cos=	2	′	+	+	φ	1	cos	2	a	Then,	since	λ	=3.8,	cos	φ	=−0.66,	so	φ	=
131°	Integrated	activities	I14.2	(a)	The	first	figure	displays	spin	densities	computed	by	molecular	modeling	software	(ab	initio,	density	functional	theory,	Gaussian	98TM	).	14:20	(b)	First,	note	that	the	software	assigned	slightly	different	values	to	the	two	protons	ortho	to	the	oxygen	and	to	the	two	protons	meta	to	the	oxygen.	This	is	undoubtedly	a
computational	artifact,	a	result	of	the	minimum-energy	structure	having	one	methyl	proton	in	the	plane	of	the	ring,	which	makes	the	right	and	left	side	of	the	ring	slightly	non-equivalent.	(See	second	figure.)	In	fact,	fast	internal	rotation	makes	the	two	halves	of	the	ring	equivalent.	We	will	take	the	spin	density	at	the	ortho	carbons	to	be	0.285	and
those	of	the	meta	carbons	to	be	–0.132.	Predict	the	form	of	the	spectrum	by	using	the	McConnell	equation	(14D.5)	for	the	splittings.	The	two	ortho	protons	give	rise	to	a	1:2:1	triplets	with	splitting	0.285	×	2.25	mT	=	0.64	mT	;	these	will	in	turn	be	split	by	the	two	meta	protons	into	1:2:1	triplets	with	splitting	0.132	×	2.25	mT	=	0.297	mT	=	0.297	mT
And	finally,	these	lines	will	be	seen	to	be	further	split	by	the	three	methyl	protons	into	1:3:3:1	quartets	with	splittings	1.045	mT.	Note	that	the	McConnell	relation	cannot	be	applied	to	calculate	these	latter	splittings,	but	the	software	generates	them	directly	from	calculated	spin	densities	on	the	methyl	hydrogens.	The	computed	splittings	agree	well
with	experiment	at	the	ortho	positions	(0.60	mT)	and	at	the	methyl	hydrogens	(1.19	mT)	but	less	well	at	the	meta	positions	(0.145	mT).	I14.4	The	desired	result	is	the	linear	equation:	=	[	I]0	[	E	]0	∆ν	δν	−	K	,	[Note:	the	intercept	turns	out	to	be	–K,	not	K	as	K	is	defined	in	the	problem	statement.]	Our	first	task	is	to	express	quantities	in	terms	of	[I]0,
[E]0,	Δν,	δν,	and	K,	eliminating	terms	such	as	[I],	[EI],	[E],	ν1,	νEI,	and	ν.	[Note:	symbolic	mathematical	software	is	helpful	here.]	Begin	with	v:	=	ν	[I]0	−	[EI]	[I]	[EI]	[EI]	νI	+	ν=	νI	+	ν	EI	,	EI	[I]	+	[EI]	[I]	+	[EI]	[I]0	[I]0	where	we	have	used	the	fact	that	total	I	(i.e.,	free	I	plus	bound	I)	is	the	same	as	initial	I.	Solve	this	so	it	must	also	be	much	greater
than	[EI]:	[I]0	(	v	−	vI	)	[I]0	δ	v	=	,	∆v	vEI	−	vI	=	[EI]	where	in	the	second	equality	we	notice	that	the	frequency	differences	that	appear	are	the	ones	defined	in	the	problem.	Now	take	the	equilibrium	constant:	=	K	[E][I]	=	[EI]	([E]0	−	[EI])([I]0	−	[EI])	([E]0	−	[EI])	[I]0	[EI]	≈	[EI]	.	We	have	used	the	fact	that	total	I	is	much	greater	than	total	E	(from	the
condition	that	[I]0		[E]0	),	so	it	must	also	be	much	greater	than	[EI]	,	even	if	all	E	binds	I.	Now	solve	this	for	[E]0:	[E]0	=	æ	K	+	[I]0	ö	æ	[I]0	δν	ö	(	K	+	[I]0	)δν	K	+	[I]0	[EI]	ç	.	=	=	ç		[I]0	∆ν	è	[I]0	ø	è	∆ν	ø	The	expression	contains	the	desired	terms	and	only	those	terms.	Solving	for	[I]0	yields:	14:21	=	[I]0	[E]0	∆v	−K	δv	which	would	result	in	a	straight	line
with	slope	[E]0Δν	and	y-intercept	–K	if	one	plots	[I]0	against	1/δν.	14:22	15	Statistical	thermodynamics	15A	The	Boltzmann	distribution	Answers	to	discussion	questions	15A.2	The	principle	of	equal	a	priori	probabilities	is	the	assumption	that	the	population	of	any	physical	state	depends	only	on	its	energy	and	not	how	that	energy	is	distributed.	For
example,	a	state	in	which	the	molecule’s	energy	ε	is	all	in	translational	motion	is	just	as	likely	as	a	state	where	all	its	energy	is	in	rotational	motion	or	in	vibrational	motion	or	in	any	combination	of	these	modes	of	motion—provided,	of	course,	that	the	distribution	is	consistent	with	the	molecule’s	quantized	energy	levels.	15A.4	Because	the	Boltzmann
distribution	gives	the	ratio	of	populations	of	states	of	different	energy	as	a	function	of	temperature,	it	accounts	for	the	temperature	dependence	of	many	physical	and	chemical	phenomena.	In	this	chapter,	reference	was	made	to	the	intensities	of	spectral	transitions	(Topics	12A	and	14A)	as	one	phenomenon	governed	by	the	Boltzmann	distribution.
Chemical	equilibrium	is	governed	by	the	Boltzmann	distribution:	the	equilibrium	distribution	of	reactant	and	product	species	is	determined	by	a	single	Boltzmann	distribution	of	states	of	the	system	regardless	of	whether	those	states	belong	to	reactant	or	product	species	(Topi	15F.2).	The	Maxwell-Boltzmann	distribution	of	molecular	speeds	in	the
kinetic	model	of	gases	is	an	application	of	the	Boltzmann	distribution	to	translational	motion	(Topic	1B).	Collision	theory	explains	the	temperature	dependence	of	reaction	rates	through	the	Boltzmann	distribution	(Topic	21A).	Solutions	to	exercises	15A.1(b)	The	weight	is	given	by	21!	N!	=	2.04	×	1012	=	W	=	N	0	!N1	!N	2	!	⋅	⋅	⋅
6!0!5!0!4!0!3!0!2!0!0!1!	15A.2(b)	(i)	10!	=	10×9×8×7×6×5×4×3×2×1	=	3628800	exactly.	(ii)	According	to	Stirling’s	simple	approximation	[15A.2b],	ln	x!	≈	x	ln	x	–	x	so	ln	10!	≈	10	ln	10	–	10	=	13.026	and	10!	≈	e13.026	=	4.54×105	(iii)	According	to	Stirling’s	better	approximation	[15A.2a],	x!	≈	(2π)1/2xx+1/2e–x	so	10!	≈	(2π)1/21010.5e–10	=
3.60×106	15A.3(b)	For	two	non-degenerate	levels,	N	2	e	−	βε	2	é	1	ù	−	β	(	ε	−ε	)	=	=	e	2	1	=	e	−	β∆ε	=	e	−∆ε	/kT	ê15A.7a	with	β	=	kT	ú	N1	e	−	βε1	ë	û	Hence,	as	T	approaches	0,	the	exponent	becomes	infinitely	large	and	negative:	N	lim	2	=	0	T	→0	N	1	That	is,	only	the	lower	state	would	be	populated.	15A.4(b)	For	two	non-degenerate	levels,	N	2	e	−	βε
2	−	β	(	ε	−ε	)	=	e	2	1	=	e	−	β∆ε	=	e	−∆ε	/kT	=	N1	e	−	βε1	so	ln	N2	∆ε	=−	N1	kT	Thus	T	=	−	and	T	=−	é	1	ù	ê15A.7a	with	β	=	kT	ú	û	ë	∆ε	N	k	ln	2	N1	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	300	cm	−1	=	623	K	1.381	×	10−23	J	K	−1	×	ln(1	/	2)	1	15A.5(b)	See	Example	15A.1.	The	ratio	of	populations	of	a	particular	state	at	the	J	=	5	level	to	the
population	of	the	non-degenerate	J	=	0	level	is	N	2	e	−	βε	2	é	1	ù	−	β	(	ε	−ε	)	=	−	βε	=	e	2	1	=	e	−	β∆ε	=	e	−∆ε	/kT	15A.7a	with	β	=	ê	1	kT	úû	N1	e	ë	Because	all	of	the	states	of	a	degenerate	level	are	equally	likely,	the	ratio	of	populations	of	a	particular	level	is	−	βε	N	5	g5e	5	g5	−(	ε5	−ε0	)/kT	=	=	e	N	0	g0	e	−	βε0	g0	The	degeneracy	of	spherical	rotor
energy	levels	are	gJ	=	(2J+1)2	,	and	its	energy	levels	are	[12B.8]		(	J	+	1)	=	ε	J	hcBJ	Thus,	using	kT/hc	=	207.224	cm–1	at	298.15	K,	N	5	g5	−5(5+1)	hcB	/	kT	(2	×	5	+	1)	2	−5(5+1)×2.71	cm−1	/	207.224	cm−1	=	e	=	e	N0	g0	(2	×	0	+	1)	2	=	81.7	.	15A.6(b)	In	fact	there	are	two	upper	states,	but	one	upper	level.	And	of	course	the	answer	is	different	if
the	question	asks	when	15%	of	the	molecules	are	in	the	upper	level,	or	if	it	asks	when	15%	of	the	molecules	are	in	each	upper	state.	The	solution	below	assumes	the	former.	If	the	levels	were	non-degenerate,	then	N	2	e	−	βε	2	é	1	ù	−	β	(	ε	−ε	)	=	=	e	2	1	=	e	−	β∆ε	=	e	−∆ε	/kT	ê15A.7a	with	β	=	kT	ú	N1	e	−	βε1	ë	û	Because	each	state	at	a	given	level	is
equally	likely,	the	population	ratio	of	the	levels	is	−	βε	N	2	g	2e	2	g	=	[15A.7b]	=	2	e	−∆ε	/kT	−	βε1	N1	g1e	g1	Assuming	that	other	states	(if	any)	are	negligibly	populated,	g	N	∆ε	∆ε	and	ln	2	=	ln	2	−	T	=−	N	g	N1	g1	kT	k	ln	2	1	g	2	N1	Thus	T	=	−	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	360	cm	−1	=	213	K	ö	æ	15	×	1	−1	−23	1.381	×	10	J	K	×	ln	ç
è	(100	−	15)	×	2	ø	Solutions	to	problems	15A.2	For	a	configuration	to	resemble	an	exponential	decay,	populations	of	successively	higher	states	must	be	no	greater	than	the	previous	state.	In	this	entire	list,	the	only	configuration	that	meets	this	criterion	is	{4,2,2,1,0,0,0,0,0,0}.	This	is	the	configuration	we	anticipate	will	be	most	likely.	We	draw	up	the
following	table:	W	0	2ε	3ε	4ε	5ε	6ε	7ε	8ε	9ε	ε	8	0	0	0	0	0	0	0	0	1	9	7	1	0	0	0	0	0	0	1	0	72	7	0	1	0	0	0	0	1	0	0	72	7	0	0	1	0	0	1	0	0	0	72	7	0	0	0	1	1	0	0	0	0	72	6	2	0	0	0	0	0	1	0	0	252	6	0	2	0	0	1	0	0	0	0	252	2	6	0	0	3	0	0	0	0	0	0	84	6	1	0	0	2	0	0	0	0	0	252	6	1	1	0	0	0	1	0	0	0	504	6	1	0	1	0	1	0	0	0	0	504	6	0	1	1	1	0	0	0	0	0	504	5	3	0	0	0	0	1	0	0	0	504	5	0	3	1	0	0	0
0	0	0	504	5	2	1	0	0	1	0	0	0	0	1512	5	2	0	1	1	0	0	0	0	0	1512	5	1	2	0	1	0	0	0	0	0	1512	5	1	1	2	0	0	0	0	0	0	1512	4	4	0	0	0	1	0	0	0	0	630	4	3	1	0	1	0	0	0	0	0	2520	4	3	0	2	0	0	0	0	0	0	1260	4	2	2	1	0	0	0	0	0	0	3780	3	5	0	0	1	0	0	0	0	0	504	3	4	1	1	0	0	0	0	0	0	2520	2	6	0	1	0	0	0	0	0	0	252	2	5	2	0	0	0	0	0	0	0	756	1	7	1	0	0	0	0	0	0	0	72	0	9	0	0	0	0	0	0	0	0	1	Indeed,	the
“most	exponential”	distribution,	{4,2,2,1,0,0,0,0,0,0},	is	the	most	likely:	9!	N!	=	3780	[15A.1]	=	W	=	4!2!2!1!	N	0	!N1	!N	2	!	⋅⋅⋅	15A.4	If	the	electronic	states	were	in	thermal	equilibrium	with	the	translational	states,	then	the	temperature	would	be	the	same	for	both.	The	ratio	of	electronic	states	at	300	K	would	be	−	ε	/kT	N1	g1e	1	[15A.7b]	=	4	×	e
−∆ε	/kT	=	2e	−	hcν	/kT	=	2e	−{(1.4388×450)/300}	=	0.23	=	2	N	0	g0e	−	ε	0	/kT	The	observed	ratio	is	0.30	=	0.43	.	Hence	the	populations	are	not	at	equilibrium.	0.70	15A.6	(a)	The	probability	of	finding	a	molecule	in	state	j	is	N	j	e	−	βε	j	=	pj	=	[15A.6]	q	N	In	the	systems	under	consideration,	ε	is	both	the	mean	energy	and	the	energy	difference
between	adjacent	levels,	so	e	−	jβε	,	q	which	implies	that	pj	=	–jβε	=	ln	Nj	–	ln	N	+	ln	q	and	ln	N	j	=	ln	N	−	lnq	−	jβε	=	ln	Thus,	a	plot	of	ln	Nj	against	j	should	be	a	straight	line	with	slope	–ε/kT	.	We	draw	up	the	following	table	using	the	information	in	Problem	15A.2	3	N	jε	−	q	kT	j	0	1	2	3	Nj	4	2	2	1	ln	Nj	1.39	0.69	0.69	0	[most	probable	configuration]
These	are	points	plotted	in	Figure	15A.1	(full	line).	The	slope	is	–0.416,	and	since	ε	=	50	cm	−1	,	the	slope	corresponds	to	a	temperature	hc	T=	(50	cm	−1	)	×	(2.998	×	1010	cm	s	−1	)	×	(6.626	×	10−34	J	s)	=	163	K	(0.416)	×	(1.381	×	10−23	J	K	−1	)	Figure	15A.1	(b)	Choose	one	of	the	weight	2520	configurations	and	one	of	the	weight	504
configurations,	and	draw	up	the	following	table	W	=	2520	W	=	504	J	0	1	2	3	4	Nj	4	3	1	0	1	ln	Nj	1.39	1.10	0	–∞	0	Nj	6	0	1	1	1	ln	Nj	1.79	–∞	0	0	0	Inspection	confirms	that	these	data	give	very	crooked	lines—even	without	considering	the	points	represented	by	the	unoccupied	states.	15A.8	If	the	atmosphere	were	at	equilibrium,	then	the	Boltzmann
distribution	would	apply,	so	the	relative	populations	per	unit	volume	would	be	N	i	e	−	βε	i	é	1	ù	−(	ε	−ε	)/kT	=	=e	j	i	ê15A.7a	with	β	=	kT	ú	N	j	e	−	βε	j	û	ë	What	distinguishes	the	states	and	energies	of	molecules	in	a	planet’s	gravitational	field	is	the	distance	r	from	the	center	of	the	planet.	The	energy	is	gravitational,	measured	from	the	ground-state
energy	æ1	1ö	ε	(r)	=	V	(r)	−	V	(r0	)	=	−GMm	ç	−		è	r	r0	ø	Note	that	the	ground-state	energy	is	literally	the	energy	at	the	ground—or	more	precisely	at	the	lowest	point	of	the	atmosphere,	r0	.	4	N	(r)	−{V	(r	)−V	(r0	)}/kT	=e	N	(r0	)	Far	from	the	planet,	we	have	æ	1	ö	GMm	lim	ε	(r)	=	−GMm	ç	0	−		=	r→∞	r0	r0	ø	è	so	N	(r)	−GMm/r0	kT	=e	N	(r0	)	Hence,	if
the	atmosphere	were	at	equilibrium,	the	farther	one	ventured	from	the	planet,	the	concentration	of	molecules	would	tend	toward	a	non-zero	fraction	of	the	concentration	at	the	surface.	This	is	obviously	not	the	current	distribution	for	planetary	atmospheres	where	the	corresponding	limit	is	zero.	Consequently,	we	may	conclude	that	no	planet’s
atmosphere,	including	Earth’s,	is	at	equilibrium.	and	lim	r→∞	15B	Molecular	partition	functions	Answers	to	discussion	questions	15B.2	For	two	non-degenerate	levels,	see	Brief	Illustration	53.1.	The	mean	energy	is	ε	=	ε	1	+	e	βε	where	ε	is	the	energy	of	the	upper	level	(and	zero	the	energy	of	the	lower	level).	At	low	temperatures,	the	e	βε	in	the
denominator	makes	the	denominator	very	large	and	the	average	energy	close	to	zero.	At	high	temperatures,	the	average	energy	levels	off	at	a	value	of	ε/2	as	the	e	βε	term	comes	down	to	approach	1.	15B.4	The	symmetry	number,	σ,	of	a	molecule	is	the	number	of	its	indistinguishable	orientations.	See	Table	15B.2,	Justification	15B.4,	and	Brief
illustration	15B.4.	We	can	think	of	including	the	symmetry	number	in	the	calculation	of	partition	functions	as	a	way	of	avoiding	“double	counting”	or	“multiple	counting,”	because	one	divides	by	σ.	But	double	counting	is	not,	strictly	speaking,	what	is	prevented.	Indistinguishable	configurations	rule	out	certain	rotational	states	because	of	the	Pauli
principle.	(See	Topic	12C.3.)	The	symmetry	number	need	not	be	included	in	calculation	of	the	rotational	partition	function	by	direct	summation	over	states,	as	long	as	only	allowed	states	are	included	in	the	sum;	furthermore,	using	the	symmetry	number	to	correct	a	direct	sum	that	includes	forbidden	states	is	not	exact.	If	the	high-temperature
expression	for	the	partition	function	is	a	good	approximation,	though,	the	inclusion	of	the	symmetry	number	in	that	expression	is	also	a	good	approximation.	Solutions	to	exercises	15B.1(b)	(i)	The	thermal	wavelength	is	[15B.7b]	h	Λ=	(2π	mkT	)1/2	We	need	the	molecular	mass,	not	the	molar	mass:	20.18	×	10−3	kg	mol−1	=	3.351	×	10−26	kg	6.022	×
1023	mol−1	6.626	×	10−34	J	s	3.886	×	10−10	m	Λ=	=	−26	−23	1/2	−1	(2π	×	3.351	×	10	kg	×	1.381	×	10	J	K	×	T	)	(T	/	K)1/2	m=	So	T	=	300	K:	Λ=	3.886	×	10−10	m	=	2.243	×	10−11	m	=	22.43	pm	(300)1/2	5	3.886	×	10−10	m	=	7.094	×	10−12	m	=	7.094	pm	(3000)1/2	(ii)	The	translational	partition	function	is	V	q	T	=	3	[15B.10b]	Λ=	T	=	3000	K:	Λ
T	=	300	K:	qT	=	(1.00	×	10−2	m)3	=	8.86	×	1025	(2.243×10−11	m)3	T	=	3000	K:	qT	=	(1.00	×	10−2	m)3	=	2.80	×	1027	(7.094×10−12	m	)3	q	æ	Λ′	ö	q	=	3	[15B.10b],	implying	that	=	ç		q′	è	Λ	ø	Λ	V	T	15B.2(b)	However,	Λ	=	1	h	[52.7b]	∝	1/2	so	(2π	mkT	)1/2	m	q	æ	39.95	ö	Therefore,	Ar	=	ç	q	Ne	è	20.18	ø	3	q	æ	mö	=	q	′	çè	m′	ø	3/2	3/2	=	2.785	15B.3(b)	The
high-temperature	expression	for	the	rotational	partition	function	of	a	linear	molecule	is	kT		I	µ	R	2	[Table	12B.1]	=	qR	=	,	B	=	[15B.13b]	[12B.7],		cI	π	4	σ	hcB	8π	2	kTI	8π	2	kT	µ	R	2	=	σ	h2	σ	h2	For	N2,	µ	=	12	m(N)	=	12	×	14.007	mu	=	7.00	mu	,	and	σ	=	2;	therefore	Hence	q	=	q	=	(8π	2	)×(1.381×10−23	J	K	−1	)×(300	K)×(7.00×1.6605×10−27
kg)×(1.0975×10−10	m)2	(2)×(6.626×10−34	J	s)2	=	52.2	15B.4(b)	The	high-temperature	expression	for	the	rotational	partition	function	of	a	non-linear	molecule	is	[15B.14]	1	æ	kT	ö	q	=	ç	σ	è	hc	ø	R	3/	2	æ	π	ö	ç		è	ABC	ø	1/	2	æ	ö	1.381×	10−23	J	K	−1	×	T	=ç	10	−34	−1		è	6.626	×	10	J	s	×	2.998	×	10	cm	s	ø	=	0.01676	×	(T	/	K)3/	2	(i)	At	25˚C,	3/	2	π	æ	ö	ç	−3
	è	27.877	×	14.512	×	9.285	cm	ø	1/	2	q	R	=	0.01676	×	(298)3/2	=	86.2	(ii)	At	100°C,	q	R	=	0.01676	×	(373)3/2	=	121	15B.5(b)	The	rotational	partition	function	of	a	nonsymmetrical	linear	molecule	is	1	ù		é	qR	=	∑J	(2	J	+	1)e−	hcBJ	(	J	+1)/	kT	êë15B.11	with	β	=	kT	úû	hcB	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	6.511	cm	−1	Use	=	9.366	K	k	1.381×
10−23	J	K	−1	so	q	R	=	∑	(2J	+	1)e	−9.366	K×	J	(	J	+1)/T	J	Use	a	spreadsheet	or	other	mathematical	software	to	evaluate	the	terms	of	the	sum	and	to	sum	the	terms	until	they	converge.	The	high-temperature	expression	is	kT	T	=	qR	=		hcB	9.366	K	6	The	explicit	and	high-temperature	expressions	are	compared	in	Figure	15B.1.	The	hightemperature
expression	reaches	95%	of	the	explicit	sum	at	62	K.	Figure	15B.1	15B.6(b)	The	rotational	partition	function	of	a	spherical	rotor	molecule,	ignoring	nuclear	statistics,	is	∑g	=	qR	e	−ε	J	/	kT	[15B.1b]	=	R	J	J	Use	so	hcB	k	∑	(2	J	+	1)	2		e	−	hcBJ	(	J	+1)/	kT	[12B.8]	J	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	0.0572	cm	−1	0.0823	K	=	1.381×	10−23	J	K
−1	q	R	=	∑	(2J	+	1)2	e	−0.0823	K×	J	(	J	+1)/T	J	Use	a	spreadsheet	or	other	mathematical	software	to	evaluate	the	terms	of	the	sum	and	to	sum	the	terms	until	they	converge.	The	high-temperature	expression	is	eqn.	15B.14,	with	A=	B=	C	:	3/	2	3/	2	T	æ	ö	1/	2	æ	kT	ö	=	q	R	π=	π	1/	2	ç	ç			0.0823	K	hcB	è	ø	è	ø	The	explicit	and	high-temperature	expressions
are	compared	in	Figure	15B.2.	The	hightemperature	expression	reaches	95%	of	the	explicit	sum	at	0.4	K.	Figure	15B.2	15B.7(b)	The	rotational	partition	function	of	a	symmetric	rotor	molecule,	ignoring	nuclear	statistics,	is	J	æ			2	ö		−	ε	R	/	kT	qR	=	g	J	,	K	e	J	,K	[15B.1b]	=	(2	J	+	1)e	−	hcBJ	(	J	+1)/	kT	ç1	+	2∑	e	−	hc	(	A	−	B	)	K	/	kT		[12B.13]	∑	∑	=	J	,K	J
0=	K	1	è	ø	7	hcB	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	9.444	cm	−1	=	13.585	K	,	and	k	1.381×	10−23	J	K	−1	hc(	A	−	B	)	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	(6.196	−	9.444)	cm	−1	=	=	−4.672	K	k	1.381×	10−23	J	K	−1	J	æ	ö	2	so	q	R	=	∑	(2J	+	1)e	−13.585	K×	J	(	J	+1)/T	ç	1	+	2∑	e	+4.672	K×	K	/T		è	ø	Use	J	=0	K	=1	Write	a	brief
computer	program	or	use	other	mathematical	software	to	evaluate	the	terms	of	the	sum	and	to	sum	the	terms	until	they	converge.	Nested	sums	are	straightforward	to	program	in	languages	such	as	BASIC	or	FORTRAN,	whereas	spreadsheets	are	more	unwieldy.	Compare	the	results	of	the	direct	sum	with	the	high-temperature	expression,	eqn.	15B.14,
with	B	=	C	:	æ	π	ö	æ	kT	ö	1	qR	=	ç		ç		è	A	ø	è	hc	ø	B	The	explicit	and	high-temperature	expressions	are	compared	in	Figure	15B.3.	The	hightemperature	expression	reaches	95%	of	the	explicit	sum	at	55	K.	1/	2	3/	2	Figure	15B.3	rotational	partition	function	25	20	15	10	explicit	high	temperature	5	0	0	10	20	30	40	50	60	T	/K	15B.8(b)	The	symmetry	number
is	the	order	of	the	rotational	subgroup	of	the	group	to	which	a	molecule	belongs	(except	for	linear	molecules,	for	which	σ	=	2	if	the	molecule	has	inversion	symmetry	and	1	otherwise).	The	rotational	subgroup	contains	only	rotational	operations	and	the	identity.	See	Problem	15B.9.	(i)	CO2:	Full	group	D∞h;	subgroup	C2;	hence	σ	=	2	(ii)	O3:	Full	group
C2v;	subgroup	C2;	σ	=	2	(iii)	SO3:	Full	group	D3h;	subgroup	{E,	C3,	C32,	3C2};	σ	=	6	(iv)	SF6:	Full	group	Oh;	subgroup	O;	σ	=	24	(v)	Al2Cl6:	Full	group	D2d;	subgroup	D2;	σ	=	4	15B.9(b)	Pyridine	belongs	to	the	C2v	group,	the	same	as	water,	so	σ	=	2.	The	high-temperature	expression	for	the	rotational	partition	function	of	a	non-linear	molecule	is
[15B.14]	qR	=	1	æ	kT	ö	σ	çè	hc	ø	3/	2	æ	π	ö	ç		è	ABC	ø	1/	2	ö	1	æ	1.381×	10−23	J	K	−1	×	298.15	K	=	ç	10	−34	−1		2	è	6.626	×	10	J	s	×	2.998	×	10	cm	s	ø	3/	2	π	æ	ö	ç	−3		è	0.2014	×	0.1936	×	0.0987	cm	ø	=	4.26×104	15B.10(b)	The	partition	function	for	a	mode	of	molecular	vibration	is	1	[15B.15	with	β	=	1/kT]	e	−	vhcν	/	kT	=	qV	∑	=	−	hcν	/	kT	1−	e	v	8	1/	2
hcν	k	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	214.5	cm	−1	=	308.5	K	1.381×	10−23	J	K	−1	1	so	e	−	vhcν	/	kT	=	qV	∑	=	−308.5	K	/	T	1−	e	v	The	high-temperature	expression	is	kT	T	[15B.16]	=	qV	=	hcν	464.9	K	The	explicit	and	high-temperature	expressions	are	compared	in	Figure	15B.4.	The	hightemperature	expression	reaches	95%	of	the
explicit	sum	at	3000	K.	Use	Figure	15B.4	15B.11(b)	The	partition	function	for	a	mode	of	molecular	vibration	is	1	[15B.15	with	β	=	1/kT]	qV	=	1	−	e	−	hcν	/	kT	and	the	overall	vibrational	partition	function	is	the	product	of	the	partition	functions	of	the	individual	modes.	(See	Example	15B.2.)	We	draw	up	the	following	table:	mode	ν	/	cm	−1	hcν	/	kT
qVmode	1	3311	2	712	3	712	4	2097	5.292	1.005	1.138	1.472	1.138	1.472	3.352	1.036	The	overall	vibrational	partition	function	is	qV	=	1.005	×	1.472	×	1.472	×	1.036	=	2.256	15B.12(b)	The	partition	function	for	a	mode	of	molecular	vibration	is	1	[15B.15	with	β	=	1/kT]	qV	=	1	−	e	−	hcν	/	kT	and	the	overall	vibrational	partition	function	is	the	product
of	the	partition	functions	of	the	individual	modes.	(See	Example	15B.2.)	We	draw	up	the	following	table,	including	the	degeneracy	of	each	level:	mode	1	2	3	−1	178	90	555	ν	/	cm	gmode	1	2	3	0.512	0.259	1.597		hcν	/	kT	V	q	mode	2.50	4.38	1.254	The	overall	vibrational	partition	function	is	qVmode	=	2.50	×	4.382	×	1.2543	×	3.313	=	3.43×103	9	4	125
3	0.360	3.31	q=	∑	g	j	e	−	βε	j	[15B.1b]	=	∑	g	je−	15B.13(b)	levels	where	hcν	j	kT	Therefore,	hcν	j	/	kT	=	4	+	e	−hcν1	/	kT	+	2e	−hcν2	/	kT	levels	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×ν	j	=	1.381×	10−23	J	K	−1	×	2000	K	−4	=	7.192	×	10−4	×	(ν	j	/	cm	−1	)	−4	q	=	3	+	e	−7.192×10	×850	+	5e	−7.192×10	×1100	=	3	+	0.543	+	5	×	0.453	=
5.809	The	individual	terms	in	the	last	expression	are	the	relative	populations	of	the	levels,	namely	5×0.453	to	0.543	to	3	(second	excited	level	to	first	to	ground)	or	0.756:0.181:1	.	Solutions	to	problems	15B.2	According	to	the	“integral”	approximation	(2π	mkT	)1/2	X	[15B.10b],	h	Λ	and	hence,	for	an	H	atom	in	a	one-dimensional	100-nm	box,	when	qT	=
10,	X	qT	=	=	T	æ	1	ö	æq	hö	=	T	ç		×ç	è	2π	mk	ø	è	X	ø	2	(	æ	ö	10	×	6.626	×	10−34	J	s	1	×	ç		−27	−23	−1	100	×	10−9	m	è	2π	×	1.008	×	1.6605	×	10	kg	×	1.381×	10	J	K	ø	)	2	=	0.030	K	The	exact	partition	function	in	one	dimension	is	∞	∞	q	T	=	∑e	−(	n	−1)h	β	/8mL	=	e	h	β	/8mL	∑(e	−	h	β	/8mL	)	n	[15B.1a]	2	2	2	2	2	2	2	2	n=1	n=1	For	our	H	atom,	(6.626	×
10−34	J	s)2	h2	β	=	8mL2	8	×	1.008	×	1.6605	×	10−27	kg	×	1.381	×	10−23	J	K	−1	×	0.030	K	×	(100	×	10−9	m)2	=	7.9	×	10−3	h2	β	/8mL2	−3	−3	=	e7.9×10	=	1.008	,	e	−	h	β	/8mL	=	e	−7.9×10	=	0.992	2	2	and	e	Then	q	T	=	1.008	×	∑(0.992)	n	=	1.008	×	(0.992	+	0.969	+	0.932	+	...)	=	9.57	∞	2	n=1	Comment.	Even	under	these	conditions,	the
integral	approximation	is	less	than	5%	from	the	explicit	sum.	15B.4	(a)	First,	evaluate	the	partition	function	−	βε	−	hc	βν	j	=	q	∑	=	g	j	e	j	[15B.1b]	∑	g	j	e	j	j	At	3287°C	=	3560	K,	hcβ	=	hcβ	=	q	=	5	+	7e	−{(4.041×10	−4	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	=	4.041	×	10−4	cm	1.381	×	10−23	J	K	−1	×	3560	K	cm	)×(170cm	−1	)}	+	9e	−
{(4.041×10	−4	cm	)×(387	cm	−1	)}	+	3e	−{(4.041×10	−4	cm	)×(6557	cm	−1	)}	=	5	+	7	×	(0.934)	+	9	×	(0.855)	+	3	×	(0.0707)	=	19.444	The	fractions	of	molecules	in	the	various	energy	levels	are	[15A.6,	with	degeneracy	gj	included]	−	βε	−	hc	β	v	j	N	j	g	je	j	g	je	=	=	q	q	N	N	(	3	F3	)	7	×	(0.934)	=	0.336	=	19.444	N	N	(	4	F1	)	3	×	(0.0707)	=	=	0.011
19.444	N	N	(	3	F2	)	5	=	0.257	=	N	19.444	N	(	3	F4	)	9	×	(0.855)	=	0.396	=	19.444	N	10	Comment.	Nj	∑	N	j	15B.6	=	1	.	Note	that	the	most	highly	populated	level	is	not	the	lowest	level.	The	absorption	lines	are	the	values	of	differences	in	adjacent	rotational	terms.	The	wavenumbers	of	the	lines	are	[42.8a]		+	1)	−	F(J		)	=	2	B(J		+	1)	ν(J	+	1	←	J	)	=	F(J
for	J	=	0,	1,	...	.	Therefore,	we	can	find	the	rotational	constant	and	reconstruct	the	energy	levels	from	the	data.	To	make	use	of	all	of	the	data,	one	would	plot	the	wavenumbers,	which	.	represent	ν(J	+	1	←	J	)	vs.	J;	from	the	above	equation,	the	slope	of	that	linear	plot	is	2	B	Inspection	of	the	data	show	that	the	lines	in	the	spectrum	are	equally	spaced
with	a	separation	of	21.19	cm–1,	so	that	is	the	slope:		so	B		=	10.595	cm	−1	slope	=	21.19	cm	−1	=	2	B	The	partition	function	is	q	=	∑	gJ	e	∞	=	∑	(2J	+	1)e	−	β	E	(	J	)	[15B.1b]	where	−	βε	J		(J	+	1)	[41.15]	E(J	)	=	hcBJ	J	=0	J	and	the	factor	of	2J+1	is	the	degeneracy	of	the	energy	levels.		6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	10.595	cm	−1		β	hcB
At	25°C,	hcB	=	=	=	0.05112	kT	1.381×	10−23	J	K	−1	×	298.15	K	=	q	∞	∑	(2	J	+	1)e	−0.05112	J	(	J	+1)	J	=0	=	1	+	3e	−0.05112×1×2	+	5e	−0.05112×2×3	+	7e	−0.05112×3×4	+		=1	+	2.708	+	3.679	+	3.791	+	3.238	+		=19.90	15B.8	(a)	The	electronic	partition	function,	qE,	of	a	perfect,	atomic	hydrogen	gas	consists	of	the	electronic	energies	En	that
can	be	written	in	the	form:	1	ö		æ	n	=	1,	2,	3,	...,	∞	E=	n	ç1	−	2		hcRH	,	n	è	ø	which	is	given	by	eqn.	9A.14	with	the	zero	of	energy	redefined	as	the	energy	of	the	n	=	1	state.	(The	usual	zero	is	taken	to	be	the	electrostatic	energy	of	a	proton	and	electron	at	infinite	separation).	The	degeneracy	of	each	level	is	gn	=	2n2	where	the	n2	factor	is	the	orbital
degeneracy	of	each	shell	and	the	factor	of	2	accounts	for	spin	degeneracy.	∞	q	E	=	∑	gne	−	En	/kT	∞	=	2∑	n	2	e	n=1	æ	ö	−	ç	1−	1		C	è	n2	ø	[15B.1b]	n=1	where	C	=	hcR	H	/	kTphotosphere	=	27.301	.	qE,	when	written	as	an	infinite	sum,	is	infinitely	large	because	lim	n2	e	æ	ö	−	ç	1−	1		C	è	n2	ø	=	lim	n2	e−C	=	e−C	lim	n2	=	∞	n→∞	n→∞	n→∞	The
inclusion	of	partition	function	terms	corresponding	to	large	n	values	is	clearly	an	error.	(b)	States	corresponding	to	large	n	values	have	very	large	average	radii	and	most	certainly	interact	with	other	atoms,	thereby	blurring	the	distinct	energy	level	of	the	state.	Such	interactions	most	likely	occur	during	the	collision	between	an	atom	in	state	n	and	an
atom	in	the	ground	state	n	=	1.	(Even	at	high	temperatures,	the	ground	state	is	the	most	probable	state.)	Collisional	lifetime	broadening	is	given	by		δ	En=	=	zn		[Topic	12A.2(b)]	τ	where	the	last	equality	employs	the	collision	frequency	(derived	in	Topic	1B).	The	collision	frequency	of	the	nth	state	of	an	atomic	perfect	gas	is	given	by	σ	v	p	21/2	σ	n
vmean	ρ	N	A	21/2	σ	n	vmean	p	[1B.10a]	=	zn	=	n	rel	[1B.11b]	=	MH	kT	kT	The	mean	speed	is	[1B.8]	vmean	=	æ	8RT	ö	èπM	ø	1/2	=	1.106	×	104	m	s	−1	11	The	collision	cross-section	is	σ	n	=	π	d	2	[Topic	1B.2(a)]	=	π	(rn	+	a0	)2	From	Example	9A.2,	the	mean	radius	of	a	hydrogen	atom	with	principal	quantum	number	n	might	be	surmised	to	be	3n2	a0	rn
=	2	In	fact,	this	is	true	of	ns	orbitals,	which	is	good	enough	for	this	problem.	So	the	collision	cross-section	is	2	σ	n	=	π	a02	æç	3n	+	2	ö	ø	è	2	2	Any	quantum	state	within	δE	of	the	continuum	of	an	isolated	atom	will	have	its	energy	blurred	by	collisions	so	as	to	be	indistinguishable	from	the	continuum.	Only	states	having	energies	in	the	range	0	≤	E	<	E∞
–	δE	will	be	a	distinct	atomic	quantum	state.	The	maximum	term,	nmax,	that	should	be	retained	in	the	partition	function	of	a	hydrogen	atom	is	given	by	E	n	=	E∞	−	δ	E	n	max	max	2	æ	3n	2	+	2	ö	2	π	a	ç	max		vmean	ρ	N	A		2	æ	1	ö		è	ø		hcRH	−	ç1	−	2		hcRH	=	MH	è	nmax	ø	–4	–3	–3	with	ρ	=	1.99×10	kg	m	and	MH	=1.01×10	kg	mol–1	.	The	root	function	of
a	calculator	or	mathematical	software	may	be	used	to	solve	this	equation	for	nmax:	nmax	=	28	for	atomic	hydrogen	of	the	photosphere	Furthermore,	examination	of	the	partition	function	terms	n	=	2,	3,	…,	nmax	indicates	that	they	are	negligibly	small	and	may	be	discarded.	The	point	is	that	very	large	n	values	should	not	be	included	in	qE	because
they	do	not	reflect	reality.	1/	2	2	0	(c)	The	equilibrium	probability	of	finding	a	hydrogen	atom	in	energy	level	n	is	[15A.6	with	degeneracy]	−	βε	N	g	e	v	2n2	e	−	En	/kT	pn	=	n	=	n	=	N	q	qE	where	T	=	5780	K.	(Note:	the	probability	for	each	distinct	state	omits	the	factor	of	2n2.)	This	function	is	plotted	in	Figure	15B.5.	Figure	15B.5	Even	at	the	high
temperature	of	the	Sun’s	photosphere	only	the	ground	electronic	state	is	significantly	populated.	This	leads	us	to	expect	that	at	more	ordinary	temperatures	only	the	ground	state	of	atoms	and	molecules	are	populated	at	equilibrium.	It	would	be	a	mistake	to	thoughtlessly	apply	equilibrium	populations	to	a	study	of	the	Sun’s	photosphere,	however.	It	is
bombarded	with	extremely	high	energy	radiation	from	the	direction	of	the	Sun’s	core	while	12	radiating	at	a	much	lower	energy.	The	photosphere	may	show	significant	deviations	from	equilibrium.	See	S.	J.	Strickler,	J.	Chem.	Educ.	43,	364	(1966).	15C	Molecular	energies	Solutions	to	exercises	15C.1(b)	The	mean	energy	is	∑	ε	e	βε	∑	e	βε	−	1	ε	=	∑	ε	ie
−	βε	i	[15C.2]	=	q	i	i	i	−	i	i	=	ε	e	−	βε	1+	e	−	βε	=	ε	1+	e	βε	,	i	where	the	last	expression	specializes	to	two	non-degenerate	levels.	Substitute	ε	=	hcν	=	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	600	cm	−1	=	1.192	×	10−20	J	and	βε	=	so	ε	=	ε	kT	=	1.192	×	10−20	J	=	2.158	1.381	×	10−23	J	K	−1	×	400	K	1.192	×	10−20	J	=	1.235	×	10−21	J	1	+	e
2.158	15C.2(b)	The	mean	energy	is	1	1	1	ε	=	∑	ε	ie	−	βε	i	[15C.2]	=	∑	giε	ie	−	βε	i	=	∑	(2J	+	1)ε	J	e	−	ε	J	/kT	q	J	q	levels	q	states	−	34		(	J	+	1)	ε=	hcBJ	=	6.626	×	10	J	s	×	2.998	×	1010	cm	s	−1	×	6.511	cm	−1	×	J	(	J	+	1)	J	=	J	(	J	+	1)	×	1.293	×	10−22	J	εJ	J	(J	+	1)	×	1.293	×	10−22	J	=	J	(J	+	1)	×	9.366	K	k	1.381	×	10−23	J	K	−1	1	so	ε	=	∑	J	(J	+	1)(2J	+
1)	×	1.293	×	10−22	J	×	e	−	J	(	J	+1)×9.366	K/T	q	J	Use	a	spreadsheet	or	other	mathematical	software	to	evaluate	the	terms	of	the	sum	and	to	sum	the	terms	until	they	converge.	For	the	partition	function,	see	Exercise	15B.5(b).	The	equipartition	value	is	simply	kT	(i.e.,	kT/2	for	each	rotational	degree	of	freedom).	The	explicit	and	equipartition
expressions	are	compared	in	Figure	15C.1.	The	explicit	sum	reaches	95%	of	the	equipartition	value	at	about	63	K.	and	=	Figure	15C.1	15C.3(b)	The	mean	energy	is	1	1	1	ε	=	∑	ε	ie	−	βε	i	[15C.2]	=	∑	giε	ie	−	βε	i	=	q	states	q	levels	σq	13	∑	(2J	+	1)	ε	e	ε	−	2	J	J	J	/kT	[Topic	12B.2(b)]	Note	that	the	sum	over	levels	is	restricted	by	nuclear	statistics;	in
order	to	avoid	multiple	counting,	we	sum	over	all	J	without	restriction	and	divide	the	result	by	the	symmetry	number	σ.		(	J	+	1)	ε=	hcBJ	=	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	0.0572	cm	−1	×	J	(	J	+	1)	J	=	J	(	J	+	1)	×	1.136	×	10−24	J	εJ	J	(J	+	1)	×	1.136	×	10−24	J	=	J	(J	+	1)	×	0.0823	K	k	1.381	×	10−23	J	K	−1	1	so	ε	=	∑	J	(J	+	1)(2J	+	1)2	×
1.136	×	10−24	J	×	e−	J	(	J	+1)×0.0823	K/T	σq	J	Use	a	spreadsheet	or	other	mathematical	software	to	evaluate	the	terms	of	the	sum	and	to	sum	the	terms	until	they	converge.	For	σq,	see	Exercise	15B.6(b).	The	quantity	evaluated	explicitly	in	that	exercise	is	σq,	for	there	we	computed	the	partition	function	without	taking	the	symmetry	number	into
account;	in	effect,	the	sum	evaluated	here	and	the	sum	evaluated	in	the	earlier	exercise	contain	factors	of	σ,	which	cancel.	The	equipartition	value	is	simply	3kT/2	(i.e.,	kT/2	for	each	rotational	degree	of	freedom).	The	explicit	and	equipartition	expressions	are	compared	in	Figure	15C.2.	The	explicit	sum	reaches	95%	of	the	equipartition	value	at	about
0.27	K.	and	=	Figure	15C.2	15C.4(b)	The	mean	energy	is	1	1	=	ε	=	∑	ε	i	e−	βεi	[15C.2]	q	levels	∑	giε	i	e−	βεi	q	states	1	æ	J	ö			2		(2	J	+	1)e	−	hcBJ	(	J	+1)/	kT	ç	∑	ε	J	,	K	e	−	hc	(	A	−	B	)	K	/	kT		[12B.13]	∑	σq	J	=0	è	K	=	−J	ø	Note	that	the	sum	over	levels	is	restricted	by	nuclear	statistics;	in	order	to	avoid	multiple	counting,	we	sum	over	all	J	without
restriction	and	divide	the	result	by	the	symmetry	number	σ.	(See	Exercise	15C.3(b).)		(	J	+	1)	+	A	−	B	K	2	.	=	ε	hc	BJ	=	{	J	,K	(	)	}	hcB	=	6.626	×	10	J	s	×	2.998	×	1010	cm	s	−1	×	9.444	cm	−1	=	1.8760	×	10−22	J	hcB	1.8760	×	10−22	J	=	=	13.585	K	k	1.381×	10−23	J	K	−1	hc	A	−	B	=	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	(6.196	−	9.444)	cm
−1	−34	Use	(	)	=	−6.452	×	10−23	J	,	(	hc	A	−	B	and	k	)=	−6.452	×	10−23	J	=	−4.672	K	1.381×	10−23	J	K	−1	14	so	ε	=	×	1	σq	∑	(2J	+	1)e	−13.585	K×	J	(	J	+1)/T	J	=0	J	∑	{J	(J	+	1)	×	1.8760	×	10	−22	J	−	K	2	×	6.452	×	10−23	J}e	+4.672	K×	K	2	/T	.	K	=−	J	Write	a	brief	computer	program	or	use	other	mathematical	software	to	evaluate	the	terms	of
the	sum	and	to	sum	the	terms	until	they	converge.	Nested	sums	are	straightforward	to	program	in	languages	such	as	BASIC	or	FORTRAN,	whereas	spreadsheets	are	more	unwieldy.	For	σq,	see	Exercise	15B.7(b).	The	quantity	evaluated	explicitly	in	that	exercise	is	σq,	for	there	we	computed	the	partition	function	without	taking	the	symmetry	number
into	account;	in	effect,	the	sum	evaluated	here	and	the	sum	evaluated	in	the	earlier	exercise	contain	factors	of	σ,	which	cancel.	Compare	the	results	of	the	direct	sum	with	the	equipartition	value,	namely	3kT/2.	The	explicit	and	equipartition	expressions	are	compared	in	Figure	15C.3.	The	explicit	sum	reaches	95%	of	the	equipartition	value	at	about	38
K.	Figure	15C.3	15C.5(b)	The	mean	vibrational	energy	is	hcν	[15C.8	with	β	=	1/kT].	ε	V	=	hcν	/	kT	e	−1	Use	hcν	=	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	214.5	cm	−1	=	4.261×	10−21	J	hcν	4.261×	10−21	J	and	=	=	308.5	K	k	1.381×	10−23	J	K	−1	4.261	×	10−21	J	e308.5	K/T	−	1	The	equipartition	value	is	simply	kT	for	a	single	vibrational
mode.	The	explicit	and	equipartition	values	are	compared	in	Figure	15C.4.	The	explicit	expression	reaches	95%	of	the	equipartition	value	at	3000	K.	so	εV	=	Figure	15C.4	15	15C.6(b)	The	mean	vibrational	energy	per	mode	is	hcν	[15C.8	with	β	=	1/kT].	ε	V	=	hcν	/	kT	e	−1	We	draw	up	the	following	table:	mode	1	2	−1	3311	712		ν	/	cm	hcν	/	(10−20	J)
(hcν	/	k)	/	K	3	712	4	2097	6.577	1.414	1.414	4.166	4763	1024	1024	3016	1.414	×	10−20	J	4.166	×	10−20	J	6.577	×	10−20	J	+	+	2	×	e3016	K/T	−	1	e1024	K/T	−	1	e	4763	K/T	−	1	The	equipartition	value	is	simply	4kT,	that	is,	kT	per	vibrational	mode.	The	explicit	and	equipartition	values	are	compared	in	Figure	15C.5.	The	explicit	expression	reaches
95%	of	the	equipartition	value	at	24000	K.	So	εV	=	Figure	15C.5	15C.7(b)	The	mean	vibrational	energy	per	mode	is	hcν	[15C.8	with	β	=	1/kT].	ε	V	=	hcν	/	kT	e	−1	We	draw	up	the	following	table:	mode	ν	/	cm	−1	degeneracy	hcν	/	(10−21	J)	(hcν	/	k)	/	K	1	178	2	90	3	555	4	125	1	3.54	2	1.79	3	11.03	3	2.48	256	129	798	180	3.54	×	10−21	J	1.79	×	10−21
J	1.103	×	10−20	J	2.48	×	10−21	J	+	2	×	129	K/T	+	3×	+	3	×	180	K/T	256	K/T	798	K/T	−1	−1	−1	−1	e	e	e	e	The	equipartition	value	is	simply	9kT,	that	is,	kT	per	vibrational	mode.	The	explicit	and	equipartition	values	are	compared	in	Figure	15C.6.	The	explicit	expression	reaches	95%	of	the	equipartition	value	at	3700	K.	So	εV	=	16	Figure	15C.6	1	∂q
1	∂	1	[15C.3]	=	3	+	e	−βε1	+	5e	−	βε	2	=	−	−	−ε1e	−βε1	−	5ε	2	e	−	βε	2	q	∂β	q	∂β	q	(	−	ε	=	15C.8(b)	(	)	)	(	(	hc	hc	v1e	−	β	hcv1	+	5v2	e	−	β	hcv2	=	v1e	−	hcv1	/	kT	+	5v2	e	−	hcv2	/	kT	q	q	hcν	j	Use	q	=	5.809	=	7.192	×	10−4	×	(ν	j	/	cm	−1	)	and	kT	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	Thus	ε	=	5.809	=	(	×	850	cm	−1	×	e	−7.192×10	=	1.010	×
10	−20	−4	×850	+	5	×	1100	cm	−1	×	e	−7.192×10	)	)	[Exercise	15B.13b]	−4	×1100	)	J	Solutions	to	problems	−	βε	15C.2	=	q	∑=	g	j	e	j	[15B.1b]	∑	g	j	e	j	−	hc	β	v	j	j	−	βε	−	hc	β	v	j	N	j	g	je	j	g	je	[15A.6	with	degeneracy	included]	=	=	q	q	N	hcv	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	121.1	cm	−1	174.2	=	=	kT	T	/K	1.381×	10−23	J	K	−1	×	(T	/	K)
We	measure	energies	from	the	lower	states	and	write	2	+	2e	−	hcβν	=	2	+	2e	−174.2	/	(T	/	K	)	q=	This	function	is	plotted	in	Figure	15C.7.	Here	hc=	β	v	17	Figure	15C.7	(a)	At	300	K	N0	2	1	=	=	=	0.641	−174.2/300	N	q	1+	e	N1	N	=	1	−	0	=	0.359	N	N	(b)	The	electronic	contribution	to	the	mean	molecular	energy	is	1	∂q	2hcνe	−	hcβν	[15C.4a]	=	−	ε	=
q	∂β	q	and	=	6.626	×	10−34	J	s	×	2.998	×	1010	cm	s	−1	×	121.1	cm	−1	×	e	−174.2	300	1	+	e	−174.2	300	=	8.63	×	10−22	J	which	corresponds	to	0.520	kJ	mol−1	15C.4	Mean	values	of	any	variable	can	be	found	by	weighting	possible	values	of	that	variable	by	the	probability	of	that	value.	Thus,	the	mean	of	the	square	of	energy	is	ε	2	=	∑	p	jε	j2	=	∑	j	j
e	−	βε	j	q	ε	j2	Note	that	−	so	∂	−	βε	j	−	βε	e	=	ε	j	e	j	so	∂β	ε2	=	∂	2	−	βε	j	−	βε	e	=	ε	2j	e	j	,	2	∂β	1	∂	2	−	βε	j	1	∂	2	=	e	∑	q	∂β	2	q	j	∂β	2	∑e	−	βε	j	j	=	1	∂	2q	q	∂β	2	1/	2	ìï	1	∂	2q	æ	1	∂q	ö	2	üï	and	∆=	Thus	ε	ε	ε	−	ε	=	í	−ç		ý	.	2	è	q	∂β	ø	ïþ	ïî	q	∂β	For	a	harmonic	oscillator,	we	have	a	closed	form	expression	for	the	partition	function:	1	[15B.15]	q=	1	−	e	−	β	hcν
2	so	1/2	æ	1	∂	2q	ö	=	ç		è	q	∂β	2	ø	∂q	−hcνe	−	β	hcν	=	∂β	(1	−	e	−	β	hcν	)2	1/2	(	2	)	2	1/	2	−	β	hcν	(1	+	e−	β	hcν	)	∂	2q	(	hcν	)	e	=	3	∂β	2	(1	−	e−	β	hcν	)	2	and	2ü	ì	(	hcν	)2	e	−	β	hcν	(1	+	e	−	β	hcν	)	æ	−hcνe	−	β	hcν	ö	ï	ï	=	∆ε	í	−	ç	−	β	hcν		ý	2	è	1−	e	ø	ï	ïî	(1	−	e−	β	hcν	)	þ	18	1/	2	After	some	algebra,	the	expression	becomes	=	∆ε	hcνe	−	β	hcν	/	2	=	1	−	e
−	β	hcν	hcν	2sinh(	β	hcν	/	2)	15D	The	canonical	ensemble	Answers	to	discussion	questions	15D.2	An	ensemble	is	a	set	of	a	large	number	of	imaginary	replications	of	the	actual	system.	These	replications	are	identical	in	some	respects	but	not	in	all	respects.	For	example,	in	the	canonical	ensemble,	all	replications	have	the	same	number	of	particles,	the
same	volume,	and	the	same	temperature,	but	they	need	not	have	the	same	energy.	Ensembles	are	useful	in	statistical	thermodynamics	because	it	is	mathematically	more	tractable	to	perform	an	ensemble	average	to	determine	the	(time	averaged)	thermodynamic	properties	than	it	is	to	perform	an	average	over	time	to	determine	these	properties.
Recall	that	macroscopic	thermodynamic	properties	are	averages	over	the	time	dependent	properties	of	the	particles	that	compose	the	macroscopic	system.	In	fact,	it	is	taken	as	a	fundamental	principle	of	statistical	thermodynamics	that	the	(sufficiently	long)	time	average	of	every	physical	observable	is	equal	to	its	ensemble	average.	This	principle	is
connected	to	a	famous	assumption	of	Boltzmann’s	called	the	ergodic	hypothesis.	15D.4	In	the	context	of	ensembles,	the	thermodynamic	limit	is	the	limit	as	the	number	of	replications,	N	,	approaches	infinity.	In	that	limit,	the	dominating	configuration	is	overwhelmingly	the	most	probable	configuration,	and	its	properties	are	essentially	the	same	as
those	of	the	system.	Note,	however,	that	some	authors	use	the	phrase	to	refer	to	a	limit	of	large	numbers	of	particles.	Solution	to	exercise	15D.1(b)	Inclusion	of	a	factor	of	1/N!	is	necessary	when	considering	indistinguishable	particles.	Because	of	their	translational	freedom,	gases	are	collections	of	indistinguishable	particles.	Solids	are	collections	of
particles	that	are	distinguishable	by	their	positions.	The	factor	must	be	included	in	calculations	on	(i)	CO2	gas,	but	not	(ii)	graphite,	(iii)	diamond,	or	(iv)	ice.	15E	The	internal	energy	and	the	entropy	Answers	to	discussion	questions	15E.2	The	expressions	for	q,	U,	and	S	that	were	derived	in	this	chapter	are	applicable	to	T	<	0	as	well	as	T	>	0.
However,	if	we	plot	q	and	U	against	T,	for	example,	in	a	two-level	system	and	other	systems	as	well,	we	find	sharp	discontinuities	on	passing	through	zero,	and	T	=	+0	(corresponding	to	all	populations	in	the	lower	state)	is	quite	distinct	from	T	=	–0,	where	all	population	is	in	the	upper	state.	The	entropy	S	is	continuous	at	T	=	0,	but	all	these	functions
are	continuous	if	we	use	β	=	1/kT	as	the	independent	variable	which	indicates	that	β	∝	1/T	is	a	more	natural	variable	than	T.	15E.4	Given	the	statistical	definition	of	entropy	in	terms	of	the	number	of	configurations	(microstates)	consistent	with	a	given	energy	[15E.7],	the	entropy	for	a	collection	of	distinguishable	particles	must	be	greater	than	that	of
otherwise	similar	indistinguishable	particles.	If	the	particles	are	distinguishable,	then	exchanging,	say,	a	pair	of	them	would	result	in	a	different	(albeit	highly	similar)	microstate	with	the	same	energy	as	the	original	arrangement.	Exchanging	a	pair	of	indistinguishable	particles,	however,	results	in	not	just	a	similar	microstate,	but	the	same	state.	That
is	part	of	what	it	means	for	particles	to	be	indistinguishable.	As	a	result,	the	number	of	microstates	available	to	distinguishable	particles	is	greater	by	a	factor	of	N!	than	the	number	available	to	indistinguishable	ones,	as	reflected	in	eqns	15E.8a	and	15E.8b,	because	N!	is	the	number	of	permutations	of	N	19	particles	that	would	result	in	different
microstates	for	distinguishable	particles	but	the	same	microstate	for	indistinguishable	particles.	15E.6	Residual	entropy	is	due	to	the	presence	of	some	disorder	in	the	system	even	at	T	=	0.	It	is	observed	in	systems	where	there	is	very	little	energy	difference—or	none—between	alternative	arrangements	of	the	molecules	at	very	low	temperatures.
Consequently,	the	molecules	cannot	lock	into	a	preferred	orderly	arrangement	and	some	disorder	persists.	More	precisely,	more	than	one	microstate	is	accessible	even	at	the	lowest	temperature.	Solutions	to	exercises	15E.1(b)	CV	,m	=	12	(3	+	v	R*	+	2v	V*	)	R	[15E.6]	with	a	mode	active	if	T	>	θM.	(i)	O3:	vR*	=	3,	vV*	≈	0;	hence	CV	,m	=	12	(3+	3+
0)R	=	3R	[experimental	=	3.7R]	(ii)	C2H6:	vR*	=	2,	vV*	≈	1;	hence	CV	,m	=	12	(3+	3+	2	×	1)R	=	4R	[experimental	=	6.3R]	(iii)	CO2:	vR*	=	2,	vV*	≈	0;	hence	CV	,m	=	12	(3+	2	+	0)R	=	52	R	[experimental	=	4.5R]	Consultation	of	the	book	Herzberg	(Molecular	Spectra	and	Molecular	Structure	II.)	turns	up	only	one	vibrational	mode	among	these
molecules	whose	frequency	is	low	enough	to	have	a	vibrational	temperature	near	room	temperature.	That	mode	was	in	C2H6,	corresponding	to	the	“internal	rotation”	of	CH3	groups.	The	discrepancies	between	the	estimates	and	the	experimental	values	suggest	that	there	are	vibrational	modes	in	each	molecule	that	contribute	to	the	heat	capacity—
albeit	not	to	the	full	equipartition	value—that	our	estimates	have	classified	as	inactive.	15E.2(b)	The	equipartition	theorem	would	predict	a	contribution	to	molar	heat	capacity	of	1	2	R	for	every	translational	and	rotational	degree	of	freedom	and	R	for	each	vibrational	mode.	For	an	ideal	gas,	Cp,m	=	R	+	CV,m.	So	for	CO2	6.5	With	vibrations	CV	,m	/	R=
3	(	12	)	+	2	(	12	)	+	(3	×	3	−	6)=	5.5	and	γ=	=	1.18	5.5	3.5	Without	vibrations	CV	,m	/	R	=3	(	12	)	+	2	(	12	)	=2.5	and	γ	=	=1.40	2.5	−1	−1	37.11	J	mol	K	Experimental	γ	=	=	1.29	(37.11−	8.3145)	J	mol−1	K	−1	The	experimental	result	is	closer	to	that	obtained	by	neglecting	vibrations,	but	not	so	close	that	vibrations	can	be	neglected	entirely.	15E.3(b)
ì1	for	Σ	states	,	where	g	=	(2S	+	1)	×	í	j	î2	for	Π,	∆,	...	states	−1	hc	×	(7918.1cm	)	(1.4388	cm	K)	×	(7918.1cm	−1	)	At	400	K,	βε	=	=	22.78	=	500	K	kT	The	3Σ	term	is	triply	degenerate	(from	spin),	and	the	1∆	term	is	doubly	(orbitally)	degenerate.	Hence	q	=	3	+	2e–βε	=	3	+	2e–22.78	=	3.000	q	=	∑	g	je	−	βε	j	15E.4(b)	The	molar	entropy	of	a	collection
of	oscillators	is	given	by	V	U	−	U	m	(0)	R(θ	V	/	T	)	−	R	ln(1−	e	−θ	/T	)	[15E.14b]	+	k	lnQ	[15E.8c]	=	θ	V	/T	Sm	=	m	T	e	−1	where	θ	V	=	hc	v	/	k	is	the	vibrational	temperature.	A	plot	of	Sm/R	versus	T/θV	is	shown	in	Figure	15E.1.	20	Figure	15E.1	The	vibrational	entropy	of	ethyne	is	the	sum	of	contributions	of	this	form	from	each	of	its	seven	normal
modes.	The	table	below	shows	results	from	a	spreadsheet	programmed	to	compute	Sm/R	at	a	given	temperature	for	the	normal-mode	wavenumbers	of	ethyne.	T=298	K	T=500	K	v	/	cm	−1	θV/K	T/θV	Sm/R	T/θV	Sm/R	612	880	0.336	0.216	0.568	0.554	729	1049	0.284	0.138	0.479	0.425	1974	2839	0.105	0.000766	0.176	0.0229	3287	4728	0.0630
0.00000217	0.106	0.000818	3374	4853	0.0614	0.00000146	0.103	0.000652	The	total	vibrational	entropy	is	obtained	by	summing	the	last	column	(twice	for	the	first	two	entries,	since	they	represent	doubly	degenerate	modes).	(i)	At	298	K,	Sm	=	0.708R	=	5.88	J	K–1	mol–1	(ii)	At	500	K,	Sm	=	1.982R	=	16.48	J	K–1	mol–1	15.5(b)	The	translational
contribution	to	the	total	entropy	of	a	polyatomic	molecule	is	determined	in	the	same	manner	as	the	translational	entropy	of	a	monatomic	molecule.	æ	e5/	2	kT	ö	S	mO	R=	ln	ç	O	3		[15E.11b	with	p	p	O	]	=	èp	Λ	ø	(i)	Λ=	h	6.626	×	10−34	J	s	=	(2π	mkT	)1/2	{(2π	)(18.02)(1.6605	×	10−27	kg)(1.381×	10−23	J	K	−1	)T}1/2	−10	=	4.113×	10	m	(T	/	K)1/2	æ
(e5/2	)	×	(1.381×	10−23	J	K	−1T	)	ö	æ	T	ö	×	SmO	=	R	ln	ç	5	−10	3	è	(1.013×	10	Pa)	×	(4.113×	10	m)	ø	çè	K	ø	3/2	=	R	ln{5.302	×	(T	/	K)5/2	}	=	(8.3145	J	K	−1	mol−1	)ln{5.302	×	(298)5/2	}	=	132	J	K	−1	mol−1	(ii)	Λ=	h	6.626	×	10−34	J	s	=	(2π	mkT	)1/2	{(2π	)(44.01)(1.6605	×	10−27	kg)(1.381×	10−23	J	K	−1	)T}1/2	−10	=	2.632	×	10	m	(T	/	K)1/2	21	æ
(e5/2	)	×	(1.381×	10−23	J	K	−1T	)	ö	æ	T	ö	×	S	=	R	ln	ç	5	−10	3	è	(1.013×	10	Pa)	×	(2.632	×	10	m)	ø	çè	K	ø	3/2	O	m	=	R	ln{271.6	×	(T	/	K)5/2	}	=	(8.3145	J	K	−1	mol−1	)ln{271.6	×	(298)5/2	}	=	165	J	K	−1	mol−1	15E.6(b)	From	the	solution	to	Exercise	15E.5(b)	we	have,	for	translational	contributions,	SmO	=	R	ln{271.6	×	(T	/	K)5/2	}	for	CO2	SmO	=
132	J	K	−1	mol−1	for	H2O	at	298	K	We	solve	for	T:	and	æ	S	O	ö	ïü	ïì	1	T=	×	exp	ç	m		ý	í	è	R	ø	þï	îï	271.6	2/5	æ	132	J	K	−1	mol−1	ö	ïü	ïì	1	×	exp	ç	K=	í	−1	−1		ý	è	8.3145	J	K	mol	ø	þï	îï	271.6	2/5	K	=	60.9	K	15E.7(b)	The	high-temperature	approximation	to	the	rotational	partition	function	of	a	non-linear	molecule	is	(after	substituting	the	numerical
values	of	the	constants	in	eqn	15B.14)	1.0270	(T	/	K)3/	2	1.0270	×	2983/	2	=	=	=	5837	qR	−	/	3	1	2				/	cm	)	σ	(	ABC	(2)	×	(2.02736	×	0.34417	×	0.293535)1/	2	The	high-temperature	approximation	is	valid	if	T	>	θR				)1/	3	hc(	ABC	and	θ	R	=	k	(6.626	×	10−34	J	s)(2.998	×	1010	cm	s	−1	){(2.02736)(0.34417)(0.293535)	cm	−3	}1/	3	=	1.381×	10−23	J	K
−1	=	0.8479	K	so	it	is	valid	in	this	case.	All	the	rotational	modes	of	water	are	fully	active	at	25°C;	therefore	3	U	mR	−	U	mR	(0)	=	E	R	=	RT	,	the	equipartition	value	2	ER	3	SmR	=	+	R	lnq	R	=	R	+	R	ln5837	=	84.57	J	K	−1	mol−1	2	T	Comment.	Division	of	qR	by	NA!	is	not	required	for	the	internal	contributions;	internal	motions	may	be	thought	of	as
localized	(distinguishable).	It	is	the	overall	canonical	partition	function,	which	is	a	product	of	internal	and	external	contributions,	that	is	divided	by	NA!	15E.8(b)	The	degeneracy	of	a	species	with	S	=	5	2	is	6.	The	electronic	contribution	to	molar	entropy	is	U	m	−	U	m	(0)	+	R	lnq	=	R	lnq	T	(The	term	involving	the	internal	energy	is	proportional	to	a
temperature-derivative	of	the	partition	function,	which	in	turn	depends	on	excited	state	contributions	to	the	partition	function;	those	contributions	are	negligible.)	Sm	=	Sm	=	(8.3145	J	mol−1	K	−1	)ln6	=	14.9	J	mol−1	K	−1	15E.9(b)	The	molar	entropy	of	a	collection	of	oscillators	is	given	by	V	U	−	U	m	(0)	R(θ	V	/	T	)	Sm	=	m	+	k	lnQ	[15E.8c]	=	θ	V	/T
−	R	ln(1−	e	−θ	/T	)	[15E.14b]	T	e	−1	where	θ	V	=	hc	v	/	k	is	the	vibrational	temperature.	The	vibrational	entropy	of	ethyne	is	the	sum	of	contributions	of	this	form	from	each	of	its	seven	normal	modes.	The	table	below	shows	results	from	a	spreadsheet	programmed	to	compute	Sm/R	at	a	given	temperature	for	the	normal-mode	wavenumbers	of	ethyne.
T=298	K	22	T=500	K	v	/	cm	−1	θV/K	T/θV	Sm/R	T/θV	Sm/R	612	880	0.336	0.216	0.568	0.554	729	1049	0.284	0.138	0.479	0.425	1974	2839	0.105	0.000766	0.176	0.0229	3287	4728	0.0630	0.00000217	0.106	0.000818	3374	4853	0.0614	0.00000146	0.103	0.000652	The	total	vibrational	entropy	is	obtained	by	summing	the	last	column	(twice	for	the	first
two	entries,	since	they	represent	doubly	degenerate	modes).	(i)	At	298	K,	Sm	=	0.708R	=	5.88	J	K–1	mol–1	(ii)	At	500	K,	Sm	=	1.982R	=	16.48	J	K–1	mol–1	Comment.	These	calculated	values	are	the	vibrational	contributions	to	the	standard	molar	entropy.	The	total	molar	entropy	would	also	include	translational	and	rotational	contributions,	but	without
knowledge	of	the	rotational	constants	the	total	molar	entropy	cannot	be	calculated.	Solutions	to	problems	∆ε	=	ε	=	ge	µ	B0	[14A.12a]	15E.2	q	=	1	+	e–βε	so	[15E.5]	∂U	CV	,	m	=	−k	β	2	æç	m	ö	è	∂β	øV	The	molar	internal	energy	is	[15E.2a]	N	æ	∂q	E	ö	NAε	e−	βε	−	EA	ç	=	U	m	−	U	m	(0)	=		q	è	∂β	ø	qE	V	Let	x	=	βε	=	2	µ	B0	b	[ge	=	2],	then	dβ	=	ε1	dx
Therefore,	if	0	=	5.0	T,	x=	(2)	×	(9.274	×	10−24	J	T	−1	)	×	(5.0	T)	6.72	=	T	K	(1.381×	10−23	J	K	−1	)	×	T	and	æ	x	2	e−	x	ö	∂	æ	N	ε	e−	x	ö	∂	æ	e−	x	ö	æxö	−k	ç		ε	ç	A	−	x		=	−	N	A	kx	2	×	ç	=	CV	,	m	=	Rç	−x		−x	2		∂x	è	1	+	e	ø	è	ε	ø	∂x	è	1	+	e	ø	è	(1	+	e	)	ø	(a)	T	=	50	K,	x	=	0.134,	CV,m	=	4.47×10–3R,	implying	that	CV,m	=	3.7×10–2	J	K–1	mol–1.	Since	the
equipartition	value	is	about	3R	[vR*	=3,	vV*	≈	0],	the	field	brings	about	a	change	of	about	0.1	per	cent.	(b)	T	=	298	K,	x	=	2.26×10–2,	CV,m	=	1.3×10–4R,	implying	that	CV,m	=	1.1	mJ	K–1	mol–1,	a	change	of	about	4×10–3	per	cent.	Question.	What	percentage	change	would	a	magnetic	field	of	1	kT	cause?	15E.4	2	q	=	1	+	5e–βε	[gJ	=	2J	+	1]		(J	+	1)]	ε
=	E(J	=	2)	−	E(J	=	0)	=	6hcB	[E	=	hcBJ	U	−	U	(0)	1	∂q	5ε	e	−	be	=−	=	N	q	∂b	1+	5e	−	be	[15E.5]	æ	∂U	m	ö	CV	,	m	=	−k	β	2	ç		è	∂β	øV		CV	,m	R	=	hcB	k	β	)2	e	−6hc	Bβ	5ε	2	β	2e	−	βε	180(hcB	=		(1+	5e	−	βε	)2	(1+5e	−6hc	Bβ	)2	(6.626	×	10−34	J	s)(2.998	×	1010	cm	s	−1	)(60.864	cm	−1	)	=	87.571	K	1.381×	10−23	J	K	−1	23	Hence,	1.380	×	106	e
−525.4K	T	(1+	5e	−525.4K	T	)2	×	(T	K)2	We	draw	up	the	following	table	CV	,m	R	=	T/K	50	100	150	200	250	300	350	400	450	500	CV,m/R	0.02	0.68	1.40	1.35	1.04	0.76	0.56	0.42	0.32	0.26	These	points	are	plotted	in	Figure	15E.2.	Figure	15E.2	15E.6	The	contribution	to	the	heat	capacity	from	this	system	of	states	is	[15E.5]	æ	∂U	ö	2	æ	∂U	ö	CV	=	ç		=
−k	β	ç	∂β		è	∂T	øV	è	øV	æ	∂lnq	ö	N	æ	∂q	ö	NkT	2	æ	∂q	ö	=	−	ç		[15E.2a]	=	where	U	−	U	(0)	=	−	N	ç		q	è	∂β	ø	V	q	çè	∂T	ø	V	è	∂β	ø	V	We	need	to	evaluate	q	for	the	energy	levels	of	the	Morse	potential	given	in	Problem	15B.1.	Eν	=	(v	+	12	)hcν	−	(v	+	12	)	2	hcν	xe	Relative	to	E0	=	0	the	energy	expression	can	be	written	as	=	Ev	vhcν{1	−	(v	+	1)	xe	}	.	Let	hcν	≡
u	.	Then	Ev	=	v{1	–	(v+1)xe}.	The	partition	function	becomes	vmax	q	=	∑e	v=0	−βE	v	vmax	=	∑e	−	β	uv{1−(v+1)	xe	}	v=0	vmax	=	∑e	−uv{1−(v+1)	xe	}/kT	v=0	vmax	is	the	maximum	value	of	v	for	the	Morse	oscillator	before	dissociation	occurs.	It	can	be	2	D	e	1	calculated	from	v=	−	.	See	the	solution	to	Problem	12D.7	for	a	derivation	of	this	max	2	ν
formula.	Since	specific	values	of	x	,	ν,	and	D	are	required	to	solve	this	problem	we	will	e	e	choose	the	case	of	HCl(g).	Values	of	xe	,	ν,	and	D	e	may	be	obtained	from	Table	12D.1	and	Problem	12D.4.	The	value	of	xe	can	also	be	calculated	from	xe	=	ν	[12D.12].	The	heat	4	D	e	capacity	is	calculated	in	the	following	MathCad	worksheet	and	Figure	15E.3.
24	Figure	15E.3	Note	the	slight	difference	between	the	vibrational	heat	capacities	of	the	harmonic	oscillator	approximation	and	the	Morse	oscillator	approximation.	Also	note	that	for	HCl(g)	at	room	25	temperature	the	vibrational	energy	levels	make	essentially	no	contribution	to	the	overall	heat	capacity	of	29.12	J	K–1	mol–1.	This	is	a	result	of	the
large	spacing	between	the	HCl	energy	levels	15E.8	The	partition	function	of	a	system	with	energy	levels	ε(J)	and	degeneracies	g(J)	is	q	=	∑	g(J	)e	−	βε	(	J	)	J	The	contribution	of	the	heat	capacity	from	this	system	of	states	is	æ	∂U	ö	CV	=	−k	β	2	ç	[15E.5]	è	∂β	ø	V	where	æ	∂lnq	ö	N	æ	∂q	ö	=−	ç		U	−	U	(0)	=	−	N	ç		q	è	∂β	ø	V	è	∂β	ø	V	Express	these	quantities	in
terms	of	sums	over	energy	levels	ö	N	Næ	U	−	U	(0)	=	−	ç	−	∑	g(J	)ε	(J	)e	−	βε	(	J	)		=	∑	g(J	)ε	(J	)e	−	βε	(	J	)	ø	q	J	q	è	J	CV	æ	∂U	ö	æ	∂q	ö	Næ	ö	N	(1)	=	−∑	g	(	J	)ε	2	(	J	)e	−	βε	(	J	)		−	2	∑	g	(	J	)ε	(	J	)e	−	βε	(	J	)	ç	ç		=		ç	2	−k	β	ø	q	J	è	∂β	øV	q	è	J	è	∂β	ø	N	N	=	−	∑	g	(	J	)ε	2	(	J	)e	−	βε	(	J	)	+	2	∑	g	(	J	)ε	(	J	)e	−	βε	(	J	)	∑	g	(	J	′)ε	(	J	′)e	−	βε	(	J	′)	q	J	q	J	J′	Finally	a	double
sum	appears,	one	that	has	some	resemblance	to	the	terms	in	ζ(β).	The	fact	that	ζ(β)	is	a	double	sum	encourages	us	to	try	to	express	the	single	sum	in	CV	as	a	double	sum.	g	(	J	′)e	−	βε	(	J	′)	∑	,	so	We	can	do	so	by	multiplying	it	by	one	in	the	form	J	′	q	and	CV	N	=	−	2	∑	g(J	)ε	2	(J	)e	−	βε	(	J	)	∑	g(	J	′	)e	−	βε	(	J	′	)	q	J	−k	β	2	J′	N	∑	g(J	)ε	(J	)e−	βε	(	J	)	∑	g(	J
′)ε	(	J	′)e−	βε	(	J	′	)	q2	J	J′	Now	collect	terms	within	each	double	sum	and	divide	both	sides	by	–N:	CV	1	1	=	2	∑	g(J	)g(	J	′	)ε	2	(J	)e	−	β	{ε	(	J	)+ε	(	J	′	)}	−	2	∑	g(J	)g(	J	′	)ε	(J	)ε	(	J	′	)e	−	β	{ε	(	J	)+ε	(	J	′	)}	2	q	J	,J	′	q	J	,J	′	kN	β	Clearly	the	two	sums	could	be	combined,	but	it	pays	to	make	one	observation	before	doing	so.	The	first	sum	contains	a	term	ε2(J),	but
all	the	other	factors	in	that	sum	are	related	to	J	and	J′	in	the	same	way.	Thus,	the	first	sum	would	not	be	changed	by	writing	ε2(J′)	instead	of	ε2(J);	furthermore,	if	we	add	the	sum	with	ε2(J′)	to	the	sum	with	ε2(J),	we	would	have	twice	the	original	sum.	Therefore,	we	can	write	(finally	combining	the	sums):	CV	1	=	∑	g(J	)g(	J	′)e−	β{ε	(	J	)+ε	(	J	′	)}{ε	2	(J	)
+	ε	2	(	J	′)	−	2ε	(J	)ε	(	J	′)}	kN	β	2	2q	2	J	,J	′	+	Recognizing	that	ε	2	(J	)	+	ε	2	(	J	′	)	−	2ε	(J	)ε	(	J	′	)	=	{ε	(J	)	−	ε	(	J	′	)}2	,	we	arrive	at	kN	β	2	ζ	(β	)	2	For	a	linear	rotor,	the	degeneracies	are	g(J)	=	2J+1	.	The	energies	are		(J=	ε=	(	J	)	hcBJ	+	1)	θ	R	kJ	(	J	+	1)	CV	=	so	βε	(J	)	=	θ	R	J	(J	+	1)	/	T	.	The	total	heat	capacity	and	the	contributions	of	several	transitions
are	plotted	in	Figure	15E.4.	One	can	evaluate	CV,m/R	using	the	following	expression,	derivable	from	eqn	(1)	above.	It	has	the	advantage	of	using	single	sums	rather	than	double	sums.	CV	,m	R	=	ö	1	1æ	g(J	)β	2ε	2	(J	)e	−	βε	(	J	)	−	2	ç	∑	g(J	)βε	(J	)e	−	βε	(	J	)		∑	ø	q	J	q	è	J	26	2	Figure	15E.4	Comment:	ζ(β)	is	defined	in	such	a	way	that	J	and	J′	each	run
independently	from	0	to	infinity.	Thus,	identical	terms	appear	twice.	(For	example,	both	(0,1)	and	(1,0)	terms	appear	with	identical	value	in	ζ(β).	In	the	plot,	though,	the	(0,1)	curve	represents	both	terms.)	One	could	redefine	the	double	sum	with	an	inner	sum	over	J′	running	from	0	to	J–1	and	an	outer	sum	over	J	running	from	0	to	infinity.	In	that	case,
each	term	appears	only	once,	and	the	overall	factor	of	1/2	in	CV	would	have	to	be	removed.	15E.10	The	absorption	lines	are	the	values	of	differences	in	adjacent	rotational	terms.	Using	eqns.	12B.15,	and	12B.10,	we	have	E	(	J	+1)	−	E	(	J	)	F	(	J	+	1)	−	F	(	J=	)	=	2	B(	J	+	1)	hc	for	J	=	0,	1,	...	.	Therefore,	we	can	find	the	rotational	constant	and
reconstruct	the	energy	levels	from	the	data	of	Problem	15B.6.	To	make	use	of	all	of	the	data,	one	would	plot	the		+	1)	−	F(J		)	,	vs.	J;	the	slope	of	that	linear	plot	is	2	B	.	wavenumbers,	which	represent	F(J	However,	in	this	case,	plotting	the	data	is	not	necessary	because	inspection	of	the	data	shows	that	the	lines	in	the	spectrum	are	equally	spaced	with
a	separation	of	21.19	cm–1,	so	that	is	the	slope:		and	hence	B		=	10.595	cm	−1	slope	=	21.19	cm	−1	=	2	B	The	partition	function	is	∞	∞	q=	∑	(2	J	+	1)e−	β	hcBJ	(	J	+1)	[15B.11]	=	∑	(2	J	+	1)e−	J	(	J	+1)θ		R	/T	[θ	R	=	hcB	/	k	]	=	J	0=	J	0	and	the	factor	(2J	+	1)	is	the	degeneracy	of	the	energy	levels.	For	HCl,	θR	=	15.244	K.	T	Defining	x	≡	R	,	qR	may	be
rewritten	θ	q	R	=	∑	(2J	+	1)e	−	J	(	J	+1)/	x	J	At	temperatures	above	about	30	K	the	high	temperature	approximation	for	qR	would	be	adequate	to	calculate	the	molar	entropy,	but	at	lower	temperatures	the	summation	needs	to	be	performed.	The	molar	entropy	is	calculated	from	U	−	U	m	(0)	Sm	=	m	+	R	lnq	R	[15E.8a]	T	and	the	molar	energy	from	N	æ
∂q	R	ö	[15E.2a]	U	m	−	U	m	(0)	=	N	A	áε	R	ñ	=	−	RA	ç	q	è	∂β	ø	V	27	U	m=	−	U	m	(0)	1	N	A	hcB	∑	(2	J	+	1){J	(	J	+	1)}e	−	J	(	J	+1)/	x	qR	J	=1	1	Rθ	R	∑	(2	J	+	1){J	(	J	+	1)}e	−	J	(	J	+1)/	x	qR	J	=1	Substituting	into	the	expression	for	the	entropy	we	obtain	1	1	=	Sm	R	∑	(2	J	+	1){J	(	J	+	1)}e	−	J	(	J	+1)/	x	+	R	ln	q	R	q	R	x	J	=1	Sm	and	qR	are	best	evaluated
with	a	spreadsheet	program	such	as	Excel®	or	a	analytical	mathematical	software	as	Mathcad®.	Here	we	have	used	Mathcad®.	See	the	Mathcad®	T	worksheet	below.	Sm/R	is	plotted	as	a	function	of	x	≡	R	in	Figure	15E.5.	θ	=	Figure	15E.5	15E.12	The	translational	contribution	to	the	entropy	is	given	by	the	Sackur-Tetrode	equation	[15E.11a]:	æ	V
e5/2	ö	h	where	Λ	=	[15B.7b]	SmTO	=	R	ln	ç	m	3		(2π	mkT	)1/2	è	NAΛ	ø	After	substituting	values	for	the	constants	we	obtain	6.626	×	10−34	J	s	h	=	Λ=	(2π	mkT	)1/2	{2π	(38.00	×	1.6605	×	10−27	kg)(1.381×	10−23	J	K	−1	)(298	K)}1/2	=	1.64	×	10−11	m	and	æ	ö	(2.479	×	10−2	m3	)e5/	2	S	mTO	=	(8.3145	J	K	−1	mol−1	)	ln	ç	−1	−11	23	3		(6.022	10	mol
)(1.64	1	0	m)	×	×	è	ø	−1	−1	=	154	J	K	mol	28	The	rotational	contribution	is	[15E.13a]	kT	ö	æ	=	S	mR	R	ç1	+	ln		σ	hcB	ø	è	The	rotational	constant	is		=		=	B	4π	cI	4π	cµ	R	2	=	(1.0546	×	10−34	J	s)	×	(6.022	×	1023	mol−1	)	4π	(2.998	×	10	cm	s	−1	)	×	(	12	×	19.00	×	10−3	kg	mol−1	)	×	(190.0	×	10−12	m)2	10	=	0.4915	cm	−1	It	will	be	useful	to	note	that
(1.381×	10−23	J	K	−1	)(298	K)	kT	=	=	207.2	cm	−1	hc	(6.626	×	10−34	J	s)(2.998	×	1010	cm	s	−1	)	æ	207.2	cm	−1	ö	Thus	SmR	=	(8.3145	J	K	−1	mol−1	)	ç	1+	ln	=	52.8	J	K	−1	mol−1	(2)(0.4915	cm	−1	)	ø	è	The	vibrational	contribution	is	[15E.13a]	V	æ	θV	/T	ö	θ	V	hcν	450.0	cm	−1	S	mV	R	ç	θ	V	/T	=	−	ln	1	−	e	−θ	/T		with	=	=	=	2.172	T	kT	207.2	cm	−1
−1	èe	ø	(	)	æ	2.172	ö	S	mV	(8.3145	J	K	−1	mol−1	)	ç=	=	−	ln	(1	−	e	−2.172	)		3.33	J	K	−1	mol−1	2.172	−1	èe	ø	The	Boltzmann	factor	for	the	lowest-lying	excited	electronic	state	is	æ	−(1.609eV)	×	(1.602	×	10−19	J	eV	−1	)	ö	exp	ç	=	6	×	10−28	−23	−1	è	(1.381×	10	J	K	)	×	(298K)	ø	so	we	may	take	qE	to	equal	the	degeneracy	of	the	ground	state,	namely	2



and	UE	–	UE(0)	to	be	zero.	So	the	electronic	contribution	is	U	E	−	U	E	(0)	SE	=	+	R	lnq	E	=	0	+	(8.3145	J	K	−1	mol−1	)ln	2	=	5.76	J	K	−1	mol−1	T	Putting	it	all	together	yields	SmO	=	SmTO	+	SmR	+	SmV	+	SmE	=	216	J	K	−1	mol−1	15E.14	The	solution	is	provided	in	the	MathCad®	worksheet	which	is	inserted	below.	29	The	plot	of	the	Morse
oscillator	entropy	against	temperature,	when	compared	to	a	similar	plot	for	the	harmonic	oscillator,	shows	that	the	Morse	oscillator	has	the	greater	entropy	(Figure	15E.6).	This	happens	because	the	Morse	oscillator	has	the	greater	number	of	available	energy	states	at	any	temperature.	However,	the	difference	is	remarkably	small.	15E.16	A	Sackur-
Tetrode	type	of	equation	describes	the	translational	entropy	of	the	gas.	Here	1/2	æ	2π	m	ö	q	T	=	q	xTq	yT	with	q	xT	=	ç		X	[15B.7a]	çè	β	h2	ø	where	X	is	the	length	of	the	surface.	Therefore,	30	æ	2π	m	ö	2π	mσ	XY	=	,	σ	=	XY	qT	=ç	2		è	βh	ø	β	h2	U	m	−	U	m	(0)	=	−	N	A	æ	∂q	ö	=	RT	[or	by	equipartition]	q	çè	∂β	ø	U	m	−	U	m	(0)	qù	é	+	R	(ln	q	m	−	ln	N	A	+
1)=	ê	qm	n	ú	T	ë	û	æ	e	2q	m	ö	æ	eq	m	ö	R	+	R	ln	ç	R	ln	ç	=		=	è	NA	ø	è	NA	ø	Sm	=	=	æ	2π	e	2	mσ	m	ö	é	σù	R	=	ln	ç	2		êσ	m	n	úû	è	h	NA	β	ø	ë	Call	this	molar	entropy	of	the	mobile	two-dimensional	film	Sm2.	The	molar	entropy	of	condensation	is	the	difference	between	this	entropy	and	that	of	a	(three-dimensional)	gas:	∆Sm	=	Sm2	–	Sm3	.	The	three-dimensional
value	is	given	by	the	Sackur-Tetrode	equation	ìï	æ	2π	m	ö	3/2	V	üï	Sm	=	R	ln	íe5/2	ç	2		Nm	ý	[15E.11a]	è	hβø	A	îï	þï	So	ìïæ	σ	ö	æ	h2	β	ö	1/2	üï	e	2	(2π	m	/	h2	β	)	×	(σ	m	/	N	A	)	=	R	ln	íç	m		×	ç	∆Sm	=	R	ln	5/2	ý	è	V	ø	è	2π	me	ø	ï	e	(2π	m	/	h2	β	)3/2	×	(Vm	/	N	A	)	îï	m	þ	12	C	p,m	æ	γ	RT	ö	,	cs	=	ç		,	γ	=	CV	,	m	è	M	ø	15E.18	(a)	C	p	,	m	=	CV	,	m	+	R	CV	,m	=	12
R(3+	ν	R*	+	2ν	V*	)	=	12	R(3+	2)	=	52	R	C	p,m	=	52	R	+	R	=	72	R	7	γ	=	=	1.40;	hence	5	æ	1.40RT	ö	cs	=	ç	è	M	ø	12	(b)	Nothing	significant	changes	upon	going	from	a	diatomic	to	a	linear	triatomic.	There	are	no	more	rotational	modes.	There	are	additional	vibrational	modes,	but	we	assume	none	is	active.	æ	1.40RT	ö	cs	=	ç	è	M	ø	(c)	12	CV	,m	=	12	R(3+
3)	=	3R	C	p,m	=	3R	+	R	=	4R,	æ	4RT	ö	cs	=	ç	è	3M	ø	4	3	γ	=	,	For	air,	12	æ	(1.40)	×	(2.48	kJ	mol−1	)	ö	cs	ç=	350	m	s	−1	=		−3	−1	29	10	kg	mol	×	è	ø	15E.20	(a)	The	heat	capacity	is	æ	ö	CV	=	−k	β	2	ç	∂U		[15E.5]	è	∂β	ø	V	First	express	U	as	a	function	of	β:	N	ε	e	−	βε	U	=	U	(0)	+	1+	e	−	βε	31	12	Hence	CV	æ	∂U	ö	Nε	1	×	(−ε	e	−	βε	)	×	(−	N	ε	2e	−	βε	)	−	=
=ç	−	βε	2		è	∂β	ø	V	1+	e	(1+	e	−	βε	)2	−k	β	Collecting	terms	over	a	common	denominator	yields	kN	β	2ε	2e	−	βε	kN	β	2ε	2e	−2	βε	kN	(1/	kT	)2	ε	2e	−2ε	/kT	−	βε	(1+	e	−	1)	=	=	CV	=	(1+	e	−	βε	)2	(1+	e	−	ε	/kT	)2	(1+	e	−	βε	)2	Change	the	expression	to	molar	rather	than	molecular	quantities:	and	ε/k	=	εm/R	N	=	NA	,	R	=	NAk	,	2	−2	ε	m	/	RT	R(ε	m	/	RT
)	e	so	CV	,m	=	−	ε	/	RT	(1+	e	m	)2	(b)	It	is	convenient	to	plot	CV,m	(in	units	of	R)	as	a	function	of	x	where	x	=	kT/ε	=	RT/εm.	See	Figure	15C.7.	C	Re	−2/	x	c(x)	≡	V	,m	CV	,m	=	2	−1/	x	2	R	x	(1+	e	)	Figure	15C.7	(c)	Figure	15.20	shows	a	maximum	heat	capacity	at	about	0.08	R	at	a	value	for	x	of	about	0.8.	The	X-Y	Trace	feature	of	mathematical	software
may	be	used	to	find	a	more	accurate	value	for	xmax	of	0.775	and	for	c(xmax)	of	0.0775.	A	formula	for	the	maximum	is	determined	by	the	criterion	that	dCV,m/dx	=	0	at	the	maximum.	d(CV	,m	/	R)	d	æ	ö	2e	−2/x	(1−	x	−	xe	−1/x	)	e	−2/x	=	=	ç	2	dx	è	x	(1+	e	−1/x	)2	ø	dx	x	4	(1+	e	−1/x	)3	Thus,	CV,m	is	a	maximum	when	x	=	xmax	satisfies	the	equation	1	−
xmax	−	xmax	e	−1/	xmax	=	0	This	is	a	transcendental	equation	so	it	is	necessary	to	solve	for	xmax	with	a	numerical	method.	xmax	may	be	numerically	determined	with	the	Numeric	Solver	application	of	the	modern	scientific	calculator.	The	Given/Find	solve	block	of	Mathcad	can	also	be	used	and	the	following	presents	a	Mathcad	solution.	This
represents	the	best	value	of	xmax.	Tmax	=	32	ε	m	xmax	R	with	xmax	determined	as	above.	15F	Derived	functions	Answer	to	discussion	question	15F.2	The	relationship	between	the	equilibrium	constant	and	the	standard	molar	partition	functions	of	the	species	involved	is	[15F.10b]	ìï	æ	q	O	öν	J	üï	K	=	í∏	ç	J,m		ý	e	−∆r	E0	/	RT	ç		ïî	J	è	N	A	ø	ïþ	The
equilibrium	constant,	of	course,	is	related	to	the	Gibbs	functions	of	reactants	and	products,	as	discussed	in	Topic	6A.	The	Gibbs	function	itself	is	often	interpreted	as	balancing	energetic	and	entropic	tendencies	of	the	system	(even	if	the	energetic	tendencies	themselves	can	be	interpreted	as	reflecting	the	entropy	of	the	surroundings).	We	can	clearly
identify	an	energetic	portion	in	the	above	expression,	the	exponential	involving	∆rE0,	with	which	we	are	not	concerned	at	the	moment.	The	remaining	portion,	the	continued	product	(quotient)	is	highly	reminiscent	of	the	equilibrium	constant	expression	[6A.13]	in	terms	of	species	activities:	æ	ν	ö	K	=	ç	∏	aJ	J		ø	equilibrium	è	J	Thus,	to	the	extent
permitted	by	energetic	considerations,	the	activities	of	reactants	and	products	in	a	mixture	at	equilibrium	are	directly	proportional	to	the	number	of	accessible	states	they	have.	Indeed,	recalling	that	activities	are	approximately	proportional	to	concentrations,	we	can	interpret	15F.10b	as	saying	that	species	concentrations	in	an	equilibrium	mixture
are	directly	proportional	to	the	number	of	accessible	states	of	that	species.	Finally,	recall	that	each	species’	partition	function	is	measured	with	respect	to	the	ground	state	of	that	species.	If	we	computed	the	partition	functions	of	all	the	species	involved	with	respect	to	a	common	zero	of	energy,	then	the	partition	functions	would	absorb	the	energetic
factor	involving	∆rE0.	(Note	that	that	energetic	term	has	the	same	functional	form	as	a	Boltzmann	factor.)	So	we	conclude	by	saying	that	species	activities	in	an	equilibrium	mixture	are	directly	proportional	to	the	number	of	accessible	states	they	have—period.	Solutions	to	exercises	15F.1(b)	In	each	case	the	contribution	to	G	is	given	by	G	−	G(0)	=
−nRT	lnq	[15F.9	for	non-tranlational	modes]	Therefore,	we	first	evaluate	qR	and	qV.	So	qR	=	1	æ	kT	ö	σ	çè	hc	ø	=	1	æ	kT	ö	ç		2	è	hc	ø	3/	2	3/	2	æ	π	ö	ç		è	ABC	ø	1/	2	1/	2	æ	ö	1	3	ç	=	3.35	×	10	è	(3.553)	×	(0.4452)	×	(0.3948)	ø	GmR	−	GmR	(0)	=	−(8.3145J	mol−1K	−1	)	×	(298K)ln3.35	×	103	=	−20.1×	103	J	mol−1	=	−20.1kJ	mol−1	The	vibrational	partition
function	for	each	vibrational	mode	is	given	by	[15B.15]	1	hcv	θ	V	=	1.4388	K	×	(v	/	cm	−1	)	=	qV	where	=	−θ	V	/	T	k	1−	e	The	vibrational	partition	functions	are	so	small	that	we	are	better	off	taking	lnq	V	=	−	ln(1−	e	−θ	V	/T	)	≈	e	−θ	V	/T	so	lnq	1V	≈	e	−{1.4388(1110)/298}	=	4.70	×	10−3	and	lnq	3V	≈	e	−{1.4388(1042)/298}	=	6.53×	10−3	33	lnq
2V	≈	e	−{1.4388(705)/298}	=	3.32	×	10−2	GmV	−	GmV	(0)	=	−(8.3145	J	mol−1K	−1	)	×	(298K)	×(4.70	×	10−3	+	3.32	×	10−2	+	6.53×	10−3	)	=	−110	J	mol−1	=	−0.110	kJ	mol−1	15F.2(b)	See	the	solution	to	Exercise	15E.3(b).	At	400	K	hc	×	(7918.1cm	−1	)	(1.4388	cm	K)	×	(7918.1cm	−1	)	At	400	K,	βε	=	=	=	22.78	kT	500	K	Therefore,	the
contribution	to	Gm	is	Gm	−	Gm	(0)	=	−	RT	lnq	[15F.9	for	non-tranlational	modes]	Gm	−	Gm	(0)	=	−(8.3145	J	K	−1	mol−1	)	×	(400	K)	×	ln(3+	2	×	e	−28.48	)	=	−3.65kJ	mol−1	Comment.	The	contribution	of	the	excited	state	is	negligible	at	this	temperature.	15F.3(b)	We	need	to	calculate	vJ	æq	O	ö	q	mO	(79	Br2	)q	mO	(81	Br2	)	−∆r	E0	/	RT	e	K=	∏J	çç
NJ,m		×	e−	∆r	E0	/	RT	[15F.10b]	=	q	mO	(79	Br	81Br)	2	è	Aø	Each	of	these	partition	functions	is	a	product	q	mO	=	q	mTq	Rq	Vq	E	with	all	qE	=	1.	The	ratio	of	the	translational	partition	functions	is	virtually	1	(because	the	masses	nearly	cancel;	explicit	calculation	gives	0.999).	The	same	is	true	of	the	vibrational	partition	functions.	Although	the
moments	of	inertia	cancel	in	the	rotational	partition	functions,	the	two	homonuclear	species	each	have	σ	=	2,	so	q	R	(	79	Br2	)q	R	(	81	Br2	)	=	0.25	q	R	(	79	Br	81	Br)2	The	value	of	∆rE0	is	also	very	small	compared	with	RT,	so	K	≈	0.25	Solutions	to	problems	15F.2	H	2O	+	DCl		HDO	+	HCl	(all	in	gas	phase)	The	equilibrium	constant	is	[15F.10,	with
∆rE0	here	defined	as	the	molecular,	not	molar,	energy	difference;	NA	factors	cancel]	q	O	(CHD3	)q	mO	(DCl)	−	β∆r	E0	K	=	mO	e	q	m	(CD	4	)q	mO	(HCl)	Use	partition	function	expressions	from	Topic	15B.	The	ratio	of	translational	partition	functions	is	3/	2	q	mT	(HDO)q	mT	(HCl)	æ	M	(HDO)	M	(HCl)	ö	æ	19.02	×	36.46	ö	=	ç		=	ç		=	1.041	T	T	q	m	(H	2
O)q	m	(DCl)	è	M	(H	2	O)	M	(DCl)	ø	è	18.02	×	37.46	ø	The	ratio	of	rotational	partition	functions	is,	with	σ	=	2	for	H2O	and	σ	=	1	for	the	others.		(H	O)C		(H	O))1/	2	B		(DCl)	A(H	2	O)	B	q	R	(HDO)q	R	(HCl)	σ	(H	2	O)	(		2	2	=		(HDO)C		(HDO))1/	2	B		(HCl)	1	q	R	(H	2	O)q	R	(DCl)	(	A(HDO)	B	3/	2	(27.88	×	14.51×	9.29)1/	2	×	5.449	=	=	2×	1.707	(23.38	×
9.102	×	6.417)1/	2	×	10.59	The	ratio	of	vibrational	partition	functions	(call	it	fV)	is	q	V	(HDO)q	V	(HCl)	q	(2726.7)q	(1402.2)q	(3707.5)q	(2991)	=	fV	=	V	q	(H	2O)q	V	(DCl)	q	(3656.7)q	(1594.8)q	(3755.8)q	(2145)	where	=	q	(	x)	1	1	=	−	hcν	/	kT	−1.4388	x	/	(T	/	K)	1−	e	1−	e	34	∆	r	E0	1	=	{(2726.7	+	1402.2	+	3707.5	+	2991)	2	hc	−(3656.7	+	1594.8	+
3755.8	+	2145)}cm	−1	=	−162	cm	−1	So	the	exponent	in	the	energy	term	is	∆E	hc	∆	E	1	1.4388	×	(−162)	233	−	β∆	r	E0	=−	r	0	=−	×	r	0	×	=−	=+	kT	k	hc	T	T	/K	T	/K	Therefore,	K	=	1.041×	1.707	×	f	V	×	e	233/(T	/K	)	=	1.777	f	Ve	233/(T	/K	)	We	then	draw	up	the	following	table	T/K	100	200	300	400	500	600	700	800	900	1000	K	18.3	5.70	3.87	3.19
2.85	2.65	2.51	2.41	2.34	2.29	and	specifically	(a)	K	=	3.89	at	298	K	and	(b)	K	=	2.41	at	800	K.	15F.4	The	standard	molar	Gibbs	energy	is	given	by	qO	q	O	q	mTO	R	V	E	=	GmO	−	GmO	(0)	RT	ln	m=	where	m	q	q	q	[15F.9]	NA	NA	NA	Translation:	q	mT	O	kT	h	=	=	Λ	O	3	NA	p	Λ	(2π	mkT	)1/	2	After	substituting	the	values	of	the	constants,	we	obtain	q	mT
O	=	2.561×	10−2	(T	/	K)5/2	×	(	M	/	g	mol−1	)3/2	NA	=	(2.561×	10−2	)	×	(2000)5	2	×	(38.90)3	2	=	1.111×	109	Rotation	of	a	linear	molecule:	qR	=	kT	σ	hcB	The	rotational	constant	is		=		=	B	4π	cI	4π	cµ	R	2	where	µ=	mB	mSi	10−3	kg	mol−1	(10.81)	×	(28.09)	=	1.296	×	10−26	kg	×	=	23	−1	10.81+	28.09	mB	+mSi	6.022	×	10	mol	so	=	B	1.0546	×
10−34	J	s	=	0.5952	cm	−1	4π	(2.998	×	10	cm	s	)	×	(1.296	×	10−26	kg)	×	(190.5	×	10−12	m)2	and	qR	=	10	−1	2000	K	k	=	2335	×	hc	2(0.5952	cm	−1	)	Vibration:	=	qV	1	=	1	−	e	−	hcv	kT	1	−	exp	(	1	=	−1.4388(	v	cm	−1	)	T	K	)	1	−	exp	(	1	=	−1.4388(772)	2000	)	=	2.467	The	Boltzmann	factor	for	the	lowest-lying	electronic	excited	state	is	æ	−(1.4388)
×	(8000)	ö	−3	exp	ç	ø	=	3.2	×	10	2000	è	The	degeneracy	of	the	ground	level	is	4	(spin	degeneracy	=4,	orbital	degeneracy	=1),	and	that	of	the	excited	level	is	also	4	(spin	degeneracy	=	2,	orbital	degeneracy	=	2),	so	q	E	=	4(1	+	3.2	×	10−3	)	=	4.013	Putting	it	all	together	yields	35	O	O	G	=	(8.3145	J	K	−1	mol−1	)	×	(2000	K)	m	−	Gm	(0)	×	ln[(1.111×
109	)	×	(2335)	×	(2.467)	×	(4.013)]	=	5.135	×	105	J	mol−1	=	513.5	kJ	mol−1	15F.6	The	standard	molar	Gibbs	energy	is	given	by	qO	q	O	q	mTO	R	V	E	=	GmO	−	GmO	(0)	RT	ln	m=	where	m	q	q	q	[15F.9]	NA	NA	NA	Translation:	q	mT	O	kT	h	=	=	Λ	NA	p	O	Λ3	(2π	mkT	)1/	2	After	substituting	the	values	of	the	constants,	we	obtain	q	mTO	=	2.561×	10−2
(T	K)5	2	(	M	g	mol−1	)3	2	NA	q	mTO	=	(2.561×	10−2	)	×	(10.00)5	2	×	(36.033)3	2	=	1752	NA	Rotation	of	a	nonlinear	molecule	First,	at	10.00	K:	1	æ	kT	ö	æ	π	ö	1.0270	(T	K)3	2	=	×				ø				cm	−3	)1	2	σ	çè	hc	ø	çè	ABC	σ	(	ABC	The	rotational	constants	are	32	12	=	qR	3	1	B	C	=	æ		ö		=		so	A	B	çè	4π	c	ø	I	I	I	,	4π	cI	A	B	C	æ	1.0546	×	10−34	J	s	ö	B	C	=	A	çè	4π
(2.998	×	1010	cm	s	−1	)	ø	×	3	(1010		m	−1	)6	(39.340)	×	(39.032)	×	(0.3082)	×	(mu	2	)3	×	(1.66054	×	10−27	kg	mu	−1	)3	=	101.2cm	−3	qR	=	so	1.0270	(10.00)3	2	=	1.614	×	2	(101.2)1	2	Vibration:	qV	=	1	=	1	−	e	−	hcv	kT	1	−	exp	(	1	=	−1.4388(	v	cm	−1	)	T	K	)	1	−	exp	(	1	=	1.0001	−1.4388(63.4)	10.00	)	Even	the	lowest-frequency	mode	has	a
vibrational	partition	function	of	1;	so	the	stiffer	vibrations	have	qV	even	closer	to	1.	The	degeneracy	of	the	electronic	ground	state	is	1,	so	qE	=	1.	Putting	it	all	together	yields	GmO	=	(10	K)	−	GmO	(0)	(8.3145	J	mol−1	K	−1	)	×	(10.00	K)	ln[(1752)	×	(1.614)	×	(1)	×	(1)]	=	660.8	J	mol−1	Now	at	1000	K	Translation:	q	mTO	=	(2.561×	10−2	)	×	(1000)5	2
×	(36.033)3	2	=	1.752	×	108	NA	Rotation:	qR	=	=	q1V	Vibration:	1.0270	(1000)3	2	×	=	1614	2	(101.2)1	2	1	1	11.47	q	2V	=	=	1.207	=	(1.4388)×	(63.4)	(1.4388)×	(1224.5)	1	−	exp	−	1000	1	−	exp	−	1000	(	)	36	(	)	=	q	3V	1	1.056	=	×	(2040)	1	−	exp	−	(1.4388)	1000	(	)	q	=	(11.47)	×	(1.207)	×	(1.056)	=	14.62	Putting	it	all	together	yields	GmO	(1000	K)
=	−	GmO	(0)	(8.3145	J	mol−1	K	−1	)	×	(1000	K)	V	×	ln[(1.752	×	108	)	×	(1614)	×	(14.62)	×	(1)]	=	2.415	×	105	J	mol−1	=	241.5	kJ	mol−1	37	16	Molecular	interactions	16A	Electric	properties	of	molecules	Answers	to	discussion	questions	16A.2	When	the	applied	field	changes	direction	slowly,	the	permanent	dipole	moment	has	time	to	reorientate—
the	whole	molecule	rotates	into	a	new	direction—and	follows	the	field.	However,	when	the	frequency	of	the	field	is	high,	a	molecule	cannot	change	direction	fast	enough	to	follow	the	change	in	direction	of	the	applied	field	and	the	dipole	moment	then	makes	no	contribution	to	the	polarization	of	the	sample.	Because	a	molecule	takes	about	1	ps	to	turn
through	about	1	radian	in	a	fluid,	the	loss	of	this	contribution	to	the	polarization	occurs	when	measurements	are	made	at	frequencies	greater	than	about	1011	Hz	(in	the	microwave	region).	We	say	that	the	orientation	polarization,	the	polarization	arising	from	the	permanent	dipole	moments,	is	lost	at	such	high	frequencies	The	next	contribution	to	the
polarization	to	be	lost	as	the	frequency	is	raised	is	the	distortion	polarization,	the	polarization	that	arises	from	the	distortion	of	the	positions	of	the	nuclei	by	the	applied	field.	The	molecule	is	bent	and	stretched	by	the	applied	field,	and	the	molecular	dipole	moment	changes	accordingly.	The	time	taken	for	a	molecule	to	bend	is	approximately	the
inverse	of	the	molecular	vibrational	frequency,	so	the	distortion	polarization	disappears	when	the	frequency	of	the	radiation	is	increased	through	the	infrared.	The	disappearance	of	polarization	occurs	in	stages:	as	shown	in	Justification	16A.3,	each	successive	stage	occurs	as	the	incident	frequency	rises	above	the	frequency	of	a	particular	mode	of
vibration.	At	even	higher	frequencies,	in	the	visible	region,	only	the	electrons	are	mobile	enough	to	respond	to	the	rapidly	changing	direction	of	the	applied	field.	The	polarization	that	remains	is	now	due	entirely	to	the	distortion	of	the	electron	distribution,	and	the	surviving	contribution	to	the	molecular	polarizability	is	called	the	electronic
polarizability.	Solutions	to	exercises	16A.1(b)	A	molecule	with	a	centre	of	symmetry	may	not	be	polar	but	molecules	belonging	to	the	groups	Cn,	Cnv,	and	Cs	may	be	polar	(Topic	11A).	SO3,	which	has	a	trigonal	planar	structure	(D3h),	and	XeF4,	which	is	square	planar	(D4h),	cannot	be	polar.	SF4	(see-saw,	C2v)	may	be	polar.	16A.2(b)	µ	res	=	(	µ12	+	µ
22	+	2	µ1	µ	2	cos	θ	)1/	2	[16A.3a]	=	[(2.5)	+	(0.50)	+	(2)	×	(2.5)	×	(0.50)	×	(cos120	)]1/	2	=	D	2.3	D	2	2	16A.3(b)	µ	=∑	Qi	ri	=4e(0)	−	2er2	−	2er3	where	r2	=ix2	and	r3	=ix3	+	jy3	i	x2	=	+162	pm	x3	=	r3	cos	30°	=	=	y3	r3	sin	=	30°	(	+143	pm	)	×	(	0.866	)	=	124	pm	.500	)	71.5	pm	(143	pm	)	×	(	0=	The	components	of	the	vector	sum	are	the	sums	of
the	components.	{	}	µ	x	=−2ex2	−	2ex3	=−2e	×	(162	)	+	(124	)	pm	=−e	×	(	572	nm	)	µ	y	=−2ey3	=−2e	×	(	71.5	pm	)	=−e	×	(143	pm	)	16:1	(µ	=	µ	+	µ	y2	)	1/	2	2	x	{	[16A.4b]	=×	e	(	572	pm	)	+	(143	pm	)	2	2	}	1	2	=	(1.602	×10−19	C	)	×	(	590	×10−12	m	)	D	ö	28	D	=	(	9.45	×10−29	C	m	)	×	æçè	3.335641×10	=	−30	Cmø	The	angle	that	µ	makes	with	x-
axis	is	given	by	æ	572	ö	|	µ	x	|	572	θ	θ	cos	−1	ç	=	cos	so	=	=	=		14.2°	590	µ	è	590	ø	16A.4(b)	Polarizability	α,	dipole	moment	μ,	and	molar	polarization	Pm	are	related	by	æN	ö	æ	µ2	ö	Pm=	ç	A		×	ç	α	+		[16A.12]	3kT	ø	è	3ε	0	ø	è	In	order	to	solve	for	α,	it	is	first	necessary	to	obtain	µ	from	the	temperature	variation	of	Pm.	µ	2	3ε	0	Pm	α+	=	3kT	NA	(	3µk	)	×	(
T1	−	T1′=)	2	Therefore,	and	hence	µ2	=	=	æ	3ε	0	ö	×	P	−	P	′	[	P	at	T	,	P	′	at	T	′]	ç	N		(	m	m)	m	m	è	Aø	9ε	0	k	×	(	Pm	−	Pm′	)	æ1	1	ö	NA	×	ç	−		èT	T′ø	9	×	(8.854	×	10−12	J	−1	C	2	m	−1	)	×	(1.381×	10−23	J	K	−1	)	×	(75.74	−	71.43)	×	10−6	m3	mol−1	1	1	æ	ö	(6.022	×	1023	mol−1	)	×	ç	−		è	320.0	K	421.7	K	ø	=	1.045	×	10−59	C2	m	2	1D	æ	ö	3.23	10−30	C	m
×	ç	0.968	D	µ	=×	=	−30	è	3.33564	×	10	C	m	ø	3ε	0	Pm	µ	2	−	NA	3kT	α	=	3	×	(	8.854	×	10−12	J	−1	C	2	m	−1	)	×	(	75.74	×	10−6	m3	mol−1	)	6.022	×	1023	mol−1	=	2.56	×	10−39	J	−1	C2	m	2	α′	Corresponding	to=	α	=	2.29	×	10−29	m3	[16A.6]	4πε	0	16A.5(b)	M	=	85.0	g	mol−1	ρ	Pm	×	(	ε	r	+	2	)	[16A.11]	M	2	ρ	Pm	æ	ρ	Pm	ö	1+	ç1	−	M		ε	r	=	M	è	ø	ε	r
−=	1	εr	=	=	M	+	2	ρ	Pm	M	−	ρ	Pm	85.0	g	mol−1	+	2	×	(1.92	g	cm	−3	)	×	(	32.16	cm3	mol−1	)	85.0	g	mol−1	−	(1.92	g	cm	−3	)	×	(	32.16	cm3	mol−1	)	=	8.97	16:2	−	1.045	×	10−59	C2	m	2	3	×	(1.381×	10−23	J	K	−1	)	×	(	320.0	K	)	ε	r	−	1	ρ	N	Aα	1/	2	(ε=	[16A.14]	and	[16A.13]	r)	ε	r	+	2	3M	ε	0	16A.6(b)	nr	Therefore,	3M	ε	0	ρ	NA	α=	æ	nr2	−	1	ö	ç	2		è
nr	+	2	ø	3	×	(	65.5	g	mol−1	)	×	(	8.854	×	10−12	J	−1	C2	m	−1	)	æ	1.6222	−	1	ö	×	(	2.99	×106	g	m−3	)	×	(	6.022	×1023	mol−1	)	çè	1.6222	+	2	ø	=	3.40	×	10−40	J	−1	C	2	m	2	16A.7(b)	α	′	=	α	[16A.6]	4πε	0	α	=	4πε	0α	′	=	(1.11265	×	10−10	J	−1	C2	m	−1	)	×	(	2.2	×	10−30	m3	)	=	2.45	×	10−40	J	−1	C2	m	2	Let	ρ	N	Aα	C	=	=	3M	ε	0	(865	×10	g	m	−3	)	×
(	6.022	×	1023	mol−1	)	×	(	2.45	×	10−40	J	−1	C2	m	2	)	=	0.0665	3	×	(	72.3	g	mol−1	)	×	(	8.85419	×	10−12	J	−1	C	2	m	−1	)	3	and	solve	the	Clausius−Mossotti	eqn	[17A.13]	for	εr	with	which	we	calculate	the	refractive	index.	εr	−1	=	C	[16A.13,	the	Clausius	−	Mossotti	eqn]	εr	+	2	1	+	2C	εr	=	1−	C	1	+	2	×	(	0.0665	)	=	1	−	0.0665	=	1.2137	2	nr	ε	r=
[17.17]	=	1	=	(1.2137	)	1	2	1.10	16A.8(b)=	µ	5.17	×	10−30	C	m	for	bromobenzene	(157.00	g	mol−1	)	α	=	4πε	0α	′	[16A.6]	=	(1.11265	×	10−10	J	−1	C2	m	−1	)	×	(1.5	×	10−29	m3	)	=	1.67	×	10−39	J	−1	C2	m	2	NA	3ε	0	=	Pm	æ	µ2	ö	α	+	ç		[16A.12]	3kT	ø	è	æ	(1.67	×	10−39	J	−1	C	2	m	2	)	ö	ç		6.022	×	10	mol	2	−30	ç		=	5.17	10	C	m	×	(	)		3	×	(	8.85419	×
10−12	J	−1	C	2	m	−1	)	ç	+	ç	3	×	(1.3807	×	10−23	J	K	−1	)	×	(	298.15	K	)		è	ø	=	8.69	×	10−5	m3	mol	−1	23	−1	Let	−1	(1.491×106	g	m−3	)	×	(8.69	×10−5	m3	mol=	)	0.825	=	−1	M	157.00	g	mol	and	solve	the	Debye	eqn	[16A.11]	for	εr.	εr	−1	=	C	[16A.11,	the	Debye	eqn]	εr	+	2	ρ	Pm	C	=	1	+	2C	1−	C	1	+	2	×	(	0.825	)	εr	=	=	1	−	0.825	=	15	16:3
Solutions	to	problems	16A.2	The	point	charge	model	can	be	used	to	estimate	the	magnitude	of	the	electric	dipole	moment	of	hydrogen	peroxide	as	a	function	of	φ	(defined	in	Fig.	16A.1b	as	a	view	down	the	z	axis	of	the	O–O	bond).	Each	hydrogen	atom	has	a	partial	charge	of	δ;	each	oxygen	atom	has	a	partial	charge	of	–δ.	The	dipole	moment	magnitude
is	µ	=(	µ	⋅	µ	)	1/	2	{	=(	µ	x	2	+	µ	y	2	+	µ	z	2	)	}	where	µ	x	=∑	QJ	xJ	=δ	×	xH1	−	xO1	−	xO2	+	xH2	[16A.4a,b],	etc.	1/	2	J	We	will	use	the	Cartesian	coordinate	system	defined	in	Fig.	16A.1a.	The	bond	lengths	are	lOH	=	97	pm	and	lOO	=	149	pm.	We	also	use	the	ratio	lratio	=	lOO	/	lOH	=	1.54	and	calculate	μ	in	units	of	δlOH	so	that	it	is	unnecessary	to
estimate	the	magnitude	of	δ.	The	O–O–H	bond	angle,	θ	,	may	be	estimated	as	90°	but	we	will	use	the	experimental	value	of	100°.	The	computations	of	μx,	μy,	and	μz	require	the	coordinates	of	each	atom;	those	of	H1	and	the	oxygen	atoms	are	shown	in	Fig.	16A.1a.	(lOHcos(θ	−	90ο	),0,−lOHsin(θ	−	90ο))	x	H1	H2	lOH	180o	−	θ	lOO	z	(0,0,0)	H1	φ
(0,0,lOO)	y	H2	(b)	(a)	Figure	16A.1	The	coordinates	of	H2	can	be	determined	by	analogy	to	the	relationships	between	Cartesian	coordinates	and	spherical	polar	coordinates.	They	are:	x	lOH	sin	(180°	−	θ	)	cos	φ	=	y	lOH	sin	(180°	−	θ	)	sin	φ	=	z	lOO	+	lOH	cos	(180°	−	θ	)	=	Substitution	of	variables	into	eqn.	16A.4b,	yields	(	µ	/	δ	lOH	)	2	=	=	=	(	µ	x	/	δ
lOH	)	+	(	µ	y	/	δ	lOH	)	+	(	µ	z	/	δ	lOH	)	2	2	2	{cos	(10°	)	+	sin	(80°	)	cos	φ	}	+	{sin	(80°	)	sin	φ	}	+	{−	sin	(10°	)	−	l	+	l	+	cos	(80°	)}	{cos	(10°)	+	sin	(80°	)	cos	φ	}	+	{sin	(80°	)	sin	φ	}	+	{−	sin	(10°	)	+	cos	(80°	)}	2	2	2	ratio	2	2	ratio	2	We	now	draw	a	table	to	calculate	(	µ	/	δ	lOH	)	in	φ	increments	of	15o	and,	subsequently,	calculate	µ	/	δ	lOH	2	values
at	each	φ	.	Fig.	16A.2	is	a	plot	of	the	variation.	As	expected,	there	the	dipole	is	a	maximum	of	almost	twice	the	single	O–H	bond	dipole	when	the	hydrogen	atoms	are	eclipsed	and	it	is	zero	when	they	have	a	gauche	conformation.	φ	/	deg	0	15	30	45	60	φ	/	radians	sq(µ	/	δ	l	)	0	0.261799	0.523599	0.785398	1.047198	3.879385	3.813292	3.619516
3.311262	2.909539	16:4	µ	/	δl	1.969616	1.952765	1.902502	1.819687	1.705737	Figure	16A.2	Dipole	Moment	of	Hydrogen	Peroxide	2	µ	/	δ	l	OH	1.5	1	0.5	0	0	60	120	180	240	300	360	φ	/	deg	16A.4	‡	Let	the	partial	charge	on	the	carbon	atom	equal	δe	and	the	N-to-C	distance	equal	l.	Then,	µ	δ=	=	el	[16A.4a]	or	δ	δ	µ	el	C	m	D	−1	)	=	0.123	(1.602
×10−19	C	)	×	(	299	×10−12	m	)	(1.77	D	)	×	(	3.3356	×10−30	16A.6	The	induced	dipole	moment	μ*	is	given	by	4πε	0α	′e	α	′e	=	4πε	0	r	2	r2	Consequently,	the	dipole-proton	distance	needed	to	induce	a	particular	dipole	is	=	=	4πε	0α	′E	=	µ	*	α	E	[16A.5a]	[16A.6]	1/	2	æ	α	′e	ö	r	=ç		è	µ*ø	æ	(1.48	×	10−30	m3	)	×	(1.602	×	10−19	C	)	ö	ç=		196	pm	ç	(1.85	D	)
×	(	3.336	×	10−30	C	m	D	−1	)		è	ø	1/	2	NA	µ	2	M	æ	ε	−1	ö	4π	[16A.12,	with	α	=	4πε	0α	′]	16A.8	Pm	=×	ç	r		[16A.11]	and	Pm	=N	Aα	′	+	ρ	è	εr	+	2	ø	3	9ε	0	kT	Eqn	16A.12	indicates	that,	when	the	permanent	dipole	moment	μ	contributes	to	the	molar	polarization	in	a	manner	that	is	consistent	with	thermal	averaging	of	the	electric	dipole	moment	in	the
presence	of	the	applied	4π	field	(i.e.,	free	rotation),	a	plot	of	Pm	against	1/T	should	be	linear	with	an	intercept	at	1/T	=	0	equal	to	N	Aα	′	3	N	µ2	dPm	equals	A	.	Eqn	16A.12	is	replaced	by	the	Clausius−Mossotti	and	a	constant	slope	for	which	9ε	0	k	d	(1/T	)	4π	N	Aα	′	[16A.13]	,	in	the	case	for	which	either	the	molecules	are	non-polar	or	because	the	3
frequency	of	the	applied	field	is	so	high	that	the	molecules	cannot	orientate	quickly	enough	to	follow	the	change	in	direction	of	the	field.	expression,	Pm	=	To	examine	the	possibility	that	either	solid	or	liquid	methanol	exhibits	the	characteristics	of	eqn	16A.11	or	eqn	16A.13,	we	draw	up	the	following	table	and	prepare	the	Figure	16A.3	plot	of	Pm
against	1/T.	The	molar	polarization	Pm	is	calculated	with	eqn	16A.11	at	all	temperatures	and,	since	the	data	have	been	corrected	for	the	variation	in	methanol	density,	we	use	ρ	=	0.791	g	cm–3	for	all	entries	and	M	=	32.0	g	mol–1.	‡	These	problems	were	supplied	by	Charles	Trapp	and	Carmen	Giunta	16:5	θ	/	ºC	T/K	1000	T	/K	εr	εr	−1	ε	r	+2	Pm	/	(cm3
mol–1)	−185	88	−170	103	−150	123	−140	133	−110	163	−80	193	−50	223	−20	253	0	273	20	293	11.3	9.69	8.12	7.51	6.13	5.18	4.48	3.95	3.66	3.41	3.2	3.6	4	5.1	67	57	49	43	38	34	0.42	0.46	0.50	0.58	0.957	0.949	0.941	0.933	0.925	0.917	17.1	18.8	20.2	23.4	38.7	38.4	38.1	37.7	37.4	37.1	Figure	16A.3	40	Pm	/	cm3	mol−1	35	liquid	phase	30	solid	phase
25	melting	point	20	15	2	4	6	8	10	12	1000	K	/	T	Inspection	of	Figure	16A.3	reveals	that	the	molar	polarization	Pm	is	not	a	linear	function	of	1/T	for	either	the	solid	or	liquid	phase	of	methanol.	Nor	is	it	a	constant	for	either	phase.	Thus,	we	conclude	that	the	conditions	of	eqns	16A.12	and	16A.13	are	not	applicable	and	it	is	not	possible	to	extract	reliable
values	for	either	the	polarizability	volume	or	the	dipole	moment	from	this	data.	The	data	does	provide	valuable	conceptual	information	about	molecular	motion	in	the	condensed	phases.	Figure	16A.3	indicates	that,	as	the	temperature	of	liquid	methanol	is	reduced,	Pm	increases	less	rapidly	than	would	be	expected	for	the	linear	case	of	thermal
equilibrium	of	the	dipole	with	the	applied	field.	The	progression	toward	lower	temperatures	appears	to	have	a	negative	second-order	component,	which	extends	into	the	solid	phase.	The	second-order	regression	fit	for	θ	≤	−110°C	reflects	this	significant	non-linearity:	Pm	/	cm3	mol−1	=	31.246	+	2.3788	×	(103	K	/	T)	–	0.1904	×	(103	K	/	T)2	with	R2	=
0.9914	This	indicates	that	hydrogen-bonding	between	methanol	molecules	is	hindering	molecular	rotation	and	reducing	the	orientation	polarization.	The	effect	extends	below	the	melting	point	with	the	−110ºC	data	point	exhibiting	liquid-like,	hindered	rotation.	The	large	decline	of	Pm	below	−110ºC	is	interpreted	as	corresponding	to	a	stronger
hindrance	of	the	dipole	moment	rotation	but	the	non-constancy	of	Pm	seems	to	indicate	that	rotational	excitation	is	never	completely	eliminated.	16A.10	Calculate	the	dipole	moment	of	H2O	and	its	polarizability	volume.	N	µ2	4π	Pm	=	N	Aα	′	+	A	[16A.12,	with	α	=	4πε	0α	′]	3	9ε	0	kT	Eqn	16A.12	indicates	that	a	plot	of	Pm	against	1/T	should	be	linear
with	a	slope,	N	µ2	dPm	,	equal	to	A	and	a	9ε	0	k	d	(1/T	)	4π	N	Aα	′	.	Therefore,	we	draw	up	the	following	table	and	prepare	a	plot	f	Pm	3	against	1/T.	If	it	is	linear,	we	perform	a	linear	least	squares	regression	fit	of	the	plot	so	as	to	acquire	the	slope	and	intercept	from	which	we	calculate	α	′	and	μ.	A	suitable	plot	is	shown	in	Figure	16A.4.	1/T	=	0
intercept	that	equals	16:6	T/K	1000	T	/K	Pm	/	(cm3	mol–1)	384.3	420.1	444.7	484.1	522.0	2.602	2.380	2.249	2.066	1.916	57.4	53.5	50.1	46.8	43.1	Figure	16A.4	The	plot	of	Pm	against	1/T	is	linear	with	a	regression	fit	that	gives	an	intercept	of	3.44	cm3	mol–1	(not	shown	in	the	figure),	and	the	slope	is	such	that	dPm/d(1/T)	=	2.08	×	104	cm3	mol–1	K.	It
follows	that	3	×	(	3.44	cm3	mol	−1	)	3Pm	(at	intercept)	′	1.36	×	10−24	cm3	=	=	=	α	−1	23	4πN	A	4π	×	(	6.022	×	10	mol	)	µ2	=	9ε	0	k	dPm	N	A	d	(1/T	)	ìï	9	×	(	8.85419	×	10−12	J	−1	C	2	m	−1	)	×	(1.3807	×	10−23	J	K	−1	)	üï	3	−2	−1	í	ý	×	(	2.08	×	10	m	mol	K	)	23	−1	6.022	×	10	mol	ïî	ïþ	2	2	−59	=	3.80	×	10	C	m	1/	2	1D	æ	ö	3.80	×	10−59	C2	m	2
1.85	D	×ç	µ=	=	−30	è	3.33564	×	10	C	m	ø	(	)	16A.12	Since	the	refractive	index	nr	and,	therefore,	the	relative	permittivity	εr	are	close	to	1,	we	infer	that	the	dipole	moment	does	not	contribute	to	the	molar	polarization	because	either	the	gas	phase	molecules	are	nonpolar	or	the	molecular	rotational	frequency	is	much	lower	than	the	frequency	of	the
applied	electric	field,	which	ε	−1	is	the	case	for	infrared,	visible,	and	ultraviolet	radiation.	Furthermore,	the	observation	that	the	ratio	C	≡	r	εr	+	2	must	be	much	less	than	1	greatly	simplifies	mathematical	manipulations.	ε	r	−	1	ρ	N	Aα	αp	Mp	/	RT	,	perfect	gas]	≡	C	=	[16A.13,	Clausius	−	Mossotti	eqn]	=	[ρ	=	M	εr	+	2	3	ε0	3ε	0	kT	Solving	the
Clausius−Mossotti	eqn	for	εr	gives	1	+	2C	αp	where	C	=	εr	=	1−	C	3ε	0	kT	=	(1	+	2C	)	×	(1	−	C	+	C	2	−	C	3	+	)	[Taylor	series	expansion	of	(1	−	C	)	−1	for	C		1]	=	1	+	C	[Second	order	and	higher	powers	are	insignificantly	small	and	may	be	discarded.]	16:7	nr=	(1	+	C	)1/	2	[16A.14]	=	1	+	1	2	C	[Taylor	expansion,	discard	higher	order	terms]	=	1+	α	p
6ε	0	kT	Thus,	nr	is	linear	in	pressure	p	with	an	intercept	equal	to	1,	which	corresponds	to	a	vacuum.	The	slope,	α	6ε	0	kT	,	is	so	small	(~10−4	bar−1)	that	we	normally	consider	the	refractive	index	of	a	gas	to	be	1.00.	Very	sensitive	measurements	of	the	refractive	index	as	a	function	of	pressure	may	be	used	to	find	the	polarizability.	Solving	the	above
equation	for	α	gives	the	computational	equation	using	measured	values	of	temperature,	pressure,	and	refractive	index:	α=	6ε	0	kT	×	(	nr	−	1)	/	p	The	polarizability	volume	is	calculated	with	α	′	=	α	/	4πε	0	[16A.6]	16B	Interactions	between	molecules	Answers	to	discussion	questions	16B.2	See	Fig.	16A.2	of	the	text	for	typical	charge	arrays
corresponding	to	electric	multipoles.	As	a	generality	we	may	write	V	∝	1/	r	n	+	m	−1	[16B.6]	for	the	potential	energy	of	interaction	between	an	n-pole	and	an	m-pole.	More	specifically,	the	interaction	potential	between	a	point	charge	Q2	(monopole,	n	=	1)	and	any	of	the	multipoles	(m	=	2	or	3	or	...)	is	given	as	V	∝	1	/	r	m	where	r	is	the	separation
distance	between	Q2	and	the	multipole.	This	is	a	steeper	potential	energy	decrease	with	r	than	that	observed	for	the	Coulombic	interaction	between	two	point	charges:	V	∝	1/	r	.	The	steeper	decline	originates	in	the	case	for	which	r		l	,	where	l	is	the	separation	of	charge	within	the	multipole,	because,	as	r	becomes	relatively	large,	the	array	of	charges
in	the	multipole	appears	to	blend	together	into	neutrality	causing	lower	order	interaction	terms	to	cancel.	For	example,	the	dipole	terms	within	the	monopole-quadrupole	(m	=	3)	interaction	potential	cancel	leaving	only	a	1/r3	term	when	r		l	.	We	use	the	linear	quadrupole	charge	arrangement	shown	in	Fig.	16B.1	to	show	this	cancellation	of	lower
order	terms.	Since	we	are	interested	in	the	case	x	=	l/r	0	(see	Brief	illustration	18C.2	of	the	text	for	the	significance	of	this	distribution).	f	(	x,	z	)	=	18:15	∞	∞	E=	∞	18C.4	N	e	=∫	dN	(	E	)	=∫	ρ	(	E	)	×	f	(	E	)	dE	=∫	ρ	(E)	dE	[18C.5	and	18C.6a]	+1	e	In	order	for	N	to	remain	a	constant	of	this	equation	as	the	temperature	is	raised,	the	exponential	term
exp{(E	–	μ)/kT}	must	remain	constant.	It	is	apparent	that,	when	exp{E/kT}	gets	smaller	as	T	grows	larger	for	each	value	of	E,	it	must	be	multiplied	by	a	larger	value	of	exp{–	μ/kT},	so	μ(T)	must	decrease.	E	=0	0	(	E	−	µ	)	/	kT	0	18C.6	Tans	and	coworkers	(S.J.	Tans	et	al.,	Nature,	393,	49	(1998))	have	draped	a	semiconducting	carbon	nanotube	(CNT)
over	metal	(gold	in	Fig.	18C.1)	electrodes	that	are	400	nm	apart	atop	a	silicon	surface	coated	with	silicon	dioxide.	A	bias	voltage	between	the	electrodes	provides	the	source	and	drain	of	the	molecular	fieldeffect	transistor(FET).	The	silicon	serves	as	a	gate	electrode	and	the	thin	silicon	oxide	layer	(at	least	100	nm	thick)	insulates	the	gate	from	the	CNT
circuit.	By	adjusting	the	magnitude	of	an	electric	field	applied	to	the	gate,	current	flow	across	the	CNT	may	be	turned	on	and	off.	Figure	18C.1	Wind	and	coworkers	(S.J.	Wind	et	al.,	Applied	Physics	Letters,	80(20,	May	20),	3817	(2002))	have	designed	(Fig.	18C.2)	a	CNTFET	of	improved	current	carrying	capability.	The	gate	electrode	is	above	the
conduction	channel	and	separated	from	the	channel	by	a	thin	oxide	dielectric.	In	this	manner	the	CNT-to-air	contact	is	eliminated,	an	arrangement	that	prevents	the	circuit	from	acting	like	a	p-type	transistor.	This	arrangement	also	reduces	the	gate	oxide	thickness	to	about	15	nm,	allowing	for	much	smaller	gate	voltages	and	a	steeper	subthreshold
slope,	which	is	a	measure	of	how	well	a	transistor	turns	on	or	off.	Figure	18C.2	A	single-electron	transistor	(SET)	has	been	prepared	by	Cees	Dekker	and	coworkers	(Science,	293,	76,	(2001))	with	a	CNT.	The	SET	is	prepared	by	putting	two	bends	in	a	CNT	with	the	tip	of	an	AFM	(Fig.	18C.3).	Bending	18:16	causes	two	buckles	that,	at	a	distance	of	20
nm,	serves	as	a	conductance	barrier.	When	an	appropriate	voltage	is	applied	to	the	gate	below	the	barrier,	electrons	tunnel	one	at	a	time	across	the	barrier.	Figure	18C.3	Weitz	et	al.(	Phys.	Stat.	Sol.	(b)	243,	13,	3394	(2006))	report	on	the	construction	of	a	single-wall	CNT	using	a	silane-based	organic	self-assembled	monolayer	(SAM)	as	a	gate
dielectric	on	top	of	a	highly	doped	silicon	wafer.	The	organic	SAM	is	made	of	18-phenoxyoctadecyltrichlorosilane.	This	ultrathin	layer	(Fig.	18C.4)	ensures	strong	gate	coupling	and	therefore	low	operation	voltages.	Single-electron	transistors	(SETs)	were	obtained	from	individual	metallic	SWCNTs.	Field-effect	transistors	made	from	individual
semiconducting	SWCNTs	operate	with	gate-source	voltages	of	–2	V,	show	good	saturation,	small	hysteresis	(200	mV)	as	well	as	a	low	subthreshold	swing	(290	mV/dec).	Figure	18C.4	John	Rodgers	and	researchers	at	the	University	of	Illinois	have	reported	a	technique	for	producing	near	perfect	alignment	of	CNT	transistors	(Fig.	18C.5).	The	array	is
prepared	by	patterning	thin	strips	of	an	iron	catalyst	on	quartz	crystals	and	then	growing	nanometer-wide	CNTs	along	those	strips	using	conventional	carbon	vapor	deposition.	The	quartz	crystal	aligns	the	nanotubes.	Transistor	development	then	includes	depositing	source,	drain,	and	gate	electrodes	using	conventional	photolithography.	Transistors
made	with	about	2,000	nanotubes	can	carry	currents	of	one	ampere.	The	research	group	also	developed	a	technique	for	transferring	the	nanotube	arrays	onto	any	substrate,	including	silicon,	plastic,	and	glass.	See	Coskun	Kocabas,	Seong	Jun	Kang,	Taner	Ozel,	Moonsub	Shim,	and	John	A.	Rogers,	J.	Phys.	Chem.	C	2007,	111,	17879,	Improved
Synthesis	of	Aligned	Arrays	of	Single-Walled	Carbon	Nanotubes	and	Their	Implementation	in	Thin	Film	Type	Transistors.	Figure	18C.5	Further	background	discussion	of	carbon	nanotube	field-effect	transistors	(CNTFET)	can	be	found	at	wikipedia.org.	For	a	review	of	the	CNT	catalytic	growth	technique,	methods	to	grow	oriented	long	CNTs	with
controlled	diameters,	and	process	steps	for	the	fabrication	of	both	back	and	top-grated	CNTFET	see	K.C.	Narasimhamurthy	and	R.	Paily,	IETE	Technical	Review,	2011,	V	28,	Issue	1,	57,	Fabrication	of	Carbon	Nanotube	Field	Effect	Transistor.	18C.8	Only	two	electronic	levels	are	accessible	to	nitric	oxide	at	low	temperature.	The	ground	state	is	a
doubly	degenerate	2Π1/2	state	while	the	excited	state	is	a	doubly	degenerate	2Π3/2	state	that	is	121.1	cm−1	above	the	ground	state.	These	states	originate	from	spin-orbital	coupling	of	angular	momentum.	Let	ε	=	hcv	be	the	energy	separation	between	these	levels,	then	the	probabilities	that	a	molecule	is	in	one	(p1/2)	or	the	other	level	18:17	(p3/2)
are	given	by	the	following	equations,	which	are	derived	from	the	Boltzmann	distribution	in	the	note	below.	e−ε	/	kT	1	=	−ε	/	kT	−ε	/	kT	1+	e	1+	e	1	+	eε	/	kT	Since	the	ground	state	of	nitric	oxide	exhibits	no	paramagnetism,	only	p3/2NA	molecules	contribute	to	the	observed	magnetic	moment	of	a	mole	of	nitric	oxide	molecules.	Consequently,	eqn
18C.10a	for	the	molar	paramagnetic	susceptibility	must	be	modified	with	the	inclusion	of	a	factor	p3/2.	=	p1/2	χm	=	1	and	=	p3/2	p3/2	NA	ge2	µ0	µB2	S	(	S	+	1)	3kT	[18C.10a]	Substitution	of	S	(	S	+	1)	=	(	m	/	ge	µB	)	gives	2	[18C.9]	where	m	is	the	magnetic	moment	into	the	above	expression	p3/	2	NA	µ0	µB2	(	m	/	µB	)	2	χm	=	3kT	(m	/	µ	)	=	B	3kT	×	1
+	eε	/	kT	NA	µ0	µB2	2	(	)	(	)	ε	/k	=	174.2	K	hcv	/	k	=	hc	×	121.1	cm−1	/	k	=	where	Thus,	with	m	/	µB	=	2	χm	=	6.286	×	10−6	m3	mol−1	(T	/K)	×	(1	+	e174.2	/	(T	/K	)	)	This	relation	gives	the	molar	paramagnetic	susceptibility	of	NO	as	a	function	of	temperature.	For	example,	χm	at	90	K	is	=	χm	6.286	×	10−6	m3	mol−1	=	8.81×	10−9	m3	mol−1	174.2	/
(90)	(90)	×	1	+	e	(	)	The	mass	paramagnetic	susceptibility	is	(	)(	)	8.81×	10−9	m3	mol−1	/	0.03001	kg	mol−1	=	2.94	×	10−7	m3	kg−1	χmass	=	χm	/	M	=	Wishing	to	compare	this	with	the	value	found	in	the	older	literature,	we	must	convert	the	SI	unit	of	susceptibility	to	the	cgs	(or	emu)	unit	by	dividing	the	SI	unit	by	4π,	converting	the	m3	to	cm3,	and
converting	kg	to	g.	(	)	2.94	×	10−4	cm3	g−1	/	4π	=	23.4	×	10−6	cm3	g−1	χmass	in	cgs	=	This	is	in	reasonable	agreement	with	the	accepted	value	of	19.8	×	10−6	cgs	for	the	mass	susceptibility	of	NO(s)	at	90	K.	Fig.	18C.6	is	a	plot	of	the	molar	paramagnetic	susceptibility,	as	modeled	in	this	problem,	against	temperature	below	the	normal	fusion	point
(110	K)	of	nitric	oxide.	The	curve	is	remarkably	different	than	the	χm	(T	)	behavior	of	most	paramagnetic	substances.	Paramagnetism	is	normally	a	property	of	the	ground	electronic	state	and,	consequently,	there	is	an	inverse	relation	between	χm	and	T	[18C.10b]	so	that	χm	decreases	with	increasing	T.	Effective	angular	momentums	of	individual
molecules	align	in	a	magnetic	field	at	low	temperature	and	become	disoriented	by	thermal	agitation	as	the	temperature	is	increased.	In	the	case	of	NO(s)	it	is	the	excited	state	that	is	paramagnetic	so,	when	all	molecules	are	in	the	ground	state	at	absolute	zero,	χm	=	0	.	As	T	is	increased	from	absolute	zero,	molecules	are	thermally	promoted	to	the
excited	state	and	the	observed	paramagnetism	increases	as	shown	in	Fig.	18C.6.	Comment:	The	explanation	of	the	magnetic	properties	of	NO	is	more	complicated	and	subtle	than	indicated	by	the	solution	here.	In	fact	the	full	solution	for	this	case	was	one	of	the	important	triumphs	of	the	quantum	theory	of	magnetism	which	was	developed	about
1930.	See	J.	H.	van	Vleck,	The	theory	of	electric	and	magnetic	susceptibilities.	Oxford	University	Press	(1932).	Note:	The	Boltzmann	distribution	indicates	that	the	probability	that	a	molecule	is	in	the	ground	state	energy	level	is	given	by	p0	∝	g0	where	g0	is	the	degeneracy	of	the	ground	state	while	the	probability	that	the	molecule	is	in	energy	level
“1”	that	is	ε	above	the	ground	state	is	given	by	p1	∝	g1e−ε/kT.	For	a	two-level	system	the	constant	of	proportionality	is	provided	by	the	normalization	condition	that	p0	+	p1	=	1.	Thus,	the	constant	of	proportionality	is	1/(	g0	+	g1e−ε/kT)	and	the	probabilities	are	p0	=	g0/(	g0	+	g1	e−ε/kT)	and	p1	=	g1e−ε/kT	/(	g0	+	g1e−ε/kT)	In	the	special	case	for
which	g0	=	g1	the	probabilities	simplify	to	those	given	at	the	top.	18:18	Figure	18C.6	18D	The	optical	properties	of	solids	Answers	to	discussion	questions	18D.2	Figure	18D.1	is	a	simplified	schematic	of	a	light-emitting	diode.	The	upper	portion	of	the	figure	shows	the	electric	circuit	symbol	of	the	LED.	The	lower	portion	represents	the	electron	motion
and	energy	flows	of	the	LED	when,	as	shown,	it	is	forward-biased	(see	text	Fig.	18C.9	and	associated	discussion).	Electrons	are	represent	with	solid	circles	while	electron	holes	are	white	circles	Here’s	a	list	of	important	features	that	you	should	label	within	the	figure:	the	location	of	both	the	p−type	and	n−type	semiconductors,	the	junction	between
semiconductors,	the	line	representing	the	energy	of	the	conduction	band,	the	line	representing	the	energy	of	the	valence	band,	electron	flow	in	the	circuit,	current	direction	in	the	circuit,	flow	of	electrons	and	holes	in	the	semiconductors,	and	light-emitting	transitions.	The	intensity	of	radiative	emissions	depends	upon	the	applied	voltage	but	the
wavelength	depends	upon	the	band	gap	energy.	In	addition	to	having	the	basic	features	of	the	LED,	the	laser	diode	must	have	a	resonant	cavity,	which	can	be	formed	by	using	the	high	refractive	index	of	the	semiconducting	material	and	cleaving	single	crystals	so	that	the	light	is	trapped	by	the	abrupt	variation	of	refractive	index.	18:19	Figure	18D.1
Solutions	to	exercises	18D.1(b)	Eg	=	hvmin	h	6.626	×	10−34	J	s	æ	1	eV	ö	vmin	==	=×	3.69	10−15	s	−1	=	3.69	fHz	ç	−19		Eg	1.12	eV	è	1.602	×	10	J	ø	Solutions	to	problems	18D.2	(a)	=	Hˆ	ψ	+	or	−	v+	or	−ψ	+	or	−	and	(	Hˆ	−	v=	)ψ	+	or	−	+	or	−	0	2	β	æ	vmon	−	v+	or	−	ö	µmon	ψ	+	or	−	0	where	β	=	=	(1	−	3cos2	θ	)	[See	Problem	18D.1]	ç		vmon	−	v+
or	−	ø	β	4πε	0	hcr	3	è	1	ö	æ	x+	or	−	0	where	x=	(	vmon	−	v+	or	−	)	/	β	ç	ψ=	+	or	−	+	or	−	1	x	+	or	−	ø	è	x+	or	−	1	=	x+2or	−	−=	1	0	1	x+	or	−	±1	and	x+	or	−	=	(	vmon	−	v+	or	−	)	/	β	=	v+	=	vmon	−	β	and	v+	or	−	=	vmon	±	β	v−	=	vmon	+	β	v+	and	v−	are	plotted	in	Fig.	18D.2	as	a	function	of	θ	using	µmon	=	4.00	D,	vmon	=	25000	cm	−1	,	and	r	=
0.5	nm.	Figure	18D.2	The	ratio	of	μ+2/	μ−2	(and	the	relative	intensities	of	the	dimer	transitions)	doesn’t	depend	upon	β	or	θ	because	µ+	=	0.	To	see	this,	we	use	the	coefficients	of	the	normalized	wavefunctions	for	ψ+	and	ψ−	and	the	overlap	integral	S	=	ψ	1	|ψ	2	.	18:20	1	ö	æ	c+	or	−	,1	ö	æ	x+	or	−	=	0	ç	ç	x+	or	−	ø	è	c+	or	−	,2	ø	è	1	x+	or	−	c+	or	−	,1
+	c+	or	−	,2	=	0	x+	or	−	=	±1	where	c+	or	−	,2	=	−	x+	or	−	c+	or	−	,1	(i)	The	coefficients	must	also	satisfy	the	normalization	condition.	c+	or	−	,1ψ	1	+	c+	or	−	,2ψ	2	|	c+	or	−	,1ψ	1	+	c+	or	−	,2ψ	2	ψ	+or	−	|	ψ	+or	−	=	=	c+	or	−	,12	+	c+	or	−	,2	2	+	2c+	or	−	,1c+	or	−	,2	S	=	c+	or	−	,12	+	c+	or	−	,12	−	2	x+	or	−	c+	or	−	,12	S	=	1	(ii)	Thus,	c+
,1	=	1	c+	,2	=	−c+	,1	{2	(1	−	S	)}	1/	2	and	=	c−	,1	1	=	c−	,2	c−	,1	1/	2	{2	(1	+	S	)}	2	µ+2	æ	µ+	ö	=	ç=		µ−2	è	µ−	ø	æ	(	c+	,1	+	c+	,2	)	µmon	ç	ç	(	c−	,1	+	c−	,2	)	µ	mon	è	2	ö		[See	Problem	18D.1]	=		ø	2	æ	c+	,1	−	c+	,1	ö	=	çç		0	è	c−	,1	+	c−	,1	ø	(b)	The	secular	determinant	for	N	monomers	has	the	dimension	N×N.	vmon	−	vdimer	V	0		V	vmon	−	vdimer
V		=0	0	V	vmon	−	vdimer				æ	kπ	ö	vdimer	=	vmon	+	2V	cos	ç		è	N	+1ø			k=	1,	2,	3,...,	N	[18B.1]	µ2	−µ	2	V=	β	(0)	=	mon	3	(1	−	3cos	2	0	)	=	mon	3	4πε	0	hcr	2πε	0	hcr	The	following	plot,	Fig.	18D.3,	shows	the	dimer	transitions	for	θ	=	0	and	N	=	15.	The	shape	of	the	transition	distribution	changes	slightly	with	N	and	transition	energies	are	symmetrically
distributed	around	the	monomer	transition.	The	lowest	energy	transition	changes	only	slightly	with	N	giving	a	value	that	goes	to	25000	cm–1	+	2V	=	25000	cm–1	+	2×(–1289	cm–1)	=	22422	cm–1	as	N	→	∞.	Since	the	model	considers	only	nearest	neighbor	interactions,	the	transition	dipole	moment	of	the	lowest	energy	transition	doesn’t	depend	upon
the	size	of	the	chain.	18:21	Figure	18D.3	Integrated	activities	18.2	The	electron	density	distribution	in	a	hydrogenic	atom,	ρ(r),	is	related	to	the	radial	wavefunction,	R(r),	by	P	(r	)	r2R	(r	)	R	(r	)	[given]	[9A.18b]	=	ρ	(r	)	=	=	2	2	4π	4πr	4πr	where	the	radial	wavefunctions	are	found	in	Table	9A.1.	Substitution	into	eqn.	18A.3	for	the	scattering	factor	f
yields	a	computational	feasible	expression	for	scattering	from	1s	(n	=	1)	and	2s	(n	=	2)	atomic	orbitals.	∞	sin	(	4πξ	r	)	2	sin	θ	f	(ξ	,	Z	,	n	)	4π	=	∫0	ρ	(r	,	Z	,	n)	4πξ	r	r	dr	[18A.3]	where	ξ	λ	2	2	∞	=	1	R(r	,	Z	,	n)	2	sin	(	4πξ	r	)	r	dr	4πξ	∫0	Plots	of	f	against	ξ	are	prepared	in	a	Mathcad	Prime	2	worksheet.	(a)	Plot	of	scattering	factor	of	a	1s	hydrogen-like
orbital	against	ξ	=	sin(θ)/λ	for	Z	=	1	and	2.	Scattering	in	the	forward	direction	corresponds	to	θ	=	0	and	ξ	=	0.	The	plot	shows	us	that	the	scattering	factor	is	a	maximum	in	18:22	the	forward	direction	and	it	decreases	as	the	reflection	angle	increases.	The	scattering	factor	decreases	less	rapidly	for	larger	Z	values.	(b)	Plot	of	scattering	factor	of	a	2s
hydrogen-like	orbital	against	ξ	=	sin(θ)/λ	for	Z	=	1	and	2.	Scattering	in	the	forward	direction	corresponds	to	θ	=	0	and	ξ	=	0.	The	plot	shows	us	that	the	scattering	factor	is	a	maximum	in	the	forward	direction	and	it	decreases	as	the	reflection	angle	increases.	The	scattering	factor	decreases	less	rapidly	for	larger	Z	values.	Also,	the	2s	scattering	factor
decreases	far	more	rapidly	with	θ	than	that	of	the	1s	scattering	factor	of	part	(a)	so	we	say	that	an	increase	in	the	principal	quantum	number	n	moves	the	scattering	factor	towards	the	forward	direction	while	an	increase	in	the	atomic	number	effectively	moves	the	scattering	factor	away	from	the	forward	direction.	18:23	19	Molecular	motion	19A
Transport	properties	of	a	perfect	gas	Answers	to	discussion	questions	19A.2	Simple	molecular	kinetic	theory	finds	that	the	diffusion	and	viscosity	coefficients	are	related	to	T,	p,	and	the	collision	cross-section	σ	=	πd	2	by	the	following	expressions.	It	is	important	to	recognize	that	these	formulations	are	not	applicable	at	either	very	low	pressure	where
the	mean	free	path	becomes	comparable	to	the	container	size	or	at	very	high	densities	where	the	mean	free	path	becomes	comparable	to	molecular	size.	Using	L	to	represent	container	size,	simple	molecular	kinetic	theory	approximately	applies	to	the	range	σ	0	when	t	=	0	on	account	of	the	very	(	−	b	(	x	−	x0	)	2	)	→	0	more	strongly	than	112	→	∞	.	The
term	x0	+	 	t	in	the	concentration	t	expression	is	the	movement	of	the	centroid	due	to	fluid	flow,	xcentroid.	strong	exponential	factor	e	t	To	prepare	a	very	general	set	of	concentration	profiles	at	a	series	of	times	without	specifying	either	x0,	 ,	or	D,	define	z	and	C	as	follows.	x	−	xcentroid	c	C≡	and	z	≡	1/	2	1/	2	c0	/	(	4πD	h	)	(	4D	h	)	The	hour	(h)	has
been	chosen	for	the	unit	because	of	the	slow	pace	of	diffusion	activity.	With	these	definitions	the	concentration	expression	becomes	2	1	e−	z	/	(t	/	h	)	C	(	z,	t	)	=	1/	2	(t	/	h	)	Concentration	profiles	as	C	against	t	at	various	times	(1,	5,	and	20	h)	are	displayed	in	Fig.	19C.2.	19:16	Figure	19C.2	1	0.8	t=1h	C	0.6	0.4	t=5h	t	=	20	h	0.2	0	−5	−4	−3	−2	−1	0	1	2
3	4	5	z	19C.12	c	(	r	,	t	)	=	n0	8	(	πDt	)	3/	2	e−	r	2	4	Dt	[19C.12]	where	r	2	=	x	2	+	y	2	+	z	2	∂	ln	c	(	r	,	t	)	1	∂c	(	r	,	t	)	1	∂c	(	r	,	t	)	∂	(	r	=	=	∂x	c	(	r	,	t	)	∂x	c	(	r	,	t	)	∂	(	r	2	)	∂x	2	)	ìï	−c	(	r	,	t	)	ïü	x	1	=	×í	−	ý	×	(	2x)	=	c	(	r	,	t	)	îï	4	Dt	þï	2	Dt	Likewise,	∂	ln	c	(	r	,	t	)	∂y	∂	ln	c	(	r	,	t	)	y	z	=	−	and	=	−	2	Dt	∂z	2	Dt	Thus,	RT	F	=	−	RT	∇	ln	c	=	r	2	Dt	where	r=	xi	+
yj	+	zk	19C.13	Using	the	definitions	N	=	NR	+	NL	and	n	=	NR	−	NL,	solve	for	NR	and	NL	to	find	NR	=	½(N	+	n)	and	NL	=	½(N	−	n)	Following	the	discussion	of	Justification	19C.2,	we	then	have	number	of	paths	with		steps	to	the	right	NR	N!	P	(nλ	)	=	total	number	of	paths	(	N	L	)!	N	R	!	2	N	=	N!	{½(	N	+	n)}!{½(	N	−	n)}!	2	N	This	is	the	"exact"
random	walk	probability.	After	application	of	Stirling's	approximation	we	have	the	"approximate"	probability.	PApprox	may	be	written	in	terms	of	the	variables	(x,t)	or	(n,N)	because	x	=	nλ	and	t	=	Nτ.	2	2	æ	2τ	ö	æ	2	ö	−	n2	/	2	N	PApprox	=	ç		e	−	x	τ	/	2t	λ	[19C.15]	=	ç		e	π	t	è	ø	è	πN	ø	We	calculate	the	probability	P	of	being	at	x	=	6λ	for	N	=	6,	8,...180
using	Mathcad	Prime	2	and	we	plot	PExact	against	N.	We	include	a	plot	of	the	fractional	deviation	of	PApprox	against	N	from	which	we	see	that	the	deviation	drops	below	0.1%	when	N	>	60.	1/	2	1/	2	19:17	19C.14	Eqn	19C.14,	x	2	=	2	Dt	,	gives	the	mean	square	distance	traveled	in	any	one	dimension	in	time	t.	We	need	the	distance	traveled	from	a
point	in	any	direction.	The	distinction	here	is	the	distinction	between	the	onedimensional	and	three-dimensional	diffusion.	The	mean	square	three-dimensional	distance	can	be	obtained	from	the	one-dimensional	mean	square	distance	since	motions	in	the	three	directions	are	independent.	r	2	=	x	2	+	y	2	+	z	2	[Pythagorean	theorem]	r2	=	x	2	+	y	2	+	z	2
=	3	x	2	[independent	motion]	3	×	2	Dt	[81.14	for	x	2	]	=	6	Dt	=	Therefore,	=	t	r2	−2	(1.0	×	10−6	m)	2	=	=	1.7	×	10	s	−11	2	−1	6	D	6(1.0	×	10	m	s	)	19:18	Integrated	activities	19B.2	The	rate	constant,	kr,	for	a	transport	process	in	which	a	molecule	and	its	hydration	sphere	move	a	single	step	is	governed	by	the	activation	energy	for	the	step,	Ea,
where	the	general	definition	of	activation	energy	is	æ	d	ln	kr	ö	Ea	=	RT	2	ç		è	dT	ø	We	expect	that	larger	viscosities	should	retard	the	rate	constant	so	let	us	assume	that	kr	is	inversely	proportional	to	the	viscosity.	Then,	=	ln	kr	constant	−	ln	(η	)	d	ln	kr	1	dη	=	−	dT	η	dT	Ea	=	−	RT	2	dη	η	dT	dη	æ	E	ö	dT	=	−ç	a		2	è	R	øT	In	the	case	for	which	Ea	is
independent	of	temperature,	the	above	working	equation	can	be	integrated.	We	chose	the	lower	integration	limit	to	be	the	viscosity	at	a	reference	temperature	Tref,	ηref.	The	upper	integration	limit	is	the	viscosity	at	temperature	T,	η.	η	dη	æ	Ea	ö	T	dT	∫ηref	η	=	−	çè	R	ø	∫Tref	T	2	η	æ	η	ln	ç	è	η	ref	ö	æ	Ea	ö	æ	1	1	ö	=	ç		×	ç	−		R	T	T	ref	ø	ø	è	ø	è	or	η=	Ae	E	a	/
RT	where	A=	η	ref	e	−	Ea	/	RTref	Thus,	we	see	that,	when	Ea	is	a	constant,	the	pre-exponential	factor	A	is	a	constant	and	η	∝	e	Ea	/	RT	[19B.2].	This	æ	d	ln	kr	ö	demonstrates	that	the	general	definition	Ea	=	RT	2	ç		is	compatible	with	eqn.	[19B.2]	when	the	activation	è	dT	ø	energy	is	a	constant.	We	explore	the	possibility	that	the	Problem	19B.2	empirical
equation	for	the	viscosity	of	water	reflects	an	activation	energy	that	has	a	dependence	upon	temperature	by	applying	the	above	working	equation	prior	to	the	constancy	assumption.	The	reference	temperature	is	20°	C	and	from	the	CRC	Handbook	(71st	ed.,	1990-1991)	η20	=	1002	μPa	s	=	1.002	×	10–3	kg	m–1	s–1	(the	value	is	not	actually	necessary
in	the	following	calculations).	{a	(	20	−θ	/	°C)	−b(	20	−θ	/	°C)	}/	(θ	/	°C	+	c	)	[Problem	19B.2]=	where	a	1.3272,	and	c	105	b	0.001053,	=	=	2	η	(θ	)	η20	10	=	{	}	η	(	x	)	=	η	20	10	f	(	x	)	where	x	=	θ	/	°	C	and	f	(	x)	=	a	(	20	−	x	)	−	b	(	20	−	x	)	/	(	x	+	c	)	2	dη	d	d	d	=η	20	(10	f	(	x	)	)	=η	20	10	f	(	x	)	×	ln	(10	)	×	(	f	(	x)	)	=η	(	x	)	×	ln	(10	)	×	(	f	(	x)	)	dx	dx	dx	dx
ìï	−a	+	2b	(	20	−	x	)	a	(	20	−	x	)	−	b	(	20	−	x	)2	üï	−	=	η	(	x	)	×	ln	(10	)	×	í	ý	2	x+c	(	x	+	c)	ïî	ïþ	R	×	(	x	+	273.15	)	K	dη	(	x	)	RT	2	dη	Ea	=	−	=	−	d	(	x)	η	dT	η	(	x)	2	ìï	−a	+	2b	(	20	−	x	)	a	(	20	−	x	)	−	b	(	20	−	x	)2	üï	=	−	R	×	(	x	+	273.15	)	K	×	ln	(10	)	×	í	−	ý	2	x+c	(	x	+	c)	ïî	ïþ	{	2	}	This	equation	is	used	to	make	the	plot	of	Ea	against	θ/°C	(i.e.,	x)
shown	in	Fig.	19.1.	The	activation	energy	drops	from	17.5	kJ	mol–1	at	20°	C	to	12.3	kJ	mol–1	at	100°	C.	This	decrease	may	be	caused	by	the	density	decrease	that	occurs	across	this	temperature	range	because	the	increased	average	intermolecular	distance	may	cause	a	decrease	in	the	hydrogen	bond	strength	between	water	molecules.	There	may	also
be	a	decrease	in	the	hydration	sphere	of	a	molecule,	thereby,	making	movement	easier.	19:19	Figure	I19.1	18	Ea	/	kJ	mol−1	17	16	15	14	13	12	20	30	40	50	60	θ	/	oC	19:20	70	80	90	100	20	Chemical	Kinetics	20A	The	rates	of	chemical	reactions	Answers	to	discussion	question	D20A.2	Reaction	orders	need	not	be	integers,	except	for	elementary
reactions.	Indeed,	reaction	orders	can	change	during	the	course	of	the	reaction.	Consider	the	zero-order	reaction	mentioned	in	the	text	(Section	20A.2(c)),	the	decomposition	of	phosphine	on	hot	tungsten.	As	long	as	enough	phosphine	is	present,	the	rate	of	reaction	is	independent	of	that	concentration;	what	limits	the	rate	is	the	availability	of	catalytic
sites	on	the	tungsten.	Clearly	the	integrated	rate	law	for	a	zero-order	reaction	cannot	be	correct	at	long	times,	where	it	would	predict	negative	concentrations.	Before	that	unphysical	situation	would	occur,	the	concentration	of	the	reactant	drops	to	such	an	extent	that	it	limits	the	rate	of	reaction,	and	the	reaction	order	changes	from	zero	to	a	non-zero
value.	The	text’s	treatment	of	the	Lindemann–Hinshelwood	mechanism	(Section	20F.1)	also	illustrates	how	a	reaction	order	can	change	from	first-	to	second-order	over	the	course	of	a	reaction.	D20A.4	The	determination	of	a	rate	law	is	simplified	by	the	isolation	method	in	which	the	concentrations	of	all	the	reactants	except	one	are	in	large	excess.	If
B	is	in	large	excess,	for	example,	then	to	a	good	approximation	its	concentration	is	constant	throughout	the	reaction.	Although	the	true	rate	law	might	be	v	=	kr[A][B],	we	can	approximate	[B]	by	[B]0	and	write	v	=	kr'[A],	where	kr'	=	kr[B]0	which	has	the	form	of	a	first-order	rate	law.	Because	the	true	rate	law	has	been	forced	into	first-order	form	by
assuming	that	the	concentration	of	B	is	constant,	it	is	called	a	pseudo	first-order	rate	law.	The	dependence	of	the	rate	on	the	concentration	of	each	of	the	reactants	may	be	found	by	isolating	them	in	turn	(by	having	all	the	other	substances	present	in	large	excess),	and	so	constructing	the	overall	rate	law.	In	the	method	of	initial	rates,	which	is	often
used	in	conjunction	with	the	isolation	method,	the	rate	is	measured	at	the	beginning	of	the	reaction	for	several	different	initial	concentrations	of	reactants.	We	shall	suppose	that	the	rate	law	for	a	reaction	with	A	isolated	is	v	=	kr[A]a;	then	its	initial	rate,	v0,	is	given	by	the	initial	values	of	the	concentration	of	A,	and	we	write	v0	=	kr[A]0a.	Taking
logarithms	gives	log	v0	=	log	kr	+	a	log	[A]0	For	a	series	of	initial	concentrations,	a	plot	of	the	logarithms	of	the	initial	rates	against	the	logarithms	of	the	initial	concentrations	of	A	should	be	a	straight	lime	with	slope	a.	The	method	of	initial	rates	might	not	reveal	the	full	rate	law,	for	the	products	may	participate	in	the	reaction	and	affect	the	rate.	For
example,	products	participate	in	the	synthesis	of	HBr,	where	the	full	rate	law	depends	on	the	concentration	of	HBr.	To	avoid	this	difficulty,	the	rate	law	should	be	fitted	to	the	data	throughout	the	reaction.	The	fitting	may	be	done,	in	simple	cases	at	least,	by	using	a	proposed	rate	law	to	predict	the	concentration	of	any	component	at	any	time,	and
comparing	it	with	the	data.	Because	rate	laws	are	differential	equations,	we	must	integrate	them	if	we	want	to	find	the	concentrations	as	a	function	of	time.	Even	the	most	complex	rate	laws	may	be	integrated	numerically.	However,	in	a	number	of	simple	cases	analytical	solutions	are	easily	obtained	and	prove	to	be	very	useful.	These	are	summarized
in	Table	20B.3.	In	order	to	determine	the	rate	law,	one	plots	the	right	hand	side	of	the	integrated	rate	laws	shown	in	the	table	against	t	in	order	to	see	which	of	them	results	in	a	straight	line	through	the	origin.	The	one	that	does	is	the	correct	rate	law.	Solutions	to	exercises	E20A.1(b)	The	initial	amount	of	NH3	is	assumed	to	be	zero.	Let	its	final
amount	be	nam,	and	let	α	be	the	fraction	of	that	final	amount	produced	during	any	given	time.	Thus,	α	varies	from	0	to	1	over	the	20:1	course	of	the	reaction.	At	any	given	time,	the	amount	of	ammonia	produced	up	to	that	time	is	αnam,	the	amount	of	nitrogen	consumed	is	αnam/2,	and	the	amount	of	hydrogen	consumed	is	3αnam/2.	If	we	let	ninitial	be
the	total	quantity	of	gas	initially	present	(H2	and	N2),	then	the	total	at	any	given	time	will	be	ntotal	=	ninitial	–	αnam/2	–	3αnam/2	+	αnam	=	ninitial	–	αnam	Thus,	the	total	amount	of	gas	changes	from	ninitial	to	ninitial	–	nam	over	the	course	of	the	reaction.	(Note	that	total	gas	amount	decreases	at	the	same	rate	as	ammonia	is	produced.)	Since	the
volume	and	temperature	do	not	change,	we	may	also	write	ptotal	=	pinitial	–	αpam	E20A.2(b)	E20A.3(b)	1	d[J]	d[J]	[20A.3b]	so	=	ν	Jv	ν	J	dt	dt	Rate	of	consumption	of	A	=	v	=	2.7	mol	dm–3	s–1	Rate	of	consumption	of	B	=	3v	=	8.1	mol	dm–3	s–1	Rate	of	formation	of	C	=	v	=	2.7	mol	dm–3	s–1	Rate	of	formation	of	D	=	2v	=	5.4	mol	dm–3	s–1	v=	1	d[J]	1
d[B]	1	v=	[20A.3b]	=	0.9	mol	dm	−3	s	−1	=	×	(2.7	mol	dm	−3	s	−1	)	=	3	3	dt	ν	J	dt	Rate	of	formation	of	C	=	v	=	0.9	mol	dm–3	s–1	Rate	of	formation	of	D	=	2v	=	1.8	mol	dm–3	s–1	Rate	of	consumption	of	A	=	v	=	0.9	mol	dm–3	s–1	Rate	of	consumption	of	B	=	3v	=2.7	mol	dm–3	s–1	E20A.4(b)	The	rate	is	expressed	in	mol	dm–3	s–1;	therefore	mol	dm–3	s–
1	=	[kr]	×	(mol	dm–3)	×	(mol	dm–3)2	where	[kr]	denotes	units	of	kr,	requires	the	units	to	be	dm6	mol–2	s–1	(i)	Rate	of	consumption	of	A	=	v	=	kr[A][B]2	(ii)	Rate	of	formation	of	C	=	v	=	kr[A][B]2	d[C]	=	kr	[A][B][C]−1	dt	the	rate	of	reaction	is	[20A.3b]	1	d[J]	d[C]	v	=	=	=	kr	[A][B][C]−1	dt	ν	J	dt	The	units	of	kr,	[kr],	must	satisfy	mol	dm–3	s–1	=	[kr]	×
(mol	dm–3)	×	(mol	dm–3)	×	(mol	dm–3)–1	Therefore,	[kr]	=	s–1	E20A.5(b)	Given	E20A.6(b)	(i)	For	a	second-order	reaction,	denoting	the	units	of	kr	by	[kr]	molecule	m–3	s–1	=	[kr]	×	(molecule	m–3)2;	therefore	[kr]	=	m3	molecule–1	s–1	or	m3	s–1	For	a	third-order	reaction	molecule	m–3	s–1	=	[kr]	×	(molecule	m–3)3;	therefore	[kr]	=	m6	molecule–2	s–1
or	m6	s–1	Comment.	Technically,	“molecule”	is	not	a	unit,	so	a	number	of	molecules	is	simply	a	number	of	individual	objects,	that	is,	a	pure	number.	In	the	chemical	kinetics	literature,	it	is	common	to	see	rate	constants	reported	in	molecular	units	of	m3	s–1,	m6	s–1,	cm3	s–1,	etc.	with	the	number	of	molecules	left	unstated.	(ii)	For	a	second-order
reaction	Pa	s–1	=	[kr]	×	Pa2;	therefore	[kr]	=	Pa–1	s–1	For	a	third-order	reaction	20:2	Pa	s–1	=	[kr]	×	Pa3;	therefore	[kr]	=	Pa–2	s–1	Solutions	to	problems	P20A.2	We	suppose	that	the	rate	law	for	the	reaction	of	isolated	glucose	(glu)	with	the	enzyme	hexokinase	at	1.34	mmol	dm−3	is	v	=	kr,eff[glu]a.	Evaluating	this	rate	law	at	initial	conditions	and
taking	the	logarithms	gives	=	log	v0	log	kr,eff	+	a	log	[	glu	]0	Thus,	if	the	supposition	is	correct,	a	plot	of	log	v0	against	log	[	glu	]0	with	be	linear	with	a	slope	equal	to	the	reaction	order	a	and	an	intercept	equal	to	log	kr,eff	.	We	draw	the	following	table	with	the	requisite	logarithm	transformations,	prepare	the	plot	(see	Figure	20A.1),	and	check
whether	the	plot	is	linear.	[glu]0	/	mmol	dm–3	1.00	1.54	3.12	4.02	v0	/	mol	dm	s	5.0	7.6	15.5	20.0	log	([glu]0/mmol	dm–3)	0.00	0.188	0.494	0.604	0.699	0.881	1.19	1.30	–3	–1	–3	–1	log(v0/mol	dm	s	)	Figure	20A.1	log(v0/mol	dm−3	s−1)	1.4	y	=	0.9986x	+	0.6968	R²	=	0.9999	1.2	1	0.8	0.6	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	log([glu]0/mmol	dm−3)	Inspection	of
the	plot	reveals	that	it	is	linear	so	we	conclude	that	the	supposed	form	of	the	rate	law	is	valid	and	we	perform	the	computation	of	the	linear	least	squares	regression	fit	of	the	data,	which	is	shown	in	Figure	20A.1.	(a)	The	plot	slope	is	extremely	close	to	1.00	so	we	conclude	that	the	reaction	order	w/r/t	glucose	is	1.	(b)	The	regression	intercept	tells	us
that	log	(	kr,eff	/	mol	dm−3	s−1	)	=	0.6968.	Thus,	kr,eff	=	100.6968	mol	dm−3	s−1	=	5.0	mol	dm−3	s−1	.	E20A.4	(a)	v	=	kr	[ICl]	[H2]	In	order	to	deduce	this	rate	law,	compare	experiments	that	have	identical	initial	H2	concentration	then	compare	experiments	that	have	identical	initial	ICl	concentration.	Experiments	1	and	2	have	identical	[H2]0
values	but	the	2nd	has	twice	the	[ICl]0	value	and	an	initial	rate	that	is	twice	as	large.	The	rate	must	be	first-order	in	[ICl].	Similarly,	Experiments	2	and	3	have	identical	[ICl]0	values	but	the	3rd	has	thrice	20:3	the	[H2]0	value	and	an	initial	rate	that	is	three	times	as	large.	Once	again,	the	rate	is	proportional	to	the	concentration	so	it	must	be	first-
order	in	[H2].	(b)	kr	=	v	/	([ICl]	[H2])	=	3.7×10−7	mol	dm−3	s−1	/	(1.5×10−3	mol	dm−3)2	=	0.16	dm3	mol−1	s−1	(c)	v0	=	(0.16	dm3	mol−1	s−1)×(	4.7×10−3	mol	dm−3)×(	2.7×10−3	mol	dm−3)	=	2.0×10−6	mol	dm−3	s−1	20B	Integrated	rate	laws	Answers	to	discussion	questions	D20B.2	(a)	dA	d[A]	d[A]	=	−kr	,	(b)	=	−kr	[A]	,	(c)	=	−kr	[A]2	dt	dt
dt	Solutions	to	exercises	E20B.1(b)	Table	20B.3	gives	a	general	expression	for	the	half-life	of	a	reaction	of	the	type	A	→	P	for	orders	other	than	1:	2n	−1	−	1	=	∝	[A]10−	n	∝	p10−	n	t1/	2	n	−1	(n	−	1)kr	[A]0	Form	a	ratio	of	the	half-lives	at	different	initial	pressures:	t1/	2	(	p0,1	)	=	t1/	2	(	p0,	2	)	1−	n	æ	p0,1	ö	çç=		è	p0,	2	ø	æ	p0,	2	çç	è	p0,1	ö		ø	n	−1	æ	t1/	2
(	p0,1	)	ö	æp	ö	=	(n	−	1)	ln	ç	0,	2		Hence	ln	ç	ç	t	(	p	)		çp		è	1/	2	0	,	2	ø	è	0,1	ø	340	s	ln	178	s	or	(n	−	1)	=	=	−0.992	≈	−1	28.9	kPa	ln	55.5	kPa	Therefore,	n	=	0	(	(	)	)	E20B.2(b)	The	rate	law	is	1	d[A]	v=	−	=	kr	[A]	2	dt	The	half-life	formula	in	eqn.	20B.2	is	based	on	the	assumption	that	d[A]	−	=	kr	[A]	dt	That	is,	it	would	be	accurate	to	take	the	half-life
from	the	table	and	say	ln	2	t1/	2	=	kr′	where	kr'	=	2kr	.	Thus	ln	2	t1/	2	=	=	9.74	×	105	s	−7	−1	2(3.56	×	10	s	)	Likewise,	we	modify	the	integrated	rate	law	(eqn.	20B.1)),	noting	that	pressure	is	proportional	to	concentration:	p	=	p0	e	−2	kr	t	(i)	Therefore,	after	50	s,	we	have	−7	−1	p	(33.0	kPa)	e	−2×(3.56×10	s	)×(50	s)	=	=	32.999	kPa	20:4	(ii)	After
20	min,	−7	−1	=	=	p	(33.0	kPa)	e	−2×(3.56×10	s	)×(20×60	s)	32.97	kPa	E20B.3(b)	The	integrated	rate	law	is	[A]0	([B]0	−	2[C])	1	[Table	20B.3]	kr	t	=	ln	[B]0	−	2[A]0	([A]0	−	[C])[B]0	Solving	for	[C]	yields,	after	some	rearranging	[A]0	[B]0	e	kr	t	([B]0	−	2[A]0	)	−	1	[C]	=	[B]0	e	kr	t	([B]0	−	2[A]0	)	−	2[A]0	(	)	[C]	(0.027)	×	(0.130)	×	(e0.34×(0.130	−
2×0.027)×t	/s	−	1)	0.027	×	(e0.026×t	/s	−	1)	=	=	so	mol	dm	−3	(0.130)	×	e0.34×(0.130	−	2×0.027)×t	/s	−	2	×	(0.027)	e0.026×t	/s	−	0.42	0.027	×	(e0.026×20	−	1)	=	mol	dm	−3	0.014	mol	dm	−3	e0.026×20	−	0.42	0.027	×	(e0.026×15×60	−	1)	=	[C]	=	mol	dm	−3	0.027	mol	dm	−3	(ii)	e0.026×15×60	−	0.42	Comment.	Note	that	part	(ii)	tells	us	that
the	reaction	is	essentially	complete	after	15	min.	In	fact,	it	is	essentially	complete	considerably	before	this	time.	When	is	the	reaction	99%	complete?	=	[C]	(i)	E20B.4(b)	The	rate	law	is	1	d[A]	v=	−	=	kr	[A]3	2	dt	which	integrates	to	1æ	1	1	ö	1	æ	1	1	ö	−	−	2k	r	t	=	so	t	=ç	ç		2	2		2	2	è	[A]	[A]0	ø	4kr	è	[A]	[A]02	ø	æ	ö	æ	ö	1	1	1	=	×	−	t	ç	−4	−2	−1		ç	−3	2	−3	2	
6	è	4(6.50	×	10	dm	mol	s	)	ø	è	(0.015	mol	dm	)	(0.067	mol	dm	)	ø	=	1.6	×	106	s	=	19	days	.	Solutions	to	problems	P20B.2	The	concentration	of	A	varies	with	time	as	[A]0	[A]	=	[20B.4]	1	+	kr	t[A]0	Dimensionless	concentrations	[A]/[A]0	and	[B]/[A]0	are	plotted	against	the	dimensionless	time	krt[A]0	in	Fig.	20B.1(a).	The	same	variables	are	plotted	against
a	logarithmic	horizontal	axis	in	Fig.	20B.1(b).	The	second-order	plots	have	longer	“tails”	than	the	first-order	plots	of	Problem	20B.1	Figures	20B.1(a)	and	(b)	20:5	P20B.4	A	simple	but	practical	approach	is	to	make	an	initial	guess	at	the	order	by	observing	whether	the	halflife	of	the	reaction	appears	to	depend	on	concentration.	If	it	does	not,	the
reaction	is	first-order;	otherwise	refer	to	Table	20B.3.	Visual	inspection	of	the	data	seems	to	indicate	that	the	half-life	is	roughly	independent	of	the	concentration.	Therefore,	we	first	try	to	fit	the	data	to	eqn.	20B.1:	æ	[A]	ö	ln	ç		=	−kr	t	è	[A]0	ø	æ	[A]	ö	We	plot	ln	ç		against	time	to	see	if	a	straight	line	is	obtained.	We	draw	up	the	following	table	(A	è	[A]0	ø
=	(CH3)3CBr):	t/h	0	3.15	6.20	10.00	18.30	30.80	10.39	8.96	7.76	6.39	3.53	2.07	[A]	[A]0	1	0.862	0.747	0.615	0.340	0.199	æ	[A]	ö	ln	ç		è	[A]0	ø	0	–0.148	–0.292	–0.486	–1.080	–1.613	9.62	11.16	12.89	15.65	28.3	48.3	[	A	]	(10−2	mol	dm	−3	)	æ	1	ö	3	−1	ç		/	(	dm	mol	)	è	[A]	ø	Figure	20B.2	20:6	The	data	are	plotted	in	Fig.	20B.2.	The	fit	to	a	straight	line	is
only	fair,	but	the	deviations	look	more	like	experimental	scatter	than	systematic	curvature.	The	correlation	coefficient	is	0.996.	If	we	try	to	fit	the	data	to	the	expression	for	a	second-order	reaction	in	Table	21.3,	the	fit	is	not	as	good;	that	correlation	coefficient	is	0.985.	Thus	we	conclude	that	the	reaction	is	most	likely	first-order.	A	noninteger	order,
neither	first	nor	second,	is	also	possible.	The	rate	constant	kr	is	the	negative	of	the	slope	of	the	first-order	plot:	kr	=	0.0542	h	−1	=	1.51×10−5	s	−1	At	43.8	h	æ	[A]	ö	−1	lnç		=−(0.0542	h	)	×	(43.8	h)	=−2.374	è	[A]0	ø	[A]	=(10.39	×	10−2	mol	dm	−3	)	×	e	−2.359	=	9.67	×	10−3	mol	dm	−3	P20B.6	From	Table	20B.3,	we	see	that	for	A	+	2B	→	P	the
integrated	second-order	rate	law	is	é	[A]	([B]0	−	2[P])	ù	1	kr	t	=	ln	ê	0	ú	[B]0	−	2[A]0	ë	([A]0	−	[P])[B]0	û	By	the	time	[B]	falls	to	0.010	mol	dm–3,	it	has	dropped	by	0.020	mol	dm–3,	so	[A]	has	fallen	by	0.010	mol	dm–3	to	0.040	mol	dm–3,	and	the	[P]	has	risen	by	0.010	mol	dm–3	to	0.010	mol	dm–3.	(a)	Substituting	the	data	after	solving	for	kr	é	(0.050	×
(0.030	−	2	×	0.010)	ù	1	×	ln	ê	kr	=	ú	−3	3	(3.6	×	10	s)	×	(0.030	−	2	×	0.050)	mol	dm	ë	(0.050	−	0.010)	×	0.030	û	=	3.5	×	10−3	dm	3	mol−1	s	−1	(b)	The	half-life	in	terms	of	A	is	the	time	when	[A]	=	[A]0/2=	0.025	mol	dm–3.	The	stoichiometry	requires	[B]	to	drop	by	0.050	mol	dm–3;	however,	since	[B]0	was	only	0.030	mol	dm–3,	this	concentration
cannot	be	reached	from	the	given	initial	conditions.	The	half-life	of	A,	then,	is	infinite,	since	there	is	not	enough	B	to	react	with	it.	The	half-life	in	terms	of	B	is	the	time	when	[B]	=	[B]0/2	=	0.015	mol	dm–3	[A]	=	[A]0	–	[B]0/4	=	0.0425	mol	dm–3,	and	[P]	=	[B]0/4	=	0.0075	mol	dm–3	é	[A]	([B]0	−	2[P])	ù	1	t1/2	(B)	=	ln	ê	0	ú	kr	([B]0	−	2[A]0	)	ë	([A]0	−	[P])
[B]0	û	1	=	−3	3	−1	−1	(3.5	×	10	dm	mol	s	)	×	(0.030	−	2	×	0.050)	mol	dm	−3	)	æ	0.050	×	0.015	ö	×	ln	ç	è	0.0425	×	0.030	ø	=	2.2	×	103	s	=	0.61	h	.	20:7	P20B.8	A	simple	but	practical	approach	is	to	make	an	initial	guess	at	the	order	by	observing	whether	the	halflife	of	the	reaction	appears	to	depend	on	concentration.	If	it	does	not,	the	reaction	is	first-
order;	if	it	does,	it	may	be	second-order.	Examination	of	the	data	shows	that	the	half-life	is	roughly	90	minutes,	but	it	is	not	exactly	constant.	(Compare	the	60-150	minute	data	to	the	150-240	minute	data;	in	both	intervals	the	concentration	drops	by	roughly	half.	Then	examine	the	30-120	minute	interval,	where	the	concentration	drops	by	less	than
half.)	If	the	reaction	is	first-order,	it	will	obey	æcö	lnç		=	−kr	t	[20B.1]	è	c0	ø	If	it	is	second-order,	it	will	obey	1	1	[20B.4]	=	kr	t	+	c	c0	See	whether	a	first-order	plot	of	ln	c	vs.	time	or	a	second-order	plot	of	1/c	vs.	time	has	a	substantially	better	fit.	We	draw	up	the	following	table:	t	/	min	c	/	(ng	cm–3)	(ng	cm–3)	/	c	ln	{c/(ng	cm–3)}	30	699	0.00143	6.550
60	622	0.00161	6.433	120	413	0.00242	6.023	Figure	20B.3(a)	Figure	20B.3(b)	20:8	150	292	0.00342	5.677	240	152	0.00658	5.024	360	60	0.0167	4.094	480	24	0.0412	3.178	The	data	are	plotted	in	Figs.	20B.3(a)	and	(b).	The	first-order	plot	fits	closely	to	a	straight	line	with	just	a	hint	of	curvature	near	the	outset.	The	second-order	plot,	conversely,	is
strongly	curved	throughout.	Hence,	the	reaction	is	first-order.	The	rate	constant	is	the	negative	of	the	slope	of	the	first-order	plot:	kr	=	0.00765	min–1	=	0.459	h–1	.	The	half-life	is	(eqn.	20B.2)	ln	2	ln	2	t1/	2	=	h	91	min	=	=	1.51=	kr	0.459	h	−1	Comment.	As	noted	in	the	problem,	the	drug	concentration	is	a	result	of	absorption	and	elimination	of	the
drug,	two	processes	with	distinct	rates.	Elimination	is	characteristically	slower,	so	the	later	data	points	reflect	elimination	only,	because	absorption	is	effectively	complete	by	then.	The	earlier	data	points,	by	contrast,	reflect	both	absorption	and	elimination.	It	is,	therefore,	not	surprising	that	the	early	points	do	not	adhere	so	closely	to	the	line	so	well
defined	by	the	later	data.	P20B.10	Since	both	reactions	are	first-order,	d[A]	−	=	k1[A]	+	k2	[A]	=	(k1	+	k2	)[A]	dt	so	[A]	=	[A]0	e	−	(	k1	+	k2	)t	[20B.1	with	kr	=	k1	+	k2	]	We	are	interested	in	the	yield	of	ketene,	CH2CO;	call	it	K:	d[K]	k2	[A]0	e	−	(	k1	+	k2	)t	=	k=	2	[A]	dt	Integrating	yields	∫	[K	]	0	d[K]	=	k2	[A]0	∫e	t	−	(	k1	+	k2	)	t	dt	0	k2	[A]0	k2	(1	−
e	−	(	k1	+	k2	)t	)	=	([A]0	−	[A])	k1	+	k2	k1	+	k2	The	percent	yield	is	the	amount	of	K	produced	compared	to	complete	conversion;	since	the	stoichiometry	of	reaction	(2)	is	one-to-one,	we	can	write:	k	[K]	%	yield	=	×	100%	=	2	(1	−	e	−	(	k1	+	k2	)t	)	×	100%	[A]0	k1	+	k2	which	has	its	maximum	value	when	the	reaction	reaches	completion	k2	4.65	s	−1
max	%	yield	=	×	100%	=	×	100%	=	55.4%	k1	+	k2	(3.74	+	4.65)	s	−1	Comment.	If	we	are	interested	in	yield	of	the	desired	product	(ketene)	compared	to	the	products	of	side	reactions	(products	of	reaction	1),	it	makes	sense	to	define	the	conversion	ratio,	the	ratio	of	desired	product	formed	to	starting	material	reacted,	namely	[K]	[A]0	−	[A]	[K]	=
20:9	which	works	out	in	this	case	to	be	independent	of	time	k2	[K]	=	[A]0	−	[A]	k1	+	k2	If	a	substance	reacts	by	parallel	processes	of	the	same	order,	then	the	ratio	of	the	amounts	of	products	will	be	constant	and	independent	of	the	extent	of	the	reaction,	no	matter	what	the	order.	Question.	Can	you	demonstrate	the	truth	of	the	statement	made	in	the
above	comment?	P20B.12	The	stoichiometry	of	the	reaction	relates	product	and	reaction	concentrations	as	follows:	[A]	=	[A]0	−	2[B]	When	the	reaction	goes	to	completion,	[B]	=	[A]0/2;	hence	[A]0	=	0.624	mol	dm–3.	We	can	therefore	tabulate	[A],	and	examine	its	half-life.	We	see	that	the	half-life	of	A	from	its	initial	concentration	is	approximately	20
min,	and	that	its	half-life	from	the	concentration	at	20	min	is	also	20	min.	This	indicates	a	first-order	reaction.	We	confirm	this	conclusion	by	plotting	the	data	accordingly	(in	Fig.	20B.4),	using	[A]0	=	kA	t	[20B.1]	ln	[A]	which	follows	from	d[A]	=	−kA	[A]	dt	t	/	min	0	10	20	30	40	∞	[B]	(mol	dm	−3	)	0	0.089	0.153	0.200	0.230	0.312	[A]	(mol	dm	−3	)
0.624	0.446	0.318	0.224	0.164	0	0	–0.34	–0.67	–1.02	–1.34	ln	[A]	[A]0	Figure	20B.4	The	points	lie	on	a	straight	line,	which	confirms	first-order	kinetics.	Since	the	slope	of	the	line	is	–	3.4×10–2	min–1,	we	conclude	that	kA	=	3.4×10–2	min–1.	To	express	the	rate	law	in	the	form	v	=	kr[A]	we	note	that	1	d[A]	v	=−	=−	(	12	)	×	(−kA	[A])	=	12	kA	[A]	2	dt
and	hence	=	kr	1	2	k=	1.7	×	10−2	min	−1	A	P20B.14	If	the	reaction	is	first-order	the	concentrations	obey	20:10	æ	[A]	ö	ln	ç		=	−kr	t	[20B.1]	è	[A]0	ø	and,	since	pressures	and	concentrations	of	gases	are	proportional,	the	pressures	should	obey	p	ln	0	=	kr	t	p	and	1	p0	should	be	a	constant.	We	test	this	by	drawing	up	the	following	table:	ln	t	p	p0	/	Torr
200	200	400	400	600	600	t/s	100	200	100	200	100	200	p	/	Torr	186	173	373	347	559	520	æ	1	ö	p0	104	ç		ln	èt	/sø	p	7.3	7.3	7.0	7.1	7.1	7.2	The	values	in	the	last	row	of	the	table	are	virtually	constant,	and	so	(in	the	pressure	range	spanned	by	the	data)	the	reaction	has	first-order	kinetics	with	kr	=	7.2×10–4	s–1	P20B.16	The	rate	of	change	of	[A]	is	d[A]
=	−kr	[A]n	dt	[A]	d[A]	t	=	−	k	r	dt	=	−kr	t	Hence,	n	[A]0	[A]	0	∫	∫	1	ö	æ	1	ö	æ	1	−	kr	t	=	ç		×ç	n	−1	[A]0n	−1	ø	è	n	−	1	ø	è	[A]	At	t	=	t1/2	,	[A]	=	[A]0/2	n	−1	1	ö	æ	2n	−1	−	1	ö	æ	1	ö	æ	1	ö	æ	2	×	−	kr	t1/	2	=	ç		=ç		×ç		ç	n	−1	[A]0n	−1	ø	è	n	−	1	ø	è	[A]0n	−1	ø	è	n	−	1	ø	è	[A]0	Therefore,	and	t1/	2	=	2n	−1	−	1	[as	in	Table	20B.3]	kr	(n	−	1)[A]0n	−1	Now	let	t1/3	be
the	time	at	which	[A]	=	[A]0/3.	Substitute	these	expressions	into	the	integrated	rate	law:	n	−1	1	ö	æ	3n	−1	−	1	ö	æ	1	ö	æ	1	ö	æ	3	×	−	kr	t1/	3	=	ç	ç		=ç		×ç		n	−1	[A]0n	−1	ø	è	n	−	1	ø	è	[A]0n	−1	ø	è	n	−	1	ø	è	[A]0	and	P20B.18	t1/	3	=	3n	−1	−	1	kr	(n	−	1)[A]0n	−1	d[A]	=	−2kr	[A]2	[B],	2A	+	B	→	P	dt	(a)	Let	x	represent	[P]	at	time	t,	A0	represent	[A]0,	and	B0
represent	[B]0.	Then	A	[A]	=	A0	−	2	x	and	[B]	=	B0	−	x	=	0	−	x	2	d	x	d[A]	Therefore,	=	−2	=	−2kr	(	A0	−	2	x)	2	×	(	B0	−	x)	dt	dt	dx	=	kr	(	A0	−	2	x)	2	×	1	A0	−	x=	1	kr	(	A0	−	2	x)3	2	2	dt	(	)	20:11	2	2	x	dx	1kt	=	1	×	éêæ	1	ö	−	æ	1	ö	ùú	=	0	(	A	−	2	x	)3	2	r	4	êèç	A0	−	2	x	ø	èç	A0	ø	ú	0	ë	û	∫	2	x(	A0	−	x)	Therefore,	kr	t	=	A02	(	A0	−	2	x)	2	(b)	Now	B0	=	A0,	so	dx
=	kr	(	A0	−	2	x)	2	×	(	B0	−	x)	=	kr	(	A0	−	2	x)	2	×	(	A0	−	x)	dt	x	dx	kr	t	=	2	0	(	A	−	2	x)	×	(	A	−	x)	0	0	We	proceed	by	the	method	of	partial	fractions	(which	is	employed	in	the	general	case	too),	and	look	for	the	values	of	α,	β,	and	γ	such	that	α	β	γ	1	=	+	+	2	2	(	A0	−	2	x)	×	(	A0	−	x)	(	A0	−	2	x)	A0	−	2	x	A0	−	x	This	requires	that	α	(	A0	−	x)	+	β	(	A0	−	2
x)	×	(	A0	−	x)	+	γ	(	A0	−	2	x)	2	=	1	Expand	and	gather	terms	by	powers	of	x:	(	A0α	+	A02	β	+	A02γ	)	−	(α	+	3β	A0	+	4γ	A0	)	x	+	(2	β	+	4γ	)	x	2	=	1	This	must	be	true	for	all	x;	therefore	A0α	+	A02	β	+	A02γ	=	1	α	+	3	A0	β	+	3	A0γ	=	0	2	β	+	4γ	=	0	and	∫	Solving	this	system	yields	α	=	−2	2	1	,	β	=	2	,	and	γ	=	2	A0	A0	A0	Therefore,	=	kr	t	∫	x	0	æ	(2	/	A0	)
(2	/	A02	)	(1	/	A02	)	ö	−	+	ç		dx	2	A0	−	2	x	A0	−	x	ø	è	(	A0	−	2	x)	x	æ	(1	/	A0	)	1	ö	1	=	ç	+	2	ln(	A0	−	2	x)	−	2	ln(	A0	−	x)		A0	è	A0	−	2	x	A0	ø0	æ	ö	æ	1	ö	æ	A0	−	2	x	ö	2x	=	ç	2		+	ç	2		ln	ç		è	A0	(	A0	−	2	x)	ø	è	A0	ø	è	A0	−	x	ø	20C	Reactions	approaching	equilibrium	Answers	to	discussion	questions	D20C.2	If	the	equilibrium	position	shifts	with	pressure,	pressure
jumps,	usually	by	ultrasonic	methods,	can	be	used	to	alter	the	rate	of	the	reaction.	∆	rV	for	the	reaction	must	be	non-zero.	Solutions	to	exercises	E20C.1(b)	The	equilibrium	constant	of	the	reaction	is	the	ratio	of	rate	constants	of	the	forward	and	reverse	reactions:	20:12	kr	so	kr	=	Kkr´	kr′	The	relaxation	time	for	the	temperature	jump	is	(Example
20C.1):	τ	=	{kr	+	kr′([B]	+	[C])}−1	so	kr	=	τ	−1	−	kr′([B]	+	[C])	K=	Setting	these	two	expressions	for	kr	equal	yields	Kkr′	=	τ	−1	−	kr′([B]	+	[C])	so	kr′	=	Hence	kr′	=	1	τ	(K	+	[B]	+	[C])	1	(3.0	×	10−6	s)	×	(2.0	×	10−16	+	2.0	×	10−4	+	2.0	×	10−4	)	mol	dm	−3	=	8.3	×	108	dm	3	mol−1	s	−1	kr	=	(2.0	×	10−16	mol	dm	−3	)	×	(8.3	×	108	dm	3	mol−1	s
−1	)	=	1.7	×	10−7	s	−1	and	Solutions	to	problems	P20C.2	We	proceed	as	in	Section	20C.1.	The	individual	reactions	are	(analogous	to	eqn.	84.1)	A→2B	v	=	kr[A]	and	2B→A	v	=	kr´[B]2	The	net	rate	of	change	of	A	is	d[A]	=	−kr	[A]	+	kr′[B]2	dt	If	this	reaction	were	run	starting	with	no	B	and	an	initial	concentration	of	A	equal	to	[A]0,	then	the	reaction
stoichiometry	requires	that	[B]	=	2([A]0	–	[A])	Substituting	this	into	the	differential	equation	for	[A]	yields	d[A]	=	−kr	[A]	+	2	kr′{[A]0	−	[A]}2	=	2	kr′[A]02	−	{kr	+	4	kr′[A]0	}[A]	+	2	kr′[A]2	dt	Note	that	the	resulting	equation	is	non-linear	in	[A].	Early	on,	the	concentration	of	A	would	decay	exponentially,	but	eventually	the	decay	would	slow	as	[A]
approaches	its	equilibrium	value.	At	equilibrium	d[A]	=	0	=	−kr	[A]	+	kr′[B]2	dt	so	kr[A]eq	=	kr´[B]eq	2	and	2	kr	[B]eq	=K	=	kr′	[A]eq	The	approach	of	concentrations	to	their	equilibrium	values	is	plotted	in	Fig.	84.1	for	initial	concentration	[A]0	=	1.0	mol	dm–3	(and	no	B	initially)	and	rate	constants	kr	=	1.0	min–1	and	kr´	=	1.0	dm3	mol	min–1.	Figure
20C.1	20:13	P20C.4	Consider	a	two-step	equilibrium	involving	an	intermediate	I:	AI	with	rate	constants	k1	and	k1´	IB	with	rate	constants	k2	and	k2´	The	rate	of	change	of	[A]	is	d[A]	=	−k1[A]	+	k1′[I]	dt	and	at	equilibrium	[I]eq	k	d[A]	=	1	so	=	0	=	−k1[A]eq	+	k1′[I]eq	[A]eq	k1′	dt	But	we	wish	to	express	our	equilibrium	constant	in	terms	of	reactant
and	product	concentrations,	eliminating	intermediates.	So	consider	the	rate	of	change	of	[B]:	d[B]	=	k2	[I]	−	k2′	[B]	dt	and	at	equilibrium	[B]eq	k2	d[B]	=	so	=	0	=	k2	[I]eq	−	k2′	[B]eq	[I]eq	k2′	dt	Multiplying	these	two	expressions	together	yields	the	desired	expression:	[I]eq	[B]eq	[B]eq	k2	k1	=	=	[A]eq	[I]eq	[A]eq	k2′	k1′	Now	suppose	B	is	also	an
intermediate	and	there	is	another	step	to	arrive	at	a	final	product	C:	BC	with	rate	constants	k3	and	k3´	Now	consider	the	rate	of	change	of	[C]:	d[C]	=	k3	[B]	−	k3′[C]	dt	and	at	equilibrium	[C]eq	k3	d[C]	=	so	=	0	=	k3	[B]eq	−	k3′[C]eq	[B]eq	k3′	dt	Multiplying	this	expressions	with	the	previous	one	yields:	[B]eq	[C]eq	[C]eq	k3	k2	k1	=	=	[A]eq	[B]eq
[A]eq	k3′	k2′	k1′	It	should	be	clear	that	this	process	can	be	carried	on	for	any	number	of	steps,	if	the	procedure	to	this	point	is	correct.	One	possible	objection	is	worth	addressing	here,	and	that	is	that	once	B	becomes	an	20:14	intermediate	rather	than	a	final	product,	the	expression	for	its	rate	of	change	becomes	more	complicated,	namely	d[B]	=	k2
[I]	−	k2′	[B]	−	k3	[B]	+	k3′[C]	dt	This	is	true	in	general.	However,	at	equilibrium,	forward	and	reverse	rates	of	reaction	are	equal	for	each	step.	Therefore	it	is	still	true	that	each	of	the	following	is	true	separately	and	0	=	k2	[I]eq	−	k2′	[B]eq	0	=	k3	[B]eq	−	k3′[C]eq	and	the	same	would	be	true	for	any	additional	steps.	P20C.6	d[A]	=	−2kr	[A]2	+	2kr′[A
2	]	dt	Define	the	deviation	from	equilibrium,	x,	by	the	following	equations,	which	satisfy	the	law	of	mass	conservation.	[A]	=	[A]eq	+	2	x	and	[A	2	]	=	[A	2	]eq	−	x	Then,	d([A]eq	+	2	x)	=	−2kr	([A]eq	+	2	x)	2	+	2kr′	([A	2	]eq	−	x)	dt	dx	2	=	−kr	([A]eq	+	2	x)	2	+	kr′	([A	2	]eq	−	x)	=	−kr	([A]eq	+	4[A]eq	x	+	4	x	2	)	+	kr′	([A	2	]eq	−	x	)	dt	r			2	A			A2	k′	k	r	{	≈
−	{(	k	′	+	4k	[A]	)	x	+	k	[A]	2	=	−	4kr	x	2	+	(	kr′	+	4kr	[A]eq	)	x	+	kr	[A]eq	−	kr′[A	2	]eq	r	r	eq	r	2	eq	−	kr′[A	2	]eq	}	}	2	In	the	last	equation	the	term	containing	x	has	been	dropped	because	x	will	be	small	near	equilibrium	and	the	x2	term	will	be	negligibly	small.	The	equation	may	now	be	rearranged	and	integrated	using	the	following	integration,
which	is	found	in	standard	mathematical	handbooks.	dw	1	=	ln	(	aw	+	b	)	aw	+	b	a	dx	=	−	dt	(	kr′	+	4kr	[A]eq	)	x	+	kr	[A]eq2	−	kr′[A	2	]eq	∫	∫	∫	1	(	k	′	+	4k	[A]	)	r	r	{	eq	Let	æ	y	ö	−	(	kr′	+	4kr	[A]eq	)	t	ln	ç		=	è	y0	ø	Then	y	=	y0	e	(	}	2	ln	(	kr′	+	4kr	[A]eq	)	x	+	kr	[A]eq	−	kr′[A	2	]eq	=−t	+	constant.	where	y=	(	kr′	+	4kr	[A]eq	)	x	+	kr	[A]eq2	−	kr′[A	2	]eq	)
−	kr′	+	4kr	[A]eq	t	Comparison	of	the	above	exponential	to	the	decay	equation	y	=	y0	e	−	t	/τ	reveals	that	τ=	1	′	kr	+	4kr	[A]eq	Comment.	Note	that	this	equation	can	be	used	as	the	basis	of	an	alternate	derivation	of	the	equation	discussed	in	Problem	20C.5.	The	manipulations	use	the	facts	that	K	=	[A2]eq	/	[A]eq2	=	kr	/	kr´	and	[A]tot	=	[A]eq	+
2[A2]eq	by	conservation	of	mass,	which	can	be	used	to	show	that	2k	2k	r	2	2	[A]	[A]eq	+	r	[A]eq	[A]eq	0	or	=	+	[A]eq	−	[A]tot	=	tot	kr′	kr′	This	quadratic	equation	can	be	solved	for	[A]eq.	ö	8k	[A]	k′	æ	[A]eq	=	r	ç	1	+	r	tot	−	1	ç		′	4k	r	è	kr	ø	2	1	Substitution	of	this	equation	into	=	kr′	+	4kr	[A]eq	)	and	some	algebraic	manipulation	yields	the	(	2	τ	1	2



result	of	Problem	20C.5:	=	kr′	+	8kr	kr′[A]tot	τ2	20:15	20D	The	Arrhenius	equation	Answers	to	discussion	question	D20D.2	The	temperature	dependence	of	some	reactions	is	not	Arrhenius-like,	in	the	sense	that	a	straight	line	is	not	obtained	when	ln	k	is	plotted	against	1/T.	However,	it	is	still	possible	to	define	an	activation	energy	as	æ	d	ln	k	ö	Ea	=	RT
2	ç	[20D.3]	è	dT	ø	This	definition	reduces	to	the	earlier	one	(as	the	slope	of	a	straight	line)	for	a	temperature-independent	activation	energy.	However,	this	latter	definition	is	more	general,	because	it	allows	Ea	to	be	obtained	from	the	slope	(at	the	temperature	of	interest)	of	a	plot	of	ln	k	against	1/T	even	if	the	Arrhenius	plot	is	not	a	straight	line.	Non-
Arrhenius	behaviour	is	sometimes	a	sign	that	quantum	mechanical	tunnelling	(Section	8A)	is	playing	a	significant	role	in	the	reaction.	In	biological	reactions	it	might	signal	that	an	enzyme	has	undergone	a	structural	change	and	has	become	less	efficient.	A	reaction	with	a	very	small	or	zero	activation	energy,	so	that	kr	=	A,	such	as	for	some	radical
recombination	reactions	in	the	gas	phase,	has	a	rate	that	is	largely	temperature	independent.	Solutions	to	exercises	E20D.1(b)	The	Arrhenius	equation	for	two	different	temperatures	can	be	rearranged	to	yield	the	activation	energy:	k	4.01	×	10−2	R	ln	r,2	(8.3145	J	K	−1	mol−1	)	ln	kr,1	2.25	×	10−3	=	Ea	=	æ	1	1ö	æ	ö	1	1	çè	(273	+	29)	K	−	(273	+	37)	K	ø
çT	−	T		è	1	2ø	=	5.62	×	104	J	mol−1	=	56.2	kJ	mol−1	With	the	activation	energy	in	hand,	the	pre-exponential	factor	can	be	found	from	either	rate	constant	by	rearranging	eqn.	20D.4.	A	=	kr	e	Ea	/	RT	=	(2.25	×	10−2	dm	3	mol−1	s	−1	)e5.62×10	4	J	mol−1	/(8.3145	J	K	−1	mol−1	)(273+29)	K	A	=	1.19×108	dm3	mol–1	s–1	Computing	A	from	both
provides	a	useful	check	on	the	calculation.	A	=	kr	e	Ea	/	RT	=	(4.01	×	10−2	dm	3	mol−1	s	−1	)e5.62×10	4	J	mol−1	/(8.3145	J	K	−1	mol−1	)(273+37)	K	A	=	1.19×108	dm3	mol–1	s–1	E20D.2(b)	Proceed	as	in	Exercise	20D.1(b):	æ	k	(T	)	ö	R	ln	ç	r	2		−1	mol−1	)	×	ln	2	è	kr	(T1	)	ø	(8.3145	J	K	=	53kJ	mol−1	=	Ea	=	1	−	1	æ1	1ö	çT	−T		298	K	308	K	2	ø	è	1
Solutions	to	problems	P20D.2	A	simple	but	practical	approach	is	to	make	an	initial	guess	at	the	order	by	observing	whether	the	halflife	of	the	reaction	appears	to	depend	on	concentration.	If	it	does	not,	the	reaction	is	first-order;	otherwise	refer	to	Table	20B.3.	Visual	inspection	of	the	data	seems	to	indicate	that	the	half-life	is	roughly	independent	of
the	concentration.	Therefore,	we	first	try	to	fit	the	data	to	eqn.	20B.1:	20:16	æ	[A]	ö	ln	ç		=	−kr	t	è	[A]0	ø	æ	[A]	ö	As	in	Example	20B.1	we	plot	ln	ç		against	time	to	see	if	a	straight	line	is	obtained.	We	draw	up	è	[A]0	ø	the	following	table	(A	=	(CH3)3CBr):	t/h	0	3.15	6.20	10.00	18.30	30.80	10.39	8.96	7.76	6.39	3.53	2.07	[A]	[A]0	1	0.862	0.747	0.615	0.340
0.199	æ	[A]	ö	ln	ç		è	[A]0	ø	0	–0.148	–0.292	–0.486	–1.080	–1.613	9.62	11.16	12.89	15.65	28.3	48.3	[	A	]	(10−2	mol	dm	−3	)	æ	1	ö	3	−1	ç		/	(	dm	mol	)	[A]	è	ø	Figure	20D.1	The	data	are	plotted	in	Fig.	20D.1.	The	fit	to	a	straight	line	is	only	fair,	but	the	deviations	look	more	like	experimental	scatter	than	systematic	curvature.	The	correlation	coefficient	is
0.996.	If	we	try	to	fit	the	data	to	the	expression	for	a	second-order	reaction	in	Table	21.3,	the	fit	is	not	as	good;	that	correlation	coefficient	is	0.985.	Thus	we	conclude	that	the	reaction	is	most	likely	first-order.	A	noninteger	order,	neither	first	nor	second,	is	also	possible.	The	rate	constant	kr	is	the	negative	of	the	slope	of	the	first-order	plot:	kr	=
0.0542	h	−1	=	1.51×10−5	s	−1	At	43.8	h	æ	[A]	lnç	è	[A]0	ö	−1		=−(0.0542	h	)	×	(43.8	h)	=−2.374	ø	[A]	=(10.39	×	10−2	mol	dm	−3	)	×	e	−2.359	=	9.67	×	10−3	mol	dm	−3	P20D.4	The	Arrhenius	expression	for	the	rate	constant	is	(eqn.	20D.1)	20:17	ln	kr	=	ln	A	–	Ea/RT	A	plot	of	ln	kr	versus	1/T	will	have	slope	–Ea/R	and	y-intercept	ln	A.	The
transformed	data	and	plot	(Fig.	85.2)	follow:	T/K	–6	3	–1	–1	10	kr/(dm	mol	s	)	3	–1	–1	ln	kr/(dm	mol	s	)	–3	10	K	/	T	295	223	218	213	206	200	195	3.55	0.494	0.452	0.379	0.295	0.241	0.217	15.08	13.11	13.02	12.85	12.59	12.39	12.29	3.39	4.48	4.59	4.69	4.85	5.00	5.13	Figure	20D.2	So	and	Ea	=	–(8.3145	J	K–1	mol–1)	×	(–1642	K)	=	1.37×104	J	mol–1	=
13.7	kJ	mol–1	A	=	e20.585	dm3	mol–1	s–1	=	8.7×108	dm3	mol–1	s–1	20E	Reaction	mechanisms	Answers	to	discussion	questions	D20E.2	The	rate-determining	step	is	not	just	the	slowest	step:	it	must	be	slow	and	be	a	crucial	gateway	for	the	formation	of	products.	If	a	faster	reaction	can	also	lead	to	products,	then	the	slowest	step	is	irrelevant	because
the	slow	reaction	can	then	be	side-stepped.	The	rate-determining	step	is	like	a	slow	ferry	crossing	between	two	fast	highways:	the	overall	rate	at	which	traffic	can	reach	its	destination	is	determined	by	the	rate	at	which	it	can	cross	on	the	ferry.	If	the	first	step	in	a	mechanism	is	the	slowest	step	with	the	highest	activation	energy,	then	it	is
ratedetermining,	and	the	overall	reaction	rate	is	equal	to	the	rate	of	the	first	step	because	all	subsequent	steps	are	so	fast	that	once	the	first	intermediate	is	formed	it	results	immediately	in	the	formation	of	products.	Once	over	the	initial	barrier,	the	intermediates	cascade	into	products.	However,	a	ratedetermining	step	may	also	stem	from	the	low
concentration	of	a	crucial	reactant	or	catalyst	and	need	not	correspond	to	the	step	with	highest	activation	barrier.	A	rate-determining	step	arising	from	the	low	activity	of	a	crucial	enzyme	can	sometimes	be	identified	by	determining	whether	or	not	the	reactants	and	products	for	that	step	are	in	equilibrium:	if	the	reaction	is	not	at	equilibrium	it
suggests	that	the	step	may	be	slow	enough	to	be	rate-determining	D20E.4	Refer	to	Table	20B.3.	We	will	consider	only	reactions	whose	rates	depend	on	the	concentration	of	a	single	reactant.	20:18	In	a	first-order	reaction,	the	rate	of	reaction	is	directly	proportional	to	the	concentration	of	the	reactant:	and	ln	[A]	=	ln	[A]0	–	krt	[20B.1]	v	=	kr[A]	A	plot
of	the	logarithm	of	reactant	concentration	against	time	is	a	straight	line.	In	a	zero-order	reaction,	the	rate	of	reaction	is	constant,	independent	of	the	reactant	concentration:	and	[A]	=	[A]0	–	krt	[based	on	Table	20D.3]	v	=	kr	A	plot	of	the	reactant	concentration	itself	against	time	is	a	straight	line.	In	a	second-order	reaction,	the	rate	of	reaction	is
proportional	to	the	square	of	the	reactant	concentration:	1	1	and	=	+	kr	t	v	=	kr[A]	2	[A]	[A]0	A	plot	of	the	reciprocal	of	reactant	concentration	against	time	is	a	straight	line.	Reaction	orders	need	not	be	integers,	except	for	elementary	reactions.	Indeed,	reaction	orders	can	change	during	the	course	of	the	reaction.	Consider	the	zero-order	reaction
mentioned	in	the	text	(Section	20A.2(c)),	the	decomposition	of	phosphine	on	hot	tungsten.	As	long	as	enough	phosphine	is	present,	the	rate	of	reaction	is	independent	of	that	concentration;	what	limits	the	rate	is	the	availability	of	catalytic	sites	on	the	tungsten.	Clearly	the	integrated	rate	law	for	a	zero-order	reaction	cannot	be	correct	at	long	times,
where	it	would	predict	negative	concentrations.	Before	that	unphysical	situation	would	occur,	the	concentration	of	the	reactant	drops	to	such	an	extent	that	it	limits	the	rate	of	reaction,	and	the	reaction	order	changes	from	zero	to	a	non-zero	value.	The	text’s	treatment	of	the	Lindemann–Hinshelwood	mechanism	(Section	20F.1)	also	illustrates	how	a
reaction	order	can	change	from	first-	to	second-order	over	the	course	of	a	reaction.	D20E.6	Yes,	a	negative	activation	energy	is	quite	possible	for	composite	reactions.	The	rate	constant	of	a	composite	reaction	can	be	a	product	or	ratio	of	rate	constants	and	equilibrium	constants	of	elementary	reactions	that	contribute	to	the	composite	reaction,	as
illustrated	in	Section	20E.5.	In	general,	elementary	reactions	that	have	a	positive	activation	energy	whose	rate	constants	appear	in	the	denominator	of	a	composite	rate	constant	tend	to	reduce	the	activation	energy	of	the	overall	reaction,	as	illustrated	in	eqn	20E.13.	There	is	no	reason	why	that	reduction	cannot	be	to	a	negative	value.	The	most
common	molecular	interpretation	of	the	activation	energy	is	as	the	“height”	of	an	energy	barrier	that	must	be	overcome	by	reactants	in	order	to	form	products,	as	discussed	in	connection	with	collision	theory	in	Section	21A.	Among	the	limitations	of	collision	theory	is	that	it	is	only	applicable	to	elementary	reactions,	those	which	can	possibly	occur	in
one	collision	or	reactive	molecular	encounter.	Thus,	it	is	no	surprise	that	this	interpretation	fails	to	apply	to	composite	reactions.	The	more	general	interpretation	of	the	activation	energy,	as	a	measure	of	the	temperaturedependence	of	the	reaction	rate	(eqn.	20D.3),	does	apply.	Question.	Show	that	the	following	mechanism	leads	to	an	overall	negative
activation	energy	for	the	rate	of	formation	of	P	if	Ea(2)	>	Ea(3).	A	→	I	k1	(slow)	I	→	B	k2	I	→	P	k3	Solutions	to	exercises	E20E.1(b)	Call	the	stable	double	helix	S	and	the	unstable	one	U.	The	rate	of	the	overall	reaction	is	d[S]	=	k2	[U]	dt	however,	we	cannot	have	the	concentration	of	an	intermediate	in	the	overall	rate	law.	(i)	Assume	a	pre-equilibrium
with	[U]	K=	,	which	implies	[U]	=	K[A][B]	[A][B]	=	v	20:19	and	v	=	k2[U]	=	k2K[A][B]	=	keff[A][B]	with	keff	=	k2K	(ii)	Apply	the	steady-state	approximation:	d[U]	=	≈	0	k1[A][B]	−	k1′[U]	−	k2	[U]	dt	so	[U]	=	k1[A][B]	k1′	+	k2	and	v≈	kk	k1k2	[A][B]	=	keff	[A][B]	with	keff	=	1	2	k1′	+	k2	k1′	+	k2	Comment.	The	steady-state	rate	law	reduces	to	the	pre-
equilibrium	rate	law	if	k1´>>k2,	which	is	likely	to	be	the	case	if	the	first	step	is	characterized	as	fast	and	the	second	slow.	The	steady-state	approximation	also	encompasses	the	opposite	possibility,	that	k1´	1	α	>	1	and	α′	>	1	kcat	=	ν	max	/	[E]0	[20H.4]	=	1.40	×	104	s	−1	(	0.0224	mmol	dm−3	s−1	)	/	(1.60	×10−6	mmol	dm−3	)	=	(b)	η	=	kcat	/	K	M
[20H.5]	0.015	dm3	mol−1	s	−1	=	(1.40	×104	s−1	)	/	(	9.0	×105	mol	dm−3	)	=	Diffusion	limits	the	catalytic	efficiency,	η,	to	a	maximum	of	about	108–109	dm3	mol–1	s–1.	Since	the	catalytic	efficiency	of	this	enzyme	is	much,	much	smaller	than	the	maximum,	the	enzyme	is	not	'catalytically	perfect'.	20:29	P20H.6	(a)	We	add	to	the	Michaelis−Menten
mechanism	the	inhibition	by	the	substrate	SES		ES	+	S	KI	=	[ES][S]/[SES]	where	the	inhibited	enzyme,	SES,	forms	when	S	binds	to	ES	and,	thereby,	prevents	the	formation	of	product.	This	inhibition	might	possibly	occur	when	S	is	at	a	very	high	concentration.	Enzyme	mass	balance	is	written	in	terms	of	[ES],	KI,	KM	(=	[E][S]/[ES]),	and	[S].	(For
practical	purposes	the	free	substrate	concentration	is	replaced	by	[S]0	because	the	substrate	is	typically	in	large	excess	relative	to	the	enzyme.)	[	E	]0	=[	E	]	+	[	ES]	+	[SES]	K	M	[	ES]	=	[S]	+	[	ES]	+	[	ES][S]	KI	æ	K	[S]	ö	ES	=ç1	+	M	+	[	]	ç	[S]	K	I	ø	è	Thus,	[	ES]	=	[	E	]0	æ	K	M	[S]	ö	+	çç1	+		[S]	K	I	ø	è	and	the	expression	for	the	rate	of	product
formation	becomes	ν	max	where	=	ν	max	kb	[	E	]0	.	K	M	[S]0	+	1+	[S]0	K	I	The	denominator	term	[S]0/KI	reflects	a	reduced	reaction	rate	caused	by	inhibition	as	the	concentration	of	S	becomes	very	large.	=	ν	k=	b	[	ES]	(b)	To	examine	the	effect	that	substrate	inhibition	has	on	the	double	reciprocal,	Lineweaver-Burk	plot	of	1/ν	against	1/[S]0	take	the
inverse	of	the	above	rate	expression	and	compare	it	to	the	uninhibited	expression	[20H.3b]:	æK	ö	1	1	1	.	=	+ç	M		ν	ν	max	è	ν	max	ø	[S]0	The	inverse	of	the	inhibited	rate	law	is	æ	[S]	2	ö	1	æK	ö	1	1	1	0		=	+ç	M		+ç	ν	ν	max	è	ν	max	ø	[S]0	ç	ν	max	K	I		[S]0	è	ø	2	æK	[S]0	ö	1	1	.	=	+ç	M	+	ν	max	ç	ν	max	ν	max	K	I		[S]0	è	ø	The	uninhibited	and	inhibited	line
shapes	are	sketched	in	Figure	20H.1.	20:30	Figure	20H.1	Comparing	the	two	expressions,	we	see	that	the	two	curves	match	at	high	values	of	1/[S]0.	However,	as	the	concentration	of	[S]0	increases	(1/[S]0	decreases)	the	1/ν	curve	with	inhibition	curves	upward	because	the	reaction	rate	is	decreasing.	Integrated	activities	20.2	The	description	of	the
progress	of	infectious	diseases	can	be	represented	by	the	mechanism	S→I→R.	Only	the	first	step	is	autocatalytic	as	indicated	in	the	first	rate	expression.	If	the	three	rate	equations	are	added	dS	dI	dR	+	+	=	0	dt	dt	dt	and,	hence	there	is	no	change	with	time	of	the	total	population,	that	is	S(t	)	+	I(t	)	+	R(t	)	=	N.	Whether	the	infection	spreads	or	dies
out	is	determined	by	dI	=	rSI	−	aI	.	dt	At=	t	0,=	I	I(0)	=	I0	.	Since	the	process	is	auto	catalytic,	I(0)	≠	0.	æ	dI	ö	ç	=	è	dt	øt	=	0	(	rS0	−	a	)	I0	æ	dI	ö	æ	dI	ö	If	a	>	rS0	,	ç		<	0	,	and	the	infection	dies	out.	If	a	<	rS,	ç		>	0	and	the	infection	spreads	è	dt	øt	=	0	è	dt	øt	=	0	(an	epidemic).	Thus,	a	a	>S0	[infection	dies	out].	<	S0	[infection	spreads]	and	r	r	20.4	The
number-average	molar	mass	of	the	polymer	is	the	average	chain	length	times	the	molar	mass	of	the	monomer	20:31	M1	[20F.12(a)]	1−	p	The	probability	PN	that	a	polymer	consists	of	N	monomers	is	equal	to	the	probability	that	it	has	N	–	1	reacted	end	groups	and	one	unreacted	end	group.	The	former	probability	is	pN–1;	the	latter	1	–	p.	Therefore,
the	total	probability	of	finding	an	N-mer	is	PN	=	pN–1(1–p)	We	need	this	probability	to	get	at	M	2	,	again	using	number	averaging:	=	M	=	N	M1	2	=	M2	M	12	=	N2	M	12	∑	N=	PN	M	12	(1	−	p	)∑	N	2	p	N	−1	N	=	M	12	(1	−	p	)	Thus	M2	and	(M	N	N	M	12	(1	+	p	)	d	d	d	d	p	∑	p	N	=	M	12	(1	−	p	)	p	(1	−	p	)	−1	=	dp	dp	N	dp	dp	(1	−	p	)	2	æ	1+	p	1	ö	2	2	ç		−
M=	M	−	=	1	N	ç	(1	−	p	)	2	(1	−	p	)2		è	ø	2	N	−	M	)	2	1/	2	N	pM	12	(1	−	p	)	2	p1/	2	M	1	=	1−	p	The	time	dependence	is	obtained	from	k	t[A]0	[20F.11]	p=	r	1	+	kr	t[A]0	and	20.6	1	=	1	+	kr	t[A]0	1−	p	N	=	[20F.12]	Hence	p1	2	1/	2	=	p1	2	(1	+	kr	t[A]0	)	=	{kr	t[A]0	(1	+	kr	t[A]0	)}	1−	p	and	(M	2	N	−	M	)=	2	1/	2	N	M	1	{kt[A]0	(1	+	kt[A]0	)}	12	The	rates
of	the	individual	steps	are	d[B]	A→B	=	Ia	dt	d[B]	B→A	=	−kr	[B]2	dt	In	the	photostationary	state,	Ia	–	kr[B]2	=	0	.	Hence,	1/	2	æI	ö	[B]	=	ç	a		è	kr	ø	This	concentration	can	differ	significantly	from	an	equilibrium	distribution	because	changing	the	illumination	may	change	the	rate	of	the	forward	reaction	without	affecting	the	reverse	reaction.	Contrast	this
situation	to	the	corresponding	equilibrium	expression,	in	which	[B]eq	depends	on	a	ratio	of	rate	constants	for	the	forward	and	reverse	reactions.	In	the	equilibrium	case,	the	rates	of	forward	and	reverse	reactions	cannot	be	changed	independently.	20:32	21	Reaction	dynamics	21A	Collision	theory	Answers	to	discussion	questions	21A.2	To	the	extent
that	real	gases	deviate	from	perfect	gas	behavior,	they	do	so	because	of	intermolecular	interactions.	Interactions	tend	to	be	more	important	at	high	pressures,	when	the	size	of	the	molecules	themselves	is	not	negligible	compared	to	the	average	intermolecular	distance	(mean	free	path).	Attractive	interactions,	might	enhance	a	reaction	rate	compared
to	the	predictions	of	collision	theory,	particularly	if	the	parts	of	the	molecules	that	are	attracted	to	each	other	are	the	reactive	sites.	(In	that	case,	the	both	the	collision	frequency	and	the	steric	factor	might	be	enhanced.)	Similarly,	repulsive	interactions	might	reduce	the	frequency	of	collisions	compared	to	what	would	be	predicted	for	perfect	gases.	In
supercritical	fluids,	densities	can	be	comparable	to	those	of	liquids,	so	the	considerations	explored	in	the	next	topic	(Diffusion-controlled	reactions,	Topic	21B)	for	reactions	in	solution	might	be	more	relevant	than	those	of	a	perfect	gas.	21A.4	The	RRK	theory	proposes	a	P-factor	that	is	more	related	to	statistical	energetic	considerations	than	to
geometric	(“steric”)	ones.	The	P-factor	in	RRK	theory	is	[21A.10a]:	s−1	æ	E	*ö	P	=	ç	1−	E	ø	è	where	E*	is	the	energy	required	to	break	a	bond	(leading	to	reaction),	E	the	energy	of	the	collision,	and	s	the	number	of	modes	over	which	the	energy	can	be	dissipated.	Like	more	geometric	interpretations	of	the	P-factor,	the	RRK	theory	assigns	smaller	P
factors	to	complex	molecules	than	to	simple	ones,	but	for	different	reasons.	A	more	geometric	theory	would	say	that	an	active	site	is	only	a	small	fraction	of	the	“surface	area”	of	a	complex	molecule,	whereas	RRK	theory	says	that	complex	molecules	are	much	more	effective	than	simple	ones	at	dispersing	energy	away	from	the	reactive	site.	Solutions
to	exercises	21A.1(b)	The	collision	frequency	is	[1B.11a]	z	=	σvrelN	æ	16kT	ö	where	vrel	=	ç	è	π	m	ø	1/2	[1B.10a	&	1B.9],	σ	=	πd2	=	4πR2,	and	N	=	æ	16kT	ö	Therefore,	z	=	σ	N	ç	è	π	m	ø	1/2	æ	π	ö	=	16	pR	2	ç	è	mkT	ø	p	kT	1/2	=	16	×	(120	×	103	Pa)	×	(180	×	10−12	m)2	æ	ö	π	×ç		−1	−27	−23	−1	è	28.01	mu	×	1.661	×	10	kg	mu	×	1.381	×	10	J	K	×	303	K	ø
1/2	=	7.90	×	109	s	−1	The	collision	density	is	[Justification	21A.1]	ö	zN	A	z	æ	p	ö	7.90	×	109	s	−1	æ	120	×	103	Pa	Z=	=	ç	=	ç		−23	−1	2	è	kT	ø	2	2	è	1.381	×	10	J	K	×	303	K	ø	=	1.13	×	1035	s	−1	m	−3	For	the	percentage	increase	at	constant	volume,	note	that	N	is	constant	at	constant	volume,	so	the	only	constant-volume	temperature	dependence	on	z
(and	on	Z)	is	in	the	speed	factor.	z	∝	T1/2	so	1	æ	∂z	ö	1	=	z	çè	∂T	ø	V	2T	and	1	1	æ	∂Z	ö	1	=	Z	çè	∂T	ø	V	2T	δ	z	=	δ	Z	≈	δ	T	=	1	æ	10	K	ö	=	0.017	2T	2	çè	303	K	ø	Z	z	Therefore	so	both	z	and	Z	increase	by	about	1.7%	.	21A.2(b)	The	fraction	of	collisions	having	at	least	Ea	along	the	line	of	flight	may	be	inferred	by	dividing	out	of	the	collision-theory	rate
constant	(eqn.	21A.9)	those	factors	that	can	be	identified	as	belonging	to	the	steric	factor	or	collision	rate:	f	=	e	(i)	(ii)	−	E	/RT	a	(1)	−1	æ	ö	−15	×	103	J	mol	−3	f	=	exp	ç		=	2.4	×	10	−1	−1	)	×	(300	K)	mol	(8.3145	J	K	è	ø	(2)	−1	æ	ö	−15	×	103	J	mol	f	=	exp	ç		=	0.105	−1	−1	è	(8.3145	J	K	mol	)	×	(800	K)	ø	(1)	−1	æ	ö	−150	×	103	J	mol	−27	f	=	exp	ç		=	7.7
×	10	−1	−1	mol	)	×	(300	K)	(8.3145	J	K	è	ø	(2)	−1	æ	ö	−150	×	103	J	mol	−10	f	=	exp	ç		=	1.6	×	10	−1	−1	mol	)	×	(800	K)	(8.3145	J	K	è	ø	−	E	/RT	21A.3(b)	A	straightforward	approach	would	be	to	compute	f	=	e	a	at	the	new	temperature	and	compare	it	to	that	at	the	old	temperature.	An	approximate	approach	would	be	to	note	that	f	æ	−	Ea	ö	−	E	/RT	to
exp	ç	changes	from	f0	=	e	a		,	where	x	is	the	fractional	increase	in	the	è	RT	(1	+	x)	ø	temperature.	If	x	is	small,	the	exponent	changes	from	–Ea/RT	to	approximately	–Ea(1–x)/RT	and	f	changes	from	f0	to	(	)	−x	−	x	)/	RT	RT	f	≈	e	−	Ea	(1=	e	−	Ea	/	RT	e	−	Ea	/=	f	0	f	0−	x	Thus	the	new	fraction	is	the	old	one	times	a	factor	of	f0–x	.	The	increase	in	f
expressed	as	a	percentage	is	f	f	−	x	−	f0	f	−	f0	×	100%	=	(	f0	−	x	−	1)	×	100%	×	100%	=	0	0	f0	f0	(1)	(ii)	21A.4(b)	(1)	f0−	x	=	(2.4	×	10−3	)−10/300	=	1.2	and	the	percentage	change	is	20%	.	(2)	f0−	x	=	(0.105)−10/800	=	1.03	and	the	percentage	change	is	3%	.	(1)	f0−	x	=	(7.7	×	10−27	)−10/300	=	7.4	and	the	percentage	change	is	640%	.	(2)	f0−	x	=
(1.6	1	×	10−10	)−10/800	=	1.33	and	the	percentage	change	is	33%	.	æ	8kT	ö		çè	πµ	ø	1/2	kr	=	Pσ	ç	N	Ae	−	Ea	/RT	[21A.9]	We	take	P	=	1,	so	æ	8(1.381	×	10−23	J	K	−1)	×	(450	K)	ö	kr	=	[0.30	×	(10	m)	]	×	ç		çè	π	(3.930	m	)	×	(1.661	×	10−27	kg	m	−1)	ø	u	u	−9	1/2	2	−1	æ	ö	−200	×	103	J	mol	×(6.022	×	1023	mol−1	)	×	exp	ç		−1	−1	è	(8.3145	J	K	mol	)	×
(450	K)	ø	=	1.7	×	10−15	m	3	mol−1	s	−1	=	1.7	×	10−12	dm	3	mol−1s	−1	.	21A.5(b)	The	steric	factor,	P,	is	σ*	[Topic	21A.1(c)]	P=	σ	The	mean	collision	cross-section	is	σ	=	πd2	with	d	=	(dA	+	dB)/2	2	Get	the	diameters	from	the	collision	cross-sections:	dA	=	(σA/π)1/2	and	dB	=	(σB/π)1/2	,	π	ïìæ	σ	A	ö	σ=	í	4	ïîçè	π	ø	1/	2	so	2	1/	2	æ	σ	ö	ïü	+ç	B		ý	=	è	π	ø	ïþ
(σ	1/	2	A	+	σ	B1/	2	)	2	4	{(0.88	nm	)	2	1/	2	=	+	(0.40	nm	2	)1/	2	}	2	4	=	0.62	nm	2	.	Therefore,	P	=	8.7	×	10−22	m	2	=	1.41	×	10−3	0.62	×	(10−9	m)2	21A.6(b)	According	to	RRK	theory,	the	steric	P-factor	is	given	by	eqn.	21A.10a	s−1	æ	E	*ö	P	=	ç1	−	E	ø	è	where	s	is	the	number	of	vibrational	modes	in	the	reacting	molecule.	For	a	non-linear	molecule
composed	of	N	atoms,	the	number	of	modes	is	[Topic	12E.1]	s	=	3N	–	6	=	3×4	–	6	=	6.	Rearranging	eqn.	21A.10a	yields	1	1	E*	=	1	−	P	s−1	=	1	−	(0.025)	5	=	0.52	E	21A.7(b)	According	to	RRK	theory,	the	steric	P-factor	is	given	by	eqn.	21A.10a	æ	E	*ö	P	=	ç1	−	E	ø	è	s−1	æ	300	kJ	mol−1	ö	=	ç1	−		è	500	kJ	mol−1	ø	12−1	=	4.2	×	10−5	Solutions	to
problems	21A.2	Draw	up	the	following	table	as	the	basis	of	an	Arrhenius	plot:	T/K	600	700	800	1000	10	K	/	T	1.67	1.43	1.25	1.00	kr	/	(cm3	mol–1	s–1)	4.6×102	9.7×103	1.3×105	3.1×106	ln	(kr	/	cm3	mol–1	s–1)	6.13	9.18	11.8	14.9	3	The	points	are	plotted	in	Figure	21A.1.	Figure	21A.1	The	least-squares	intercept	is	at	28.3,	which	implies	that	A	/	(cm3
mol–1	s–1)	=	e28.3	=	2.0×1012	3	But	comparison	of	eqn.	21A.9	to	the	Arrhenius	equation	tells	us	that	P=	so	A	æ	πµ	ö	N	Aσ	çè	8kT	ø	æ	8kT	ö	A	=	N	A	Pσ	ç	è	πµ	ø	1/2	1/2	The	reduced	mass	is	µ	=	m(NO2)/2	=	46	mu	×	(1.661×10–27	kg	mu–1)	/	2	=	3.8×10–26	kg	so,	evaluating	P	in	the	center	of	the	range	of	temperatures	spanned	by	the	data,	æ	ö	2.0	×	1012
×	(10−2	m)3	mol−1	s	−1	π	×	3.8	×	10−26	kg	×	P=	ç	−1	−23	2	−9	23	−1	(6.022	×	10	mol	)	×	0.60	×	(10	m)	è	8	×	1.381	×	10	J	K	×	800	K	ø	1/2	=	6.5	×	10−3	.	σ*	=	Pσ	=	(6.5×10–3)	×	(0.60	nm2)	=	3.9×10–3	nm2	=	3.9×10–21	m2	21A.4	Example	21A.1	estimates	a	steric	factor	within	the	harpoon	mechanism:	ö	e2	σ*	æ	≈ç	σ	è	4πε	0	d(I	−	Eea	)	ø	2
Taking	σ	=	πd2	gives	æ	e2	ö	2	6.5	nm	2	σ*	≈	π	ç		=	{(I	−	Eea	)	/	eV}2	è	4πε	0	[I(M)	−	Eea	(X	2	)]	ø	Thus,	σ*	is	predicted	to	increase	as	I	–	Eea	decreases.	We	construct	the	following	table	from	the	data:	σ*	/nm2	Na	K	Rb	Cs	Cl2	0.45	0.72	0.77	0.97	Br2	0.42	0.68	0.72	0.90	I2	0.56	0.97	1.05	1.34	All	values	of	σ*	in	the	table	are	smaller	than	the
experimental	ones,	but	they	do	show	the	correct	trends	down	the	columns.	The	variation	with	Eea	across	the	table	is	not	so	good.	21A.6	Collision	theory	gives	for	a	rate	constant	with	no	energy	barrier	1/2	k	æ	πµ	ö	æ	8kT	ö	N	A	[21A.9]	so	P	=	r	ç	kr	=	Pσ	ç	σ	N	A	è	8kT	ø	è	πµ	ø	P=	1/2	kr	/	(dm	3	mol−1	s	−1	)	×	(10−3	m	3	dm	−3	)	(σ	/	nm	2	)	×	(10−9	m)2	×
(6.022	×	1023	mol−1	)	æ	π	×	(	µ	/	u)	×	(1.66	×	10−27	kg)	ö	×ç		−1	−23	è	8	×	(1.381	×	10	J	K	)	×	(298	K)	ø	=	1/2	(6.61	×	10−13	)kr	/	(dm	3	mol−1	s	−1	)	(σ	/	nm	2	)	×	(	µ	/	mu	)1/2	The	collision	cross-section	is	σ	1/2	+	σ	1/2	+	σ	1/2	)2	(σ	1/2	1	A	B	A	B	so	σ	=	AB	2	4	2π	1/2	The	collision	cross-section	for	O2	is	listed	in	the	Data	Section.	We	would	not	be
far	wrong	if	we	took	that	of	the	ethyl	radical	to	equal	that	of	ethene;	similarly,	we	will	take	that	of	cyclohexyl	to	equal	that	of	benzene.	For	O2	with	ethyl	2	σ	AB	=	π	dAB	where	dAB	=	(dA	+	d	B	)	=	σ=	(0.401/2	+	0.641/2	)2	nm	2	=	0.51nm	2	4	4	µ=	mO	met	(32.0	mu	)	×	(29.1mu	)	=	=	15.2	mu	mO	+	met	(32.0	+	29.1)	mu	(6.61	×	10−13	)	×	(4.7	×	109	)
=	1.6	×	10−3	(0.51)	×	(15.2)1/2	For	O2	with	cyclohexyl	so	P=	(0.401/2	+	0.881/2	)2	nm	2	=	0.62	nm	2	4	m	m	(32.0	mu	)	×	(77.1mu	)	µ=	O	C	=	=	22.6	mu	mO	+	mC	(32.0	+	77.1)	mu	σ=	so	P=	(6.61	×	10−13	)	×	(8.4	×	109	)	=	1.8	×	10−3	(0.62)	×	(22.6)1/2	21B	Diffusion-controlled	reactions	Answer	to	discussion	question	D21B.2	In	the	cage	effect,	a
pair	of	molecules	may	be	held	in	close	proximity	for	an	extended	period	of	time	(extended	on	the	microscopic	scale,	mind	you)	by	the	presence	of	other	neighboring	molecules,	typically	solvent	molecules.	Such	a	pair	is	called	an	encounter	pair,	and	their	time	near	each	other	an	“encounter”	as	opposed	to	a	simple	collision.	An	encounter	may	include	a
series	of	collisions.	Furthermore,	an	encounter	pair	may	pick	up	enough	energy	to	react	from	collisions	with	neighboring	molecules,	even	though	the	pair	may	not	have	had	enough	energy	at	the	time	of	its	initial	collision.	Solutions	to	exercises	21B.1(b)	The	rate	constant	for	a	diffusion-controlled	bimolecular	reaction	is	kd	=	4πR*DNA	[21B.3]	where	D
=	DA	+	DB	=	2×(5.2×10–9	m2	s–1)	=	1.04×10–8	m2	s–1	kd	=	4π	×	(0.4×10–9	m)	×	(1.04×10–8	m2	s–1)	×	(6.022×1023	mol–1)	kd	=	3.	1	×	107	m	3	mol−1	s	−1	=	3.	1	×	1010	dm	3	mol−1	s	−1	21B.2(b)	The	rate	constant	for	a	diffusion-controlled	bimolecular	reaction	is	kd	=	8RT	[21A.4]	=	3η	8	×	(8.3145	J	K	−1	mol−1	)	×	(298	K)	6.61×	103	J	mol−1
=	η	3η	(i)	For	decylbenzene,	η	=	3.36	cP	=	3.36×10–3	kg	m–1	s–1	kd	=	6.61	×	103	J	mol−1	=	1.97	×	106	m	3	mol−1	s	−1	=	1.97	×	109	dm	3	mol−1	s	−1	3.36	×	10−3	kg	m	−1	s	−1	(ii)	In	concentrated	sulfuric	acid,	η	=	27	cP	=	27×10–3	kg	m–1	s–1	kd	=	6.61	×	103	J	mol−1	=	2.4	×	105	m	3	mol−1	s	−1	=	2.4	×	108	dm	3	mol−1	s	−1	27	×	10−3	kg	m
−1	s	−1	21B.3(b)	The	rate	constant	for	a	diffusion-controlled	bimolecular	reaction	is	[21B.4]	kd	=	8RT	=	3η	8	×	(8.3145	J	K	−1	mol−1	)	×	(320	K)	3×	(0.601×	10−3	kg	m	−1	s	−1	)	=	1.18	×	107	m	3	mol−1	s	−1	=	1.18	×	1010	dm	3	mol−1	s	−1	Since	this	reaction	is	elementary	bimolecular	it	is	second-order;	hence	5	so	t1/2	=	1	[Table	20B.3,	with	kr	=
2kd	because	2	atoms	are	consumed]	2kd	[A]0	t1/2	=	1	=	2.1	×	10−8	s	−3	−3	−1	2	×	(1.18	×	10	dm	mol	s	)	×	(2.0	×	10	mol	dm	)	10	3	−1	21B.4(b)	Since	the	reaction	is	diffusion-controlled,	the	rate-limiting	step	is	bimolecular	and	therefore	second-order;	hence	d[P]	=	kd	[A][B]	dt	where	kd	=	4π	R∗	DN	A	[88.3]	=	4π	N	A	R∗	(DA	+	DB	)	=	4π	N	A	×	(RA
+	RB	)	×	kd	=	æ	1	2RT	kT	æ	1	1ö	1ö	+		[19B.19b]	=	(RA	+	RB	)	×	ç	+		ç	3η	6πη	è	RA	RB	ø	è	RA	RB	ø	æ	1	1	ö	2	×	(8.3145	J	K	−1	mol−1	)	×	(293K)	+	×	(421	+	945)	×	ç	−1	−1	−3	è	421	945	ø	3	×	(1.35	×	10	kg	m	s	)	=	5.64	×	106	m	3	mol−1	s	−1	=	5.64	×	109	dm	3	mol−1	s	−1	.	Therefore,	the	initial	rate	is	d[P]	=	(5.64	×	109	dm	3	mol−1	s	−1	)	×	(0.155mol
dm	−3	)	×	(0.195mol	dm	−3	)	dt	=	1.71	×	108	mol	dm	−3	s	−1	Comment.	If	the	approximation	of	eqn.	21B.4	is	used,	kd	=	4.81×109	dm3	mol–1	s–1	.	In	this	case	the	approximation	results	in	a	difference	of	about	15%	compared	to	the	expression	used	above.	Solutions	to	problems	21B.2	See	Brief	illustration	21B.3	for	a	sample	scenario.	In	the	graphs
shown	here,	the	same	parameters	are	used,	except	for	the	value	of	the	rate	constant.	That	is,	n0	=	3.9	mmol	of	I2,	A	=	5.0	cm2,	and	D	=	4.1×10–9	m2	s–1.	Using	these	parameters,	we	will	plot	the	spatial	variation	in	concentration	at	102	s,	103	s,	and	104	s.	In	Figure	21B.1(a),	the	concentration	is	plotted	against	position	in	the	absence	of	reaction.
That	is,	kr	=	0.	The	concentration	profile	spreads	with	time.	That	is,	the	maximum	concentration	(which	stays	at	the	origin	throughout)	decreases,	but	the	distance	over	which	there	is	appreciable	concentration	increases.	Introducing	a	first-order	reaction	with	a	rate	constant	kr	=	4.0×10–5	s–1,	as	in	the	Brief	illustration,	has	a	barely	noticeable	effect
on	the	concentration	profiles	(plotted	in	Figure	21B.1(b));	the	longer-time	profiles	are	very	slightly	depressed.	Making	the	rate	constant	a	factor	of	10	greater	suppresses	the	104-s	profile:	by	that	time	the	material	has	practically	all	reacted	away	(Figure	21B.1(c)).	Speeding	up	the	reaction	by	a	further	factor	of	10	(Figure	21B.1(d))	suppresses	the	103-
s	profile	practically	completely	as	well,	and	even	the	102-s	is	visibly	lower.	6	Figure	21B.1(a)	Figure	21B.1(b)	Figure	21B.1(c)	Figure	21B.1(d)	Examination	of	eqn.	21B.9	suggests	that	the	spatial	variation	is	not	significantly	changed	by	reaction;	it	is	merely	scaled	equally	at	all	positions	by	the	factor	e	7	−	kr	t	.	21B.4	(a)	The	rate	constant	of	a
diffusion-limited	reaction	is	kd	=	8RT	8	×	(8.3145	J	K	−1	mol−1	)	×	(298	K)	[21B.4]	=	3η	3	×	(1.06	×	10−3	kg	m	−1	s	−1	)	=	6.23	×	106	m	3	mol−1	s	−1	=	6.23	×	109	dm	3	mol−1s	−1	(b)	The	rate	constant	is	related	to	the	diffusion	constants	and	reaction	distance	by	kd	=	4πR*DNA	[21B.3]	kd	(2.77	×	109	dm	3	mol−1	s	−1	)	×	(10−3	m	3	dm	−3	)	so
R*=	=	4π	DN	A	4π	×	(1	×	10−9	m	2	s	−1	)	×	(6.022	×	1023	mol−1	)	=	4	×	10−10	m	=	0.4	nm	21C	Transition-state	theory	Answers	to	discussion	questions	21C.2	See	Topic	21C.1(e)	for	detailed	examples	of	how	femtosecond	spectroscopy	has	been	used	to	detect	activated	complexes	and	transition	states	of	reactions.	Because	the	activated	complexes
are	not	even	local	minima	on	potential	energy	surfaces,	they	are	extremely	transitory,	and	laser	pulses	of	duration	less	than	1	ps	are	needed	in	order	to	detect	them.	Typically	one	very	short	pulse	will	initiate	the	reaction	under	investigation,	thereby	creating	a	dissociative	activated	complex,	and	a	second	pulse	will	detect	a	reaction	product.	Not	only
must	the	pulses	themselves	be	very	short,	but	the	delay	between	the	creation	of	the	complex	and	the	detection	of	its	effects	must	also	be	short.	By	such	techniques,	investigators	have	been	able	to	determine	just	how	stretched	the	bond	in	ICN	must	get	before	it	breaks	(yielding	free	CN).	Also,	decay	of	the	ion	pair	Na+I–	has	been	studies	in	detail,
revealing	the	existence	of	two	potential	energy	surfaces,	one	largely	ionic	and	one	corresponding	to	a	covalent	NaI.	21C.4	The	primary	isotope	effect	is	the	change	in	rate	constant	of	a	reaction	in	which	the	breaking	of	a	bond	involving	the	isotope	occurs.	The	reaction	coordinate	in	a	C–H	bond-breaking	process	corresponds	to	the	stretching	of	that
bond.	The	vibrational	energy	of	the	stretching	depends	upon	the	effective	mass	of	the	C	and	H	atoms	(µCH).	Upon	deuteration,	the	zero	point	energy	of	the	bond	is	lowered	due	to	the	greater	mass	of	the	deuterium	atom.	However,	the	height	of	the	energy	barrier	is	not	much	changed	because	the	relevant	vibration	in	the	activated	complex	has	a	very
low	force	constant	(bonding	in	the	complex	is	very	weak),	so	there	is	little	zero	point	energy	associated	with	the	complex	and	little	change	in	its	zero	point	energy	upon	deuteration.	The	net	effect	is	an	increase	in	the	activation	energy	of	the	reaction.	We	then	expect	that	the	rate	constant	for	the	reaction	will	be	lowered	in	the	deuterated	molecule	and
that	is	what	is	observed.	See	the	derivation	leading	to	eqns	21C.19	and	21C.20	for	a	quantitative	description	of	the	effect.	Sometimes	the	rate	of	reaction	is	lowered	upon	deuteration	to	an	extent	even	greater	than	can	be	accounted	for	by	these	equations.	In	such	cases,	quantum-mechanical	tunneling	(Topic	8A)	may	be	part	of	the	reaction	mechanism.
The	probability	of	tunneling	is	highly	sensitive	to	mass,	so	it	is	much	less	likely	(and	therefore	much	slower)	for	deuterium	than	for	1H.	If	the	rate	of	a	reaction	is	altered	by	isotopic	substitution	it	implies	that	the	substituted	site	plays	an	important	role	in	the	mechanism	of	the	reaction.	For	example,	an	observed	effect	on	the	rate	can	identify	bond
breaking	events	in	the	rate	determining	step	of	the	mechanism.	On	the	other	hand,	if	no	isotope	effect	is	observed,	the	site	of	the	isotopic	substitution	may	play	no	critical	role	in	the	mechanism	of	the	reaction.	Solutions	to	exercises	21C.1(b)	The	enthalpy	of	activation	for	a	bimolecular	solution	reaction	is	[Topic	21C.2(a)	footnote]	∆‡H	=	Ea	–	RT	=
8.3145	J	K–1	mol–1	×	(5925	K	–	298	K)	=	46.9	kJ	mol–1	8	‡	‡	æ	kT	kr	=	B	e	∆	S	/	R	e	−∆	H	/	RT	,	B	=	ç	è	h	ö	æ	RT	×ç	O	ø	èp	ö	kRT	2	=	O	ø	hp	=	B=	e	∆	S	/	R	e	−	Ea	/	RT	e	A	e	−	Ea	/	RT	‡	‡	æ	A	ö	‡	Therefore,	A	=	e	B	e	∆	S	/	R	,	implying	that	∆=	S	R	ç	ln	−	1	è	B	ø	B=	(1.381	×	10−23	J	K	−1	)	×	(8.3145J	K	−1	mol−1	)	×	(298	K)2	6.626	×	10−34	J	s	×	105	Pa	=
1.54	×	1011	m	3	mol−1	s	−1	=	1.54	×	1014	dm	3	mol−1	s	−1	é	æ	6.92	×	1012	dm	3	mol−1	s	−1	ö	ù	−	1ú	and	hence	∆‡	S	=	R	ê	ln	ç	3	−1	−1		14	êë	è	1.54	×	10	dm	mol	s	ø	úû	=	8.3145	J	K	−1	mol−1	×	(−4.10)	=	−34.1	J	K	−1	mol−1	21C.2(b)	The	enthalpy	of	activation	for	a	bimolecular	solution	reaction	is	[Topic	21C.2(a)	footnote]	∆‡H	=	Ea	–	RT	=	8.3145	J
mol–1	K–1	×	(4972	K	–	298	K)	=	38.9	kJ	mol–1	The	entropy	of	activation	is	[Exercise	21C.1(b)]	æ	A	ö	‡	∆=	S	R	ç	ln	−	1	è	B	ø	with	B=	kRT	2	=	1.59	×	1014	dm	3	mol−1	s	−1	hp	O	é	æ	4.98	×	1013	ö	ù	Therefore,	∆‡	S	=	8.3145	J	K	−1	mol−1	×	ê	ln	ç	−	1ú	=	−17.7	J	K	−1	mol−1	14		.	×	1	54	10	ø	û	ë	è	Hence,	∆‡G	=	∆‡H	–	T∆‡S	=	{38.9	–	(298)	×	(–17.7×10–3)}
kJ	mol–1	=	+44.1	kJ	mol–1	21C.3(b)	Use	eqn.	21C.15(a)	to	relate	a	bimolecular	gas-phase	rate	constant	to	activation	energy	and	entropy:	kr	=	e	2	B	e	∆	S	/	R	e	−	Ea	/	RT	‡	æ	kT	ö	æ	RT	ö	where	B	=	ç		×	ç	O		[21C.14]	è	h	ø	èp	ø	=	(1.381×	10−23	J	K	−1	)	×	(338	K)2	×	(8.3145	J	mol−1	K	−1	)	(6.626	×	10−34	J	s)	×	(105	Pa)	=	1.98	×	1011	m	3	mol−1	s	−1
Solve	for	the	entropy	of	activation:	æ	k	ö	E	=	∆‡	S	R	ç	ln	r	−	2		+	a	B	è	ø	T	æ	ö	39.7	×	103	J	mol−1	0.35	m3	mol−1	s	−1	Hence	∆‡	S	8.3145	J	K	−1	mol−1	×	ç	ln	2	=	−	+	11	3	−1	−1	338	K	è	1.98	×	10	m	mol	s	ø	=	−124	J	K	−1	mol−1	21C.4(b)	For	a	bimolecular	gas-phase	reaction	[Exercise	21C.3(b)],	æ	A	E	ö	Ea	æ	k	ö	Ea	æ	A	ö	‡	∆=	S	R	ç	ln	r	−	2		+	=	R	ç	ln	−
a	−	2		+	=	R	ç	ln	−	2		è	B	ø	è	B	ø	T	è	B	RT	ø	T	kRT	2	hp	O	For	two	structureless	particles,	the	rate	constant	is	the	same	as	that	of	collision	theory	where	B	=	æ	8kT	ö	kr	=	N	A	σ	∗	ç	è	πµ	ø	1/2	e	−∆E0	/RT	[Example	21C.1]	9	The	activation	energy	is	[20D.3]	d	ln	kr	d	Ea	=	RT	2	=	RT	2	dT	dT	æ	∆E0	ö	1	8k	1	∗	ç	ln	N	Aσ	+	2	ln	πµ	+	2	ln	T	−	RT		è	ø	æ	1	∆E0	ö	RT
+	=	RT	2	ç		=	∆E0	+	2	,	è	2T	RT	2	ø	so	the	prefactor	is	1/	2	1/	2	æ	8kT	ö	−∆E0	/	RT	∆E0	/	RT	1/	2	æ	8kT	ö	1/	2	A	k=	N	Aσ	ç	N	Aσ	∗	ç	e	=	e	=		e		e	re	è	πµ	ø	è	πµ	ø	1/	2	1/	2	∗	O	æ	8kT	ö	kRT	2	1	3	ïü	ïì	ïü	ïì	σ	p	h	æ	8	ö	Hence	∆‡	S	R	íln	N	Aσ	∗	ç	ln	R	2	ln	=	−	−	=	+	ý	í			−	ý.	O	3/	2	ç	2	2	þï	p	h	è	πµ	ø	ïî	þï	îï	(kT	)	è	πµ	ø	For	identical	particles,	µ	=m/2	=	(92	u)
(1.661×10–27	kg	u–1)/2	=	7.6×10–26	kg	,	and	hence	∆‡	S	=	8.3145	J	K	−1	mol−1	Ea	/	RT	(	∗	)	1/	2	ìï	0.45	×	(10−9	m)	2	×	105	Pa	×	6.626	×	10−34	J	s	æ	ö	8	3	üï	×	íln	ç		−	ý	−23	−1	−26	3/	2	2	ïþ	(1.381×	10	J	K	×	450	K)	è	π	×	7.6	×	10	kg	ø	ïî	=	−79	J	K	−1	mol−1	.	21C.5(b)	At	low	pressure,	the	reaction	can	be	assumed	to	be	bimolecular.	(The	rate
constant	is	certainly	second-order.)	æ	A	ö	‡	(a)	∆=	S	R	ç	ln	−	2		[Exercise	21C.4(b)]	è	B	ø	where	B	=	1.381×	10−23	J	K	−1	×	8.3145	J	K	−1	mol−1	×	(298	K)2	kRT	2	[Exercise	21C.4(b)]	=	O	6.626	×	10−34	J	s	×	105	Pa	hp	=	1.54	×	1011	m	3	mol−1	s	−1	=	1.54	×	1014	dm	3	mol−1	s	−1.	æ	2.3	×	1013	dm3	mol−1	s	−1	ö	Hence	∆‡	S	8.3145	J	K	−1	mol−1	×
ç	ln	=	−	2	−1	−1	14	3	è	1.54	×	10	dm	mol	s	ø	=	−32	J	K	−1	mol−1	(b)	The	enthalpy	of	activation	for	a	bimolecular	gas-phase	reaction	is	[Topic	21C.2(a)	footnote]	∆‡H	=	Ea	–	2RT	=	30.0	kJ	mol–1	–	2	×	8.3145	J	mol–1	K–1	×	298	K	=	25.0	kJ	mol–1	(c)	The	Gibbs	energy	of	activation	at	298	K	is	∆‡G	=	∆‡H	–	T∆‡S	=	25.0	kJ	mol–1	–	(298	K)	×	(–32×10–3	kJ
K–1	mol–1)	∆‡G	=	+34.7	kJ	mol–1	21C.6(b)	Use	eqn.	21C.18	to	examine	the	effect	of	ionic	strength	on	a	rate	constant:	log	kr	=	log	kr°	+	2A|zAzB|I1/2	Hence	log	kr°	=	log	kr	–	2A|zAzB|I1/2	=	log	1.55	–	2	×	0.509	×	|1×1|	×	(0.0241)1/2	=	0.032,	and	kr°	=	1.08	dm6	mol–2	min–1	.	Solutions	to	problems	21C.2	log	kr	=	log	kro	+	2	AzA	zB	I	1/2	[21C.18]
This	expression	suggests	that	we	should	plot	log	kr	against	I1/2	and	determine	zB	from	the	slope,	since	we	know	that	|zA|	=	1.	We	draw	up	the	following	table:	I	/	(mol	kg–1)	{I	/	(mol	kg–1)}1/2	log	{kr	/	(dm3	mol–1	s–1)}	0.0025	0.050	0.021	0.0037	0.061	0.049	10	0.0045	0.067	0.064	0.0065	0.081	0.072	0.0085	0.092	0.100	These	points	are	plotted	in
Figure	21C.1.	Figure	21C.1	The	slope	of	the	limiting	line	in	Figure	21C.1	is	approximately	2.5.	Since	this	slope	is	equal	to	2	AzA	zB	×	(mol	dm	−3	)1/2	=	1.018	zA	zB	,	we	have	zA	zB	≈	2.5	.	But	|zA|	=	1,	and	so	|zB|	=	2.	Furthermore,	zA	and	zB	have	the	same	sign	because	zAzB	>	0.	(In	fact,	the	data	refer	to	I–	and	S2	O82−	.)	21C.4	Figure	21C.2	shows
that	log	kr	is	proportional	to	the	ionic	strength	even	when	one	of	the	reactants	is	a	neutral	molecule.	Figure	21C.2	From	the	graph,	the	intercept	at	I	=	0	is	–0.182,	so	the	limiting	value	of	kr	is	kr°	=	10–0.182	=	0.658	dm3	mol–1	min–1	Compare	the	equation	of	the	best-fit	line	to	eqn	21C.16b:	log	=	kr	log	kr	°	−	log=	Kγ	log	kr	°	−	log	γC	γI	γH	O	γI	γH
O	γC	=	log	kr	°	+	log	‡	−	which	implies	that	log	γI	γH	O	−	2	γC	2	2	2	−	2	2	‡	=	0.145I	‡	If	the	Debye-Hückel	limiting	law	holds	(an	approximation	at	best),	the	activity	coefficients	of	I–	and	the	activated	complex	are	equal,	which	would	imply	that	log	γ	H	O	=	0.145I	,	that	is,	2	2	that	the	activity	coefficient	of	a	neutral	molecule	depends	on	ionic
strength.	11	Ka	=	21C.6	2	−	+	[H	+	][A	−	]	2	[H	][A	]γ	±	γ±	≈	[HA]	[HA]γ	HA	Therefore,	[H	+	]	=	and	[HA]K	a	[A	−	]γ	±2	log[H	+	]	=	log	K	a	+	log	[HA]	[HA]	−	2	log	γ	±	=	log	K	a	+	log	−	+	2	AI	1/2	−	[A	]	[A	]	Write	v	=	kr	[H	+	][B]	.	Then	log	v	=	log(kr	[B])	+	log[H	+	]	[HA]	+	2	AI	1/2	+	log	K	a	[A	−	]	[B][HA]K	a	=	log	v°	+	2	AI	1/2	,	v°	=	kr	.	[A	−	]
That	is,	the	logarithm	of	the	rate	should	depend	linearly	on	the	square	root	of	the	ionic	strength.	1/	2	v	v=	v°×	102	AI	log	=	2	AI	1/	2	so	v°	That	is,	the	rate	depends	exponentially	on	the	square	root	of	the	ionic	strength.	=	log(kr	[B])	+	log	21C.8	We	use	the	Eyring	equation	(combining	eqns.	21C.9	and	21C.10)	to	compute	the	bimolecular	rate	constant
O	2	O	kT	æ	RT	ö	N	Aq	C‡	æ	−∆E0	ö	(	RT	)	q	C‡	æ	−∆E0	ö	=	≈	kr	κ	exp	exp	ç	ç	O	O	O	ç			O	O	O	h	è	p	ø	q	H	q	D2	è	RT	ø	hp	q	H	q	D2	è	RT	ø	We	are	to	consider	a	variety	of	activated	complexes,	but	the	reactants,	(H	and	D2)	and	their	partition	functions	do	not	change.	Consider	them	first.	The	partition	function	of	H	is	solely	translational:	1/	2	æ	h2	ö	RT	(2π
kTmH	)3/	2	RT	O	=	q	=	=	and	ΛΗ	ç		so	q	H	O	3	p	ΛH	p	O	h3	è	2π	kTmH	ø	We	have	neglected	the	spin	degeneracy	of	H,	which	will	cancel	the	spin	degeneracy	of	the	activated	complex.	The	partition	function	of	D2	has	a	rotational	term	as	well.	RkT	2	(2π	kTmD2	)3/	2	RT	kT	O	q	D2	=	O	3	×	=	p	ΛD2	σ	hcBD2	2	p	O	h	4	cBD2	We	have	neglected	the
vibrational	partition	function	of	D2,	which	is	very	close	to	unity	at	the	temperature	in	question.	The	symmetry	number	σ	is	2	for	a	homonuclear	diatomic,	and	the	rotational	constant	is	30.44	cm–1.	Now,	the	partition	function	of	the	activated	complex	will	have	a	translational	piece	that	is	the	same	regardless	of	the	model:	×	q	CR‡	×	q	CV‡	q	CO‡	=	q
CTO	‡	O	H	where	RT	(2π	kTmHD	)3/2	q	C‡	=	TO	2	p	O	h3	Let	us	aggregate	the	model-independent	factors	into	a	single	term,	F	where	2h3	cBD2	mHD2	3/	2	(	RT	)	2	q	CTO	‡	æ	−∆E0	ö	æ	−∆E0	ö	=	exp	exp	ç	F	=	ç			O	O	O	3/	2	hp	q	H	q	D2	è	RT	ø	kT	(2π	mH	mD2	kT	)	è	RT	ø	1/	2	æ	ö	53	æ	−∆E0	ö	=	h	cBD2	ç	=	exp	ç	2.71×	104	dm3	mol−1	s	−1		3	3	3	3	5		è	RT
ø	è	2mH	(4)	p	T	k	ø	where	we	have	taken	mHD	=	5mH	and	mD	=	4mH	.	3	2	Now	2	kr	=	F	×	q	C‡	×	q	C‡	R	V	12	The	number	of	vibrational	modes	in	the	activated	complex	is	3×3–6=3	for	a	non-linear	complex,	one	more	for	a	linear	complex;	however,	in	either	case,	one	mode	is	the	reaction	coordinate,	and	is	removed	from	the	partition	function.
Therefore,	assuming	all	real	vibrations	to	have	the	same	wavenumber	v	2	3	q	CV‡	=	q	mode	(non-linear)	or	q	mode	(linear)	−1	é	æ	−hcv	ö	ù	where	q	mode	=	1.028	ê1	−	exp	ç	kT		ú	=	è	øû	ë	if	the	vibrational	wavenumbers	are	1000	cm–1	.	The	rotational	partition	function	is	3/	2	1/	2	kT	1	æ	kT	ö	æ	π	ö	=	(linear)	or	ç	q	‡		ç					(	non-linear)		C	σ	σ	hcB	è	hc	ø	è	ABC
ø	where	the	rotational	constants	are	related	to	moments	of	inertia	by		2	=	B	=	where	I	∑	mr	4π	cI	and	r	is	the	distance	from	an	atom	to	a	rotational	axis.	(a)	The	first	model	for	the	activated	complex	is	triangular,	with	two	equal	sides	of	s	=1.30	×	74	pm	=	96	pm	and	a	base	of	b	=1.20	×	74	pm	=	89	pm	R	The	moment	of	inertia	about	the	axis	of	the
altitude	of	the	triangle	(z	axis)	is		I1	=	2mD	(b	/	2)	2	=	mH	b	2	so	A	=	=	21.2	cm	−1	4π	cmΗ	b	2	To	find	the	other	moments	of	inertia,	we	need	to	find	the	center	of	mass.	Clearly	it	is	in	the	plane	of	the	molecule	and	on	the	z	axis;	the	center	of	mass	is	the	position	z	at	which	∑	mi	(zi	−	z)	=	0	=	2(2mH	)(0	−	z)	+	mH	(H	−	z)	i	where	H	is	the	height	of	the
triangle,	H	=	[s	2	−	(b	/	2)2	]1/2	=	85	pm	so	the	center	of	mass	is	z	=	H	/	5	.	The	moment	of	inertia	about	the	axis	in	the	plane	of	the	triangle	perpendicular	to	the	altitude	is	I	2	=	2(2mH	)(H	/	5)2	+	mH	(4H	/	5)2	=	(4mH	/	5)H	2		=	28.3	cm	−1	4π	c(4mH	/	5)	H	2	The	distance	from	the	center	of	mass	to	the	D	atoms	is	rD	=	[(H	/	5)2	+	(b	/	2)2	]1/2	=	48
pm	and	the	moment	of	inertia	about	the	axis	perpendicular	to	the	plane	of	the	triangle	is	I	3	=	2(2mH	)rD	2	+	mH	(4H	/	5)2	=	2(2mH	)[(H	/	5)2	+	(b	/	2)2	]	+	mH	(4H	/	5)2	so	=	B	=	(4mH	/	5)(s	2	+	b2	).	so	13		=	12.2	cm	−1	4π	c(4mH	/	5)(	s	2	+	b	2	)	The	rotational	partition	function	is	=	C	1	æ	kT	ö	æ	π	ö	47.7	=				ø	σ	çè	hc	ø	çè	ABC	(The	symmetry	number
σ	is	2	for	this	model.)	The	vibrational	partition	function	is	2	q	CV‡	=	q	mode	=	1.057	3/	2	1/	2	=	q	CR‡	So	the	rate	constant	is:	kr	=	F	×	q	CR‡	×	q	CV‡	=	1.37	×	106	dm	3	mol−1	s	−1	(b)	To	compute	the	moment	of	inertia,	we	need	the	center	of	mass.	Let	the	terminal	D	atom	be	at	x	=	0,	the	central	D	atom	at	x	=	b,	and	the	H	atom	at	x	=	b	+	s.	The
center	of	mass	is	the	position	X	at	which	∑	mi	(xi	−	X	)	=	0	=	2mH	(0	−	X	)	+	2mH	(b	−	X	)	+	mH	(s	+	b	−	X	)	i	5X	=	3b	+	s	so	x	=	(3b	+	s)	/	5	The	moment	of	inertia	is	I	=	∑	mi	(xi	−	X	)2	=	2mH	X	2	+	2mH	(b	−	X	)2	+	mH	(s	+	b	−	X	)2	i	=	3.97	×	10−47	m	kg	2		and	=	B	=	7.06	cm	−1	4π	cI	The	rotational	partition	function	is	kT	=	q	R‡	=	39.4	C	σ	hcB
(The	symmetry	number	σ	is	1	for	this	model.)	The	vibrational	partition	function	is	3	q	CV‡	=	q	mode	=	1.09	So	the	rate	constant	is	kr	=	F	×	q	CR‡	×	q	CV‡	=	1.16	×	106	dm	3	mol−1	s	−1	(c)	Both	models	are	already	pretty	good,	coming	within	a	factor	of	3	to	4	of	the	experimental	result,	and	neither	model	has	much	room	for	improvement.	Consider
how	to	try	to	change	either	model	to	reduce	the	rate	constant	toward	the	experimental	value.	The	factor	F	is	modelindependent.	The	factor	q	CV‡	is	nearly	at	its	minimum	possible	value,	1,	so	stiffening	the	vibrational	modes	will	have	almost	no	effect.	Only	the	factor	q	CR‡	is	amenable	to	lowering,	and	even	that	not	by	much.	It	would	be	decreased	if
the	rotational	constants	were	increased,	which	means	decreasing	the	moments	of	inertia	and	the	bond	lengths.	Reducing	the	lengths	s	and	b	in	the	models	to	the	equilibrium	bond	length	of	H2	would	only	drop	kr	to	6.5×105	(model	a)	or	6.9×105	(model	b)	dm3	mol–1	s–1,	even	with	a	stiffening	of	vibrations.	Reducing	the	HD	distance	in	model	(a)	to
80%	of	the	H2	bond	length	does	produce	a	rate	constant	of	4.2×	105	dm3	mol–1	s–1	(assuming	stiff	vibrations	of	2000	cm–1);	such	a	model	is	not	intermediate	in	structure	between	reactants	and	products,	though.	It	appears	that	the	rate	constant	is	rather	insensitive	to	the	geometry	of	the	complex.	21C.10	Eqn.	21C.18	may	be	written	in	the	form:	o	1
log	(	kr	/	kr	)	2	zA	=	2A	I	1/	2	where	we	have	used	zA	=	zB	for	the	cationic	protein.	This	equation	suggests	that	zA	can	be	log	(	kr	/	kro	)	determined	through	analysis	that	uses	the	mean	value	of	from	several	I	1/	2	experiments	over	a	range	of	various	ionic	strengths.	14	zA	=	o	1	log	(	kr	/	kr	)	2A	I	1/	2	We	draw	up	a	table	that	contains	data	rows	needed
for	the	computation:	I	kr/kro	log(kr/kro)	/	I1/2	0.0100	8.10	9.08	0.0150	13.30	9.18	log	(	kr	/	kro	)	I	1/	2	zA	=	0.0200	20.50	9.28	0.0250	27.80	9.13	0.0300	38.10	9.13	0.0350	52.00	9.17	=	9.17	o	1	log	(	kr	/	kr	)	=	2A	I	1/	2	9.16	=	+3.0	2	(	0.509	)	We	used	the	positive	root	because	the	protein	is	cationic.	21D	The	dynamics	of	molecular	collisions	Answers
to	discussion	questions	21D.2	The	saddle	point	on	the	potential	energy	surface	corresponds	to	the	transition	state	of	a	reaction.	The	saddle-point	energy	is	the	minimum	energy	required	for	reaction;	it	is	the	minimum	energy	for	a	path	on	the	potential	energy	surface	that	leads	from	reactants	to	products.	Because	many	paths	on	the	surface	between
reactants	and	products	do	not	pass	through	the	saddle	point,	they	necessarily	pass	through	points	of	greater	energy,	so	the	activation	energy	can	be	greater	than	the	saddle-point	energy.	Thus,	the	saddle-point	energy	is	a	lower	limit	to	the	activation	energy.	21D.4	Attractive	and	repulsive	potential-energy	surfaces	are	discussed	in	Section	21D.4(b).
An	attractive	surface	is	one	whose	saddle	point	is	closer	to	reactants	than	to	products,	so	that	the	transition	state	occurs	early	in	the	reaction.	On	such	a	surface,	trajectories	in	which	excess	energy	is	translational	tend	to	end	in	products	whereas	trajectories	in	which	the	reactant	is	vibrationally	excited	tend	not	to	cross	the	saddle	point	and	end	in
products.	Conversely,	on	a	repulsive	surface,	the	oscillatory	motion	of	a	trajectory	that	has	excess	vibrational	energy	in	the	reactant	enhances	the	likelihood	that	the	trajectory	will	end	in	products	rather	than	simply	reflect	back	to	reactants.	Solutions	to	exercises	21D.1(b)	Refer	to	Figure	21D.20	of	the	main	text,	which	shows	a	repulsive	potential
energy	surface	as	well	as	trajectories	of	both	a	successful	reaction	and	an	unsuccessful	one.	The	trajectories	begin	in	the	lower	right,	representing	reactants.	The	successful	trajectory	passes	through	the	transition	state	(marked	by	a	circle	with	the	symbol	‡	near	it).	The	unsuccessful	trajectory	is	fairly	straight	from	the	lower	right	through	the
transition	state,	indicating	little	or	no	vibrational	excitation	in	the	reactant.	Therefore	most	of	its	energy	is	in	translation.	That	trajectory	runs	up	a	steep	portion	of	the	surface	and	rolls	back	down	the	valley	representing	the	reactant.	Without	vibrational	energy,	it	cannot	go	around	the	corner	to	the	transition	state.	The	successful	trajectory,
conversely,	is	able	to	turn	that	corner	only	because	it	has	a	substantial	amount	of	energy	in	vibration	(which	is	represented	by	side	to	side	motion	in	the	valley	representing	reactants).	That	is,	the	reactant	is	relatively	high	in	vibrational	energy.	Once	that	successful	trajectory	passes	through	the	transition	state,	it	rolls	pretty	much	straight	into	the
valley	representing	products,	so	the	product	is	high	in	translational	energy	and	low	in	vibrational	energy.	15	21D.2(b)	The	numerator	of	eqn.	21D.6	is	V	1	−	E	/	RT	E	=	−V	1	−	E	/	RT	e	−	=	P	(	E	)e	−	E	/	RT	dE	=	(	)	(1	−	e−V	/	RT	)	∫0	e	dE	=	=	E	0	RT	RT	Thus,	if	the	cumulative	reaction	probability	were	a	step	function	that	vanishes	at	high	temperature,
then	the	numerator	would	decrease	with	increasing	temperature.	(The	exponential	term	increases	with	increasing	temperature,	but	it	diminishes	the	expression	because	of	the	negative	sign	in	front	of	it.	The	1/T	factor	also	decreases	with	increasing	temperature.)	The	rate	constant,	then,	would	also	decrease	with	increasing	temperature.	(In	fact,	the
rate	constant	would	decrease	with	increasing	temperature	even	faster,	because	the	denominator	of	eqn.	21D.6	would	increase	with	increasing	temperature.)	Comment:	The	cumulative	reaction	probability	is	more	likely	to	be	a	step	function	in	the	opposite	sense,	one	that	vanishes	for	energies	below	a	threshold.	Comment:	The	solution	to	Exercise
21D.2(a)	can	be	obtained	from	this	solution	by	taking	the	limit	V	→	∞.	∫	∞	0	Solutions	to	problems	21D.2	The	number	density	of	scatterers	(Ns)	and	the	path	length	L	are	the	same	in	the	two	experiments.	Because	I	so	I	=	I	0	e	−	σ	N	L	[Problem	21D.1]	ln	=	−σ	N	L	,	I0	we	have	σ	(CH	2	F2	)	ln	0.6	=	=	5	ln	0.9	σ	(Ar)	CH2F2	is	a	polar	molecule;	Ar	is	not.
CsCl	is	a	polar	ion	pair	and	is	scattered	more	strongly	by	the	polar	CH2F2.	21D.4	Refer	to	Figure	21D.1.	Figure	21D.1	The	scattering	angle	is	θ	=	π	–	2α	if	specular	reflection	occurs	in	the	collision	(angle	of	impact	b	equal	to	angle	of	departure	from	the	surface).	For	b	≤	R1	+	R2,	sin	α	=	R1	+	R2	(v)	ì	æ	ö	b	ïï	π	−	2	arcsin	ç		b	≤	R1	+	R2	(v)	θ	(v)	=	í	è
R1	+	R2	(v)	ø	ï	0	b	>	R1	+	R2	(v)	ïî	where	R2(v)	=	R2e-v/v*	,	R1	=	R2/2	=	b.	æ	ö	1	θ	(v)	=	π	−	2	arcsin	ç	(a)	−	v/v*		è	1	+	2e	ø	(Note:	The	restriction	b	≤	R1	+	R2(v)	transforms	into	R2/2	≤	R2/2	+	R2e-v/v*	,	which	is	valid	for	all	v.)	This	function	is	plotted	as	curve	(a)	in	Figure	21D.2.	16	Figure	21D.2	(b)	The	kinetic	energy	of	approach	is	E	=	mv2/2,	so	æ	ö
1	θ	(E)	=	π	−	2	arcsin	ç	where	−(	E/	E*)1/	2		è	1	+	2e	ø	This	function	is	plotted	as	curve	(b)	in	Figure	21.6.	E*	=	m(v*)2/2	.	21E	Electron	transfer	in	homogeneous	systems	Answer	to	discussion	question	21E.2	Electron	tunneling	plays	an	important	role	in	electron	transfer.	From	considerations	in	Topic	8A,	we	would	expect	that	tunneling	would	be	more
important	for	electrons	than	any	other	particles	that	participate	in	chemical	reactions	because	they	are	so	much	lighter	than	even	the	lightest	atoms	or	ions.	Tunneling	is	responsible	for	the	exponential	distance	dependence	of	the	factor	Het(d)2	(eqn.	21E.4),	which	is	directly	proportional	to	the	electrontransfer	rate	constant	(eqn.	21E.5).	A	more
thorough	discussion	can	be	found	in	Topic	21E.2(a).	Solutions	to	exercises	21E.1(b)	For	a	donor–acceptor	pair	separated	by	a	constant	distance,	assuming	that	the	reorganization	energy	is	constant,	eqn.	21E.9	holds:	(∆	G	O	)2	∆	r	G	O	+	constant	−	ln	ket	=	−	r	2RT	4RT	∆ER	or,	using	molecular	units	rather	than	molar	units,	(∆	G	O	)2	∆	r	G	O	ln	ket	=
−	r	−	+	constant	4kT	∆ER	2kT	Two	sets	of	rate	constants	and	reaction	Gibbs	energies	can	be	used	to	generate	two	equations	(eqn.	21E.9	applied	to	the	two	sets)	in	two	unknowns,	∆Gr	and	the	constant.	(∆	G	O	)2	∆	G	O	(∆	G	O	)2	∆	G	O	ln	ket,1	+	r	1	+	r	1	=	constant	=	ln	ket,2	+	r	2	+	r	2	2kT	4kT	∆ER	2kT	4kT	∆ER	so	and	k	(∆	r	G1O	)2	−	(∆	r	G2O	)2	∆
G	O	−	∆	r	G1O	=	ln	et,2	+	r	2	4kT	∆ER	ket,1	2kT	(∆	r	G1O	)	2	−	(∆	r	G2O	)	2	∆ER	=	k	4kT	ln	et,2	+	2	(	∆	r	G2O	−	∆	r	G1O	)	k	et,1	17	(−0.665	eV)2	−	(−0.975	eV)2	=	1.53	eV	4(1.381	×	10−23	J	K	−1	)(298	K)	3.33	×	106	−	2(0.975	−	0.665)	eV	ln	2.02	×	105	1.602	×	10−19	J	eV	−1	If	we	knew	the	activation	Gibbs	energy,	we	could	use	eqn.	21E.5	to
compute	Het	(d)	from	either	rate	constant,	and	we	can	compute	the	activation	Gibbs	energy	from	eqn.	21E.6:	(∆	G	O	+	∆Er	)	2	{(−0.665	+	1.53)	eV}2	∆‡G	=	r	=	=0.123	eV	4∆Er	4(1.53	eV)	∆ER	=	Now	ket	=	2{H	et	(d	)}2	h	1/	2	æ	π3	ö	ç		è	4kT	∆ER	ø	1/	2	æ	−∆‡G	ö	exp	ç		è	kT	ø	1/	4	æ	∆‡G	ö	æ	hk	ö	æ	4kT	∆ER	ö	H	et	(d	)	=	ç	et		ç	exp	ç			3	ø	è	2	ø	è	π	è	2kT	ø	1/	2
æ	(6.626	×	10−34	J	s)(2.02	×	105	s	−1	)	ö	=ç		2	è	ø	1/	4	æ	4(1.53	eV)(1.602	×	10−19	J	eV	−1	)(1.381×	10−23	J	K	−1	)(298	K)	ö	×ç		π3	è	ø	−19	−1	æ	(0.123	eV)(1.602	×	10	J	eV	)	ö	×	exp	ç		−23	−1	è	2(1.381×	10	J	K	)(298	K)	ø	so	=	9.6	×	10−24	J	21E.2(b)	Equation	21E.8	applies:	ln	ket	=	–βd	+	constant	The	slope	of	a	plot	of	ket	versus	d	is	–β.	The	slope	of	a
line	defined	by	two	points	is:	slope	=	so	∆y	ln	ket,2	−	ln	ket,1	ln	4.51	×	104	−	ln	2.02	×	105	=	=	−β	=	∆x	d2	−	d1	(1.23	−	1.11)	nm	β	=	12.5	nm	−1	Inserting	data	from	either	rate	constant	allows	calculation	of	the	constant:	constant	=	ln	2.02	×	105	+	(12.5	nm	−1	)(1.11	nm)	=	26.1	Taking	the	exponential	of	eqn.	21E.8	yields:	ket	=	e	−	β	d	+	constant
s	−1	=	e	−(12.5/nm	)(1.59	nm	)+26.1	s	−1	=	5.0	×	102	s	−1	Solutions	to	problems	21E.2	Estimate	the	bimolecular	rate	constant	kr	for	the	reaction	Ru(bpy)33+	+	Fe(H	2	O)6	2+	→	Ru(bpy)32	+	+Fe(H	2	O)63+	by	using	the	approximate	Marcus	cross-relation:	kr	≈	(kDDkAAK)1/2	The	standard	cell	potential	for	the	reaction	is	O	O	(Fe(H	2	O)63+	)	=
(1.26	−	0.77)V	=	0.49	V	(Ru(bpy)33+	)	−	Ered	E	O	=	Ered	so	the	equilibrium	constant	is	æ	(1)(96485	C	mol−1	s	−1	)(0.49	V)	ö	æνF	EO	ö	8	=	exp	K	=	exp	ç	çè	(8.3145	J	K	−1	mol−1	)(298	K)	ø	=	1.9	×	10	è	R	T	ø	The	rate	constant	is	approximately	kr	≈	{(4.0×108	dm3	mol–1	s–1)(4.2	dm3	mol–1	s–1)(1.9×108)}1/2	kr	≈	5.7×108	dm3	mol–1	s–1	21E.4	Does
eqn.	21E.8	ln	ket	=	−	β	d	+	constant	apply	to	these	data?	Draw	the	following	table	and	plot	ln	ket	vs.	d	(Figure	21E.1):	18	d	/	nm	0.48	0.95	0.96	1.23	1.35	2.24	ket	/	s–1	1.58×1012	3.98×109	1.00×109	1.58×108	3.98×107	6.31×101	ln	ket	/	s–1	28.1	22.1	20.7	18.9	17.5	4.14	Figure	21E.1	The	data	fall	on	a	good	straight	line,	so	the	equation	appears	to
apply.	The	least-squares	linear	fit	equation	is:	ln	ket	/	s	=	34.7	−	13.4d	/	nm	R	2	(correlation	coefficient)	=	0.991	so	we	identify	β	=	13.4	nm	−1	21F	Processes	at	electrodes	Answer	to	discussion	question	21F.2	For	electron	transfer	to	occur	at	an	electrode,	several	steps	are	necessary.	A	species	in	a	bulk	solution	phase	must	lose	its	solvating	species
and	make	its	way	through	the	electodesolution	interface	to	the	electrode.	Once	there,	its	hydration	sphere	must	be	adjusted	by	the	electron	transfer	itself,	and	then	the	species	must	detach	and	reverse	its	steps	as	it	were,	passing	back	through	the	interface	into	the	bulk	solution	phase.	Because	there	are	energy	requirements	associated	with	these
steps,	they	are	said	to	be	activated.	How	the	activation	Gibbs	function	depends	on	applied	potentials	and	on	the	resemblance	of	transition	state	to	oxidized	and	reduced	species	is	treated	in	Topic	21F.2(a).	Solutions	to	exercises	21F.1(b)	The	conditions	are	in	the	limit	of	large,	positive	overpotentials,	so	eqn	21F.5b	applies:	ln	j	=	ln	j0	+	(1	–	α)fη	96845
C	mol−1	F	=	=	38.9	V	−1	RT	(8.3145	J	K	−1	mol−1	)	×	(298	K)	Subracting	this	equation	from	the	same	relationship	between	another	set	of	currents	and	overpotentials,	we	have	where	f	=	19	j′	=	(1	−	α	)	f	(η	′	−	η	)	j	which	rearranges	to	ln	(	j	′	/	j)	ln(72	/	17.0)	η′	=	η	+	=	(105	×	10−3	V)	+	=	0.169	V	(1	−	α	)	f	(1	−	0.42)	×	(38.9	V)−1	ln	21F.2(b)	Use	eqn
21F.5a;	then	j0	=	j	e–(1–α)ηf	=	(17.0	mA	cm–2)	×	e–(1-0.42)×0.105	V×38.9/V	=	1.59	mA	cm–2	.	21F.3(b)	In	the	high	overpotential	limit	[21F.5a]	(1−α	)	f	η	j	(1−α	)	f	(	η1−η2	)	j	=	j0e	so	1	=	e	and	j2	So	the	current	density	at	0.60	V	j2	=	(1.22	mA	cm	−2	)	×	e	j2	=	j1e	(1−0.50)×(0.60	V−0.50	V)×(38.9/V)	(1−α	)	f	(	η2	−η1	)	.	=	8.5	mA	cm	−2	about	a	7-fold
increase	compared	to	the	current	at	0.50	V.	21F.4(b)	(i)	The	Butler–Volmer	equation	is	[21F.1]	j	=	j0	(e(1−α	)	f	η	−	e	−α	f	η	)	=	(2.5	×	10−3	A	cm	−2	)	×	(e(1−0.58)×(0.30	V)×(38.9/V)	−	e	−0.58×(0.30	V)×(38.9/V)	)	=	0.34	A	cm	−2	(ii)	Eqn	21F.5a	(also	known	as	the	Tafel	equation)	corresponds	to	the	neglect	of	the	second	exponential	above,	which	is
very	small	for	an	overpotential	of	0.3	V.	(Even	when	it	was	kept,	in	part	(a),	it	was	negligible.)	Hence	j	=	0.34	A	cm–2	.	The	validity	of	the	Tafel	equation	increases	with	higher	overpotentials,	but	decreases	at	lower	overpotentials.	A	plot	of	j	against	η	becomes	linear	(non-exponential)	as	η	→	0.	The	validity	of	the	Tafel	equation	improves	as	the
overpotential	increases.	21F.5(b)	The	Butler–Volmer	equation	(21F.1]),	with	transfer	coefficients	from	Table	21F.1,	is	1−α	f	η	j	=	j	(e(	)	−	e	−α	f	η	)	=	j	(e0.42	f	η	−	e	−0.58	f	η	)	0	0	Recall	that	η	is	the	overpotential,	defined	as	the	working	potential	E′	minus	the	zero-current	potential	E.	The	latter	is	given	by	the	Nernst	equation	(6C.4):	E	=	EO	−	1	a(Fe
2+	)	RT	1	a(Fe	2+	)	ln	=	0.77	V	−	ln	Q	=	E	O	−	ln	f	a(Fe3+	)	vF	f	a(Fe3+	)	1	1	a(Fe	2+	)	=	E	′	−	0.77	V	+	ln	r	,	ln	f	f	a(Fe3+	)	where	r	is	the	ratio	of	activities.	Specializing	to	the	condition	that	the	ions	have	equal	activities	yields	η	=	E′	–	0.77	V	and	j	=	(2.5	mA	cm	−2	)	×	(e0.42	fE	′−0.42	f	×0.77	V	−	e	−0.58	fE	′+0.58	f	×0.77	V	)	.	Evaluating	the
constant	parts	of	the	exponentials	(with	f	=	38.9	V–1).	and	incorporating	them	as	numerical	factors	yields	Thus	η	=	E	′	−	0.77	V	+	j	=	(8.6	×	10−6	mA	cm	−2	)	×	e0.42	fE	′	−	(8.8	×	10−7	mA	cm	−2	)e	−0.58	fE	′	21F.6(b)	The	current	density	of	electrons	is	j0/e	because	each	one	carries	a	charge	of	magnitude	e.	Look	up	j0	values	in	Table	21F.1,	and
recall	that	1	A	=	1	C	s–1	.	j0	=	1.0×10–6	A	cm–2	For	Cu	|	H2	|	H+	−6	j0	1.0	×	10	A	cm	−2	=	=	6.2	×	1012	cm	−2	s	−1	e	1.602	×	10−19	C	For	Pt	|	Ce4+,	Ce3+	j0	=	4.0×10–5	mA	cm–2	j0	4.0	×	10−5	A	cm	−2	=	2.5	×	1014	cm	−2	s	−1	=	e	1.602	×	10−19	C	20	There	are	approximately	(1.0	×	10−2	m)2	=	1.5	×	1015	atoms	in	each	square	centimeter	of
(260	×	10−12	m)2	surface.	The	numbers	of	electrons	per	atom	are	therefore	4.2×10–3	s–1	and	0.17	s–1	,	respectively.	21F.7(b)	When	the	overpotential	is	small,	its	relation	to	the	current	density	is	[21F.4]	RTj	j	η=	=	Fj0	fj0	which	implies	that	the	current	through	surface	area	S	is	I	=	Sj	=	Sj0fη	.	An	ohmic	resistance	r	obeys	η	=	Ir,	and	so	we	can
identify	the	resistance	as	r=	η	I	=	1	1	2.57	×	10−2	Ω	=	=	[1V	=	1A	Ω]	Sj0	f	1.0	cm	2	×	38.9	V	−1	×	j0	(	j0	/	A	cm	−2	)	(a)	Pb	|	H2	|	H+	j0	=	5.0×10–12	A	cm–2	(b)	2.57	×	10−2	Ω	=	5.1	×	109	Ω	=	5.1	GΩ	5.0	×	10−12	Pt	|	Fe3+,	Fe2+	j0	=	2.5×10–3	mA	cm–2	2.57	×	10−2	Ω	=	10.	Ω	r=	2.5	×	10−3	r=	21F.8(b)	Zn	can	be	deposited	if	the	H+	discharge
current	is	less	than	about	1	mA	cm–2.	The	exchange	current,	according	to	the	high	negative	overpotential	limit,	is	j	=	j0e–αfη	[21F.6a]	=	(0.79	mA	cm–2)	×	e–0.5×(38.9/V)×(–0.76	V)	=	2.1×106	mA	cm–2	This	current	density	is	much	too	large	to	allow	deposition	of	zinc;	that	is,	H2	would	begin	being	evolved,	and	fast,	long	before	zinc	began	to	deposit.
Solutions	to	problems	21F.2	Deposition	may	occur	when	the	potential	falls	to	below	E.	(Recall	that	η	<	0	for	cathodic	processes.)	E	is	given	by	the	Nernst	equation	(6C.4):	RT	E	=	EO	+	ln	a(M	+	)	zF	Simultaneous	deposition	will	occur	if	the	two	potentials	are	the	same;	hence	the	relative	activities	are	given	by	E	O	(Sn,	Sn	2+	)	+	RT	ln	a(Sn	2+	)	=	E	O
(Pb,	Pb2+	)	+	RT	ln	a(Pb2+	)	2F	2F	2+	a	(Sn	)	2	F	{E	O	(Pb,	Pb	2	+	)	−	E	O	(Sn,	Sn	2	+	)}	or	=	ln	RT	a(Pb	2	+	)	(	)	=	2	×	(38.9	V	−1	)	×	(−0.126	+	0.136)	V	=	0.78	That	is,	we	require	a(Sn2+)	=	e0.78a(Pb2+)	=	2.2a(Pb2+)	.	21F.4	This	problem	differs	somewhat	from	the	simpler	one-electron	transfers	considered	in	the	text.	In	place	of	Ox	+	e–	→	Red
we	have	here	In3+	+	3	e–	→	In	namely,	a	three-electron	transfer.	Therefore	equations	that	contain	the	Faraday	constant	F	(or	f,	which	is	proportional	to	F)	need	to	be	modified	by	including	the	factor	z	(in	this	case	3).	In	place	of	eqns	21F.5b	and	21F.6b,	we	have	anode	ln	j	=	ln	j0	+	z(1	–	α)fη	cathode	ln(–j)	=	ln	j0	–	zαfη	We	draw	up	the	following	table
j/(A	m–2)	–E/V	ln	(j/A	m–2)	η/V	0	0.388	0	0.590	0.365	0.023	–0.5276	1.438	0.350	0.038	0.3633	3.507	0.335	0.053	1.255	21	We	carry	out	a	linear	regression	of	ln	j	against	η	with	the	following	results	(see	Figure	20F.1).	Figure	20F.1	standard	deviation	=	0.0154	slope	=	z(1	–	α)f	=	59.42	V–1,	standard	deviation	=	0.0006	y-intercept	=	ln	j0	=	–1.894,	R	=
1	almost	exactly	The	fit	of	the	three	data	points	to	the	Tafel	equation	is	almost	exact.	Solving	for	α	from	the	slope,	we	obtain	æ	59.42	V	−1	ö	59.42	V	−1	α	=	1−	=	1−	ç		=	0.50	3f	è	3	×	(38.9	V	−1	)	ø	which	matches	the	usual	value	of	α	exactly.	j0	=	e–1.894	A	m–2	=	0.150	A	m–2	.	The	cathodic	current	density	at	E	=	–0.365	V	is	obtained	from	ln(−	jc	)	=
ln	j0	−	zα	f	η	=	−1.894	−	(3	×	0.50	×	0.023	V)	×	(38.9	V	−1	)	=	−3.26	so	jc	=	e	−3.26	=	0.038A	m	−2	Start	from	the	Butler-Volmer	equation	(21F.1),	and	expand	it	in	powers	of	η:	=	j	j0	(e(1−α	)	f	η	−	e	−α	f	η	)	=	j0	{1	+	(1	−	α	)η	f	+	12	(1	−	α	)	2η	2	f	2	+		−	1	+	α	f	η	−	1	α	2η	2	f	2	+	}	2	=	j0	{η	f	+	12	(η	f	)	2	(1	−	2α	)	+	}	21F.6	Average	over	one	cycle
(of	period	2π/	ω):	{	}	=	j	j0	η	f	+	12	(1	−	2α	)	f	2	η	2	+	where	η	=	0	,	because	ω	2π	η	2	=	12	η02	,	because	Therefore,	and	j	=	1	4	∫	2	π	/ω	0	ω	2π	∫	cos	ω	t	dt	=	0	2	π	/ω	0	cos	2	ω	t	dt	=	1	2	(1	−	2α	)	f	2	j0η02	j	=	0	when	α	=	12	.	For	the	mean	current,	22	I	=	14	(1	−	2α	)	f	2	Sj0η02	=	1	−	0.76	×	(1.0	cm	2	)	×	(7.90	×	10−4	A	cm	−2	)	×	(0.0389	mV	−1	)	×
(10	mV)2	4	=	7.2	µA	21F.8	(a)	The	roughly	symmetrically	distributed	positive	maximum	and	negative	minimum	suggest	a	reversible	one-electron	transfer.	Compare	to	Figures	21F.12	and	21F.13(b)	of	the	main	part	of	the	chapter	as	discussed	in	Topic	21F.3	and	Example	21F.2.	(b)	There	are	two	roughly	symmetrically	distributed	positive	maxima	and
negative	minima,	suggesting	a	reversible	two-electron	transfer	brought	about	by	sequential	reversible	oneelectron	transfers.	(c)	The	shape	is	typical	of	an	irreversible	reduction:	the	positive	maximum	has	no	corresponding	negative	minimum.	Compare	to	Figure	21F.13(a)	of	the	main	part	of	the	chapter	as	discussed	in	Example	21F.2.	(d)	Two
reductions	are	apparent	in	this	voltammogram,	the	second	of	which	is	reversible	and	the	first	not.	(The	first	positive	maximum	has	no	corresponding	minimum;	the	second	does.)	Compare	to	Figure	21F.14	of	the	main	part	of	the	text.	Integrated	activity	21.2	Both	the	Marcus	theory	of	photo-induced	electron	transfer	(Topic	21E)	and	the	Förster	theory
of	resonance	energy	transfer	(Topic	20G)	examine	interactions	between	a	molecule	excited	by	absorption	of	electromagnetic	energy	(the	chromophore	S)	and	another	molecule	Q.	They	explain	different	mechanisms	of	quenching,	that	is,	different	ways	that	the	chromophore	gets	rid	of	extra	energy	after	absorbing	a	photon	through	intermolecular
interactions.	Another	common	feature	of	the	two	is	that	they	depend	on	physical	proximity	of	S	and	Q:	they	must	be	close	for	action	to	be	efficient.	In	the	Marcus	theory,	the	rate	of	electron	transfer	depends	on	the	reaction	Gibbs	energy	of	electron	transfer,	∆rG,	and	on	the	energy	cost	to	S,	Q,	and	the	reaction	medium	of	any	concomitant	molecular
rearrangement.	The	rate	is	enhanced	when	the	driving	force	(∆rG)	and	the	reorganization	energy	are	well	matched.	Resonant	energy	transfer	in	the	Förster	mechanism	is	most	efficient	when	Q	can	directly	absorb	electromagnetic	radiation	from	S.	The	oscillating	dipole	moment	of	S	is	induced	by	the	electromagnetic	radiation	it	absorbed.	It	transfers
the	excitation	energy	of	the	radiation	to	Q	via	a	mechanism	in	which	its	oscillating	dipole	moment	induces	an	oscillating	dipole	moment	in	Q.	This	energy	transfer	can	be	efficient	when	the	absorption	spectrum	of	the	acceptor	(Q)	overlaps	with	the	emission	spectrum	of	the	donor	(S).	23	22	Processes	on	surfaces	22A	An	introduction	to	solid	surfaces
Answers	to	discussion	questions	22A.2	AFM,	atomic	force	microscopy,	drags	a	sharp	stylus	attached	to	a	cantilever	across	a	surface	and	monitors	the	deflection	of	a	laser	beam	from	the	back	of	the	cantilever.	Tiny	changes	in	deflection	indicate	attraction	to	or	repulsion	from	atoms	on	a	sample	surface.	Since	no	current	is	involved,	both	conductive
and	nonconductive	surfaces	may	be	viewed.	Surface	damage	is	avoided	by	using	a	cantilever	that	has	a	very	small	spring	constant.	The	method	does	not	require	a	vacuum,	and	it	has	been	applied	in	a	liquid	environment.	Biological	polymers	may	be	viewed	and	nanometre	resolutions	have	been	achieved.	However,	an	incorrect	probe	choice	may	cause
image	artifacts	and	distortions.	Thermal	drift	of	adsorbates	may	result	in	image	distortions	during	relatively	slow	surface	scans.	FIM,	field-ionization	microscopy,	points	a	tip,	with	a	point	radius	of	about	50	nm,	toward	a	fluorescent	screen	in	a	chamber	containing	about	1	mTorr	to	1	nTorr	of	either	hydrogen	or	helium.	A	positive	2-20	kV	potential
applied	to	the	tip	causes	the	hydrogen	or	helium	gas	adsorbate	molecules	to	ionize	and	accelerate	to	the	fluorescent	screen.	The	image	portrays	the	electrical	characteristics	of	the	tip	surface	and	surface	diffusion	characteristics	of	the	adsorbate	are	deduced.	See	the	very	interesting	historical	review	of	the	technique	in	the	issue	of	C&EN	83,	no.	48
(November	28,	2005):	13-16.	LEED,	low-energy	electron	diffraction,	uses	electrons	with	energies	in	the	range	10-200	eV,	which	ensures	diffraction	from	atoms	only	on	or	near	the	sample	surface.	Diffraction	intensities	depend	on	the	vertical	location	of	the	atoms.	The	diffraction	pattern	is	sharp	if	the	surface	is	well-ordered	for	long	distances
compared	with	the	wavelength	of	the	incident	electrons.	Diffuse	patterns	indicate	a	poorly	ordered	surface	or	the	presence	of	impurities.	If	the	LEED	pattern	does	not	correspond	to	the	pattern	expected	by	extrapolation	of	the	bulk	to	the	surface,	then	either	a	reconstruction	of	the	surface	has	occurred	or	there	is	order	in	the	arrangement	of	an
adsorbed	layer.	The	interpretation	of	LEED	data	can	be	very	complicated.	SAM,	scanning	Auger	electron	microscopy,	uses	a	focused	1-5	keV	electron	beam	to	probe	and	map	surface	composition	to	a	resolution	of	about	50	nm.	The	high	energy	impact	causes	the	ejection	of	an	electron	from	a	low-lying	orbital,	and	an	upper	electron	falls	into	it.	The
energy	this	releases	may	result	either	in	the	generation	of	X-ray	fluorescence	or	in	the	ejection	of	a	second	electron,	the	Auger	effect.	The	emissions	are	used	to	identify	chemical	constituents	at	interfaces	and	surfaces	of	conducting	and	semiconducting	materials	to	a	depth	of	1-5	nm.	SEM,	scanning	electron	microscopy,	uses	magnetic	fields	to	focus
and	scan	a	beam	of	electrons	across	a	sample	surface.	Scattered	electrons	from	a	small	irradiated	area	are	detected	and	the	electrical	signal	is	sent	to	a	video	screen.	Resolution	is	typically	between	1.5	and	3.0	nm.	Nonconductive	materials	require	a	thin	conductive	coating	to	prevent	electrical	charging	of	the	sample.	STM,	scanning	tunnelling
microscopy,	reveals	atomic	details	of	surface	and	adsorbate	structure.	Surface	chemical	reactions	can	be	viewed	as	they	happen.	The	tip	of	the	STM,	which	may	end	in	a	single	atom,	can	also	be	used	to	manipulate	adsorbed	atoms	on	a	surface,	making	possible	the	fabrication	of	complex	and	yet	very	tiny	structures,	such	as	nanometre-sized	electronic
devices.	The	method	is	based	upon	the	quantum	mechanical	tunneling	effect	in	the	presence	of	a	bias	voltage	between	the	STM	tip	and	sample	surface.	A	piezoelectric	scanner	is	used	to	position	and	move	the	tip	in	very	close	proximity	to	the	surface,	and	the	electrical	current	of	tunneling	generates	an	image	of	the	surface	topography	with	a
resolution	in	the	nanometre	range.	Images	of	surface	electronic	states	may	be	generated.	A	host	of	very	interesting	STM	images	can	be	viewed	at	.	TEM,	transmission	electron	microscopy,	passes	an	electron	beam	through	the	sample	and	collects	the	image	on	a	screen.	Electron	wavelengths	can	be	as	short	as	10	pm	and	typical	resolutions	are	about	2
nm	so	the	method	cannot	resolve	individual	atoms.	Samples	must	be	very	thin	cross-sections	of	a	dry	(therefore,	nonliving)	sample.	Electron	microscopy	is	very	useful	in	the	study	of	internal	structures	of	cells.	22:1	Solutions	to	exercises	22A.1(b)	The	collision	frequency,	ZW,	of	gas	molecules	with	an	ideally	smooth	surface	area	is	given	by	eqn	22A.1.	p
=	ZW	=	[22A.1;	m	M	/	N	A	]	1/	2	(	2πMkT	/	N	A	)	=	{	}	p	×	(	kg	m	−1	s	−2	)	/	Pa	×	(10−4	m	2	/	cm	2	)	{2π	×	(1.381×10	−23	JK	−1	)	×	(	298.15	K	)	×	(	kg	mol	)	/	(	6.022	×10	−1	23	}	{M	/	(	kg	mol	)}	mol−1	)	1/	2	−1	1/	2	æ	ö	p	/	Pa	ç		cm	−2	s	−1	at	25°	C	4.825	×	10	ç	=	1/	2		−1	ç	M	/	(	kg	mol	)		è	ø	(i)	Nitrogen	(M	=	0.02802	kg	mol–1)	p	=	10.0	Pa,	ZW	=
3.88	×	1019	cm–2	s–1	p	=	0.150	μTorr	=	2.00	×	10–5	Pa,	ZW	=	5.76	×	1013	cm–2	s–1	(ii)	Methane	(M	=	0.01604	kg	mol–1)	p	=	10.0	Pa,	ZW	=	3.81	×	1019	cm–2	s–1	p	=	0.150	μTorr	=	2.00	×	10–5	Pa,	ZW	=	7.62	×	1013	cm–2	s–1	17	{	}	A	πd	2=	/	4	π	(	2.0	mm	)	=	/	4	3.14	×	10−6	m	2	22A.2(b)=	2	The	collision	frequency	of	the	nitrogen	gas	molecules
with	surface	area	A	is	ZWA	=	5.00	×	1019	s−1.	ZW	A	=	p	p	A	[95.1;	m	M	/	N	A	]	=	1/	2	(	2πMkT	/	N	A	)	(	Z	W	A)	×	(	2πMkT	/	N	A	)	1/	2	(	5.0	×10	s	)	×	{2π	(	28.02	×	10	=	19	/A	−1	−3	}	/	(3.14	×10	kg	mol	−1	)	×	(1.381×10−23	J	K	−1	)	×	(	525	K	)	/	(	6.022	×	1023	mol	−1	)	1/	2	−6	m2	)	=	733	Pa	Solutions	to	problems	=	22A.2	Z	W	=	p	=	[22A.1;	m	M	/
N	A	]	1/	2	(	2πMkT	/	N	A	)	{	}	p	×	(	kg	m	−1	s	−2	)	/	Pa	×	(10−4	m	2	/	cm	2	)	{2π	×	(1.381×10	−23	JK	−1	)	×	(	300	K	)	×	(	0.03200	kg	mol	)	/	(	6.022	×10	=	2.69	×	1018	×	(	p	/	Pa	)	cm	−2	s	−1	(a)	At	100	kPa,	Z	W	=2.69	×	1023	cm	−2	s	−1	−1	23	}	mol	−1	)	1/	2	for	O	2	at	300	K	(b)	at	1.000	Pa,	ZW	=2.69	×	1018	cm	−2	s	−1	The	nearest	neighbor	in
titanium	is	291	pm,	so	the	number	of	atoms	per	cm2	is	approximately	1.4	×	1015	(the	precise	value	depends	on	the	details	of	the	packing,	which	is	hcp,	and	the	identity	of	the	surface).	The	number	of	collisions	per	exposed	atom	is	therefore	Z	W	/	(1.4	×	1015	cm	−2	)	.	(a)	When	p	=	100	kPa,	Zatom	=	2.0	×	108	s	−1	(b)	When	p	=	1.000	Pa,	Zatom	=
2.0	×	103	s	−1	22A.4	The	farther	apart	the	atoms	responsible	for	the	pattern,	the	closer	the	spots	appear	in	the	pattern	(see	22:2	Example	22A.1).	Tripling	the	horizontal	separation	between	atoms	of	the	unreconstructed	face,	which	has	LEED	pattern	(a),	yields	a	reconstructed	surface	that	gives	LEED	pattern	(b).	(b)	(a)	22B	Adsorption	and	desorption
Answers	to	discussion	questions	22B.2	The	characteristic	conditions	of	the	Langmuir	isotherm	are:	1.	Adsorption	cannot	proceed	beyond	monolayer	coverage.	2.	All	sites	are	equivalent	and	the	surface	is	uniform.	3.	The	ability	of	a	molecule	to	adsorb	at	a	given	site	is	independent	of	the	occupation	of	neighboring	sites.	For	the	BET	isotherm	condition
number	1	above	is	removed	and	the	isotherm	applies	to	multi-layer	coverage.	In	Example	22B.1	it	is	shown	that	a	gas	exhibits	the	characteristics	of	a	Langmuir	adsorption	isotherm	when	p	p	1	=	+	V	V∞	αV∞	where	V	is	the	volume	of	the	adsorbate	and	V∞	completes	the	monolayer	coverage.	Hence,	a	plot	of	p/V	against	p	should	give	a	straight	line	of
slope	1/V∞	and	intercept	1/αV∞.	In	contrast	the	BET	adsorption	isotherm	is	followed	when,	as	shown	in	Example	22B.3,	(	c	−	1)	z	z	1	=	+	(1	−	z	)V	cVmon	cVmon	where	z	=	p/p*	and	p*	is	the	vapour	pressure	above	a	layer	of	adsorbate	that	is	more	than	one	molecule	thick	and	which	resembles	a	pure	bulk	liquid,	Vmon	is	the	volume	corresponding	to
monolayer	coverage,	and	c	is	a	constant.	Thus,	the	BET	adsorption	mechanism	is	indicated	when	a	plot	of	z/{(1	−	z)V}	against	z	is	linear.	Solutions	to	exercises	V	V	αp	[22B.2]	=	=	V∞	Vmon	1	+	α	p	This	rearranges	to	[Example	22B.1]	p	p	1	=	+	V	Vmon	αVmon	θ	22B.1(b)	=	Hence,	p2	p1	p2	p	−	=	−	1	V2	V1	Vmon	Vmon	Solving	for	Vmon	:	=	Vmon	p2
−	p1	=	(	p2	/	V2	−	p1	/	V1	)	(108−56.4)	kPa	=	(108	/	2.77	−	56.4	/	1.52	)	kPa	cm−3	27	cm3	22B.2(b)	The	enthalpy	of	adsorption	is	typical	of	chemisorption	(Table	22A.2)	for	which	τ0	≈	10–14	s	because	22:3	the	adsorbate-substrate	bond	is	stiff	(see	Brief	illustration	22B.2).	The	half-life	for	remaining	on	the	surface	is	=	t1/	2	τ	0	e	Ea,des	RT	3	/
(8.3145×500)	[22B.13]	≈	(10−14	s)	×	(e155×10	)	[	Ed	≈	−∆	ad	H	]	≈	200	s	m1	θ1	p1	1	+	α	p2	=	=	×	[22B.2	and	V	∝	m	/	p	]	m2	θ	2	p2	1	+	α	p1	which	solves	to	(	m1	p2	/	m2	p1	)	−	1	(	m1	/	m2	)	×	(	p2	/	p1	)	−	1	1	α	=	=	×	1	−	(	m1	/	m2	)	p2	p2	−	(	m1	p2	/	m2	)	22B.3(b)	(	0.63	/	0.21)	×	(	4	/	36.0	)	−	1	1	0.083	kPa	−1	=	×	=	1	−	(	0.63	/	0.21)	4.0	kPa
Therefore,	=	θ1	(0.083	kPa	−1	)	×	(36.0	kPa)	=	(1)	+	(0.083	kPa	−1	)	×	(36.0	kPa)	[22b.2]	=	and	θ	2	0.75	(0.083)	×	(4.0)	=	(1)	+	(0.083)	×	(4.0)	0.25	Kp	æ	θ	ö1	22B.4(b)	θ	==	ka	/	kd	],	which	implies	that	p	=	[22B.1,	α	K	=	ç		.	1	+	Kp	è1−θ	ø	K	(a)	=	p	(b)	=	p	0.20	/	0.80	)	/	0.548	kPa	−1	(=	0.75	/	0.25	)	/	0.548	kPa	−1	(=	0.46	kPa	5.5	kPa	22B.5(b)	æ	∂ln(	p
/	p	)	ö	Δ	ad	H		Δ	H	[Example	22B.2,	∆	ad	H	=	−∆	des	H	=	−12.2	J	/	1.00	mmol]	=	−	des	çç		=	R	R	è	∂	(1/	T	)	øθ	Assuming	that	∆	des	H	is	independent	of	temperature,	integration	and	evaluation	gives	ln	æ	12.2	kJ	mol--	1	ö	æ	1	∆	Hæ1	1ö	p2	1	ö	=	−	des	ç	−		=	−ç	×	0.310	−	=	--	1	--	1		ç	p1	R	è	T2	T1	ø	è	8.3145	J	K	mol	ø	è	318	K	298	K	ø	which	implies	that	p2	=
(8.86	kPa)	×	(e0.310	)	=	12.1	kPa	.	æ	∂ln	(	p	/	p	)	ö	Δ	ad	H		[Example	22B.2]	22B.6(b)	çç		=	R	è	∂	(1	/	T	)	øθ	Assuming	that	∆	ad	H	is	independent	of	temperature,	integration	and	evaluation	gives	∆	ad	H	æ	1	1	ö	p	=	ln	2	ç	−		p1	R	è	T2	T1	ø	−1	æ1	1ö	p	∆	ad	H=	R	ç	−		ln	2	T	T	p1	1	ø	è	2	=	(8.3145	J	K	--	1	æ	1.02	×	103	kPa	ö	æ	1	1	ö	−	mol--	1	)	×	ln	ç	×ç		è	350
kPa	ø	è	240	K	180	K	ø	−1	=	−6.40	kJ	mol−1	22B.7(b)	The	desorption	time	for	a	given	volume	is	proportional	to	the	half-life	of	the	absorbed	species	and,	consequently,	the	ratio	of	desorption	times	at	two	different	temperatures	is	given	by:	=	t	(	2	)	/	t	(1)	t1=	e	/	2	(	2	)	/	t1/	2	(1)	Ea,des	RT2	/e	=	[22B.13]	e	Ea,des	RT1	Solving	for	the	activation	energy	for
desorption,	Ea,des,	gives:	22:4	Ea,des	(1/	T2	−1/	T1	)	/	R	=	Ea,des	R	ln	{t	(	2	)	/	t	(1)}	(1	/	T2	−	1	/	T1	)	−1	8.44	s	ö	æ	1	1	ö	−	(8.3145	J	K	--	1	mol--	1	)	×	ln	çèæ	1856	×ç		s	ø	è	1012	K	873	K	ø	=	−1	=	285	kJ	mol−1	The	desorption	time,	t,	for	the	same	volume	at	temperature	T	is	given	by:	ì	1	1	ö	Ea,des	(1/	T	−1/	T1	)	/	R	--	1	--	1	ü	=	t	t	(1)	e=	(1856	s	)	exp	í(
285	×103	J	mol−1	)	×	çæ	−		/	(	8.3145	J	K	mol	)	ý	873	K	T	è	ø	î	þ	=	ì	1	1	öü	−	ý	è	T	/	1000	K	0.873	ø	þ	(1856	s	)	exp	í(	34.3)	×	æç	î	(i)	At	298	K,	t	=	1.56	×	1036	s	(ii)	At	1500	K,	t	=	1.37	×	10–4	min	22B.8(b)	The	average	time	of	molecular	residence	is	proportional	to	the	half-life	of	the	absorbed	species	and,	consequently,	the	ratio	of	average	residence
times	at	two	different	temperatures	is	given	by:	t	(	2	)	/	t	(1)	t1=	e	=	/	2	(	2	)	/	t1/	2	(1)	Ea,des	RT2	/e	[22B.13]	e	=	Ea,des	RT1	Ea,des	(1/	T2	−1/	T1	)	/	R	Solving	for	the	activation	energy	for	desorption,	Ea,des,	gives:	Ea,des=	R	ln	{t	(	2	)	/	t	(1)}	(1	/	T2	−	1	/	T1	)	=	R	ln	{0.65	×	t	(1)	/	t	(1)}	(1	/	T2	−	1	/	T1	)	=	R	ln	{0.65}(1	/	T2	−	1	/	T1	)	−1	=	(8.3145	J
K	--	1	−1	1	ö	æ	1	−	mol--	1	)	×	ln	(	0.65	)	×	ç		è	1000	K	600	K	ø	−1	−1	=	5.34	kJ	mol−1	22B.9(b)	At	298=	K:	t1/	2	τ	0	e	Ea,des	/	RT	[22B.13]	=	(0.12	ps)	×	e	At	800=	K:	t1/	2	τ	0	e	Ea,des	/	RT	[22B.13]	=	(0.12	ps)	×	e	(i)	0.404	Ea,des	/	kJ	mol--	1	0.150	Ea,des	/	kJ	mol--	1	Ea,des	=	20	kJ	mol--	1	t1/	2	(	298	K	)=	(0.12	ps)	×	e0.404×20	=	388	ps	,	t1/	2	(	800	K
)=	(0.12	ps)	×	e0.150×20	=	(ii)	2.4	ps	.	Ea,des	=	200	kJ	mol--	1	t1/	2	(	298	K	)	=	(0.12	ps)	×	e0.404×200	=	1.5	×	1022	s	,	t1/	2	(	800	K	)	=	(0.12	ps)	×	e0.150×200	=	1.3	s	22B.10(b)	The	Langmuir	isotherm	would	be	(i)	θ=	αp	1+	α	p	(ii)	θ=	(α	p	)1/	2	1	+	(α	p	)1/	2	(iii)	θ=	(α	p	)1/3	1	+	(α	p	)1/3	A	plot	of	θ	versus	p	at	low	pressures	(where	the
denominator	is	approximately	1)	would	show	progressively	weaker	dependence	on	p	for	dissociation	into	two	or	three	fragments.	Solutions	to	Problems	22B.2	We	follow	Example	22B.1	of	the	text,	where	it	is	shown	that	for	a	Langmuir	isotherm:	p	p	1	[α	=	K]	=	+	V	V∞	KV∞	Since	this	expression	predicts	that	a	plot	of	p/V	against	p	is	linear	with
intercept	1/KV∞	and	slope	equal	to	1/V∞,	we	draw	up	the	following	table.	22:5	p	/	Pa	p	/	V	/	Pa	cm	−3	25	129	253	540	1000	1593	595	791	1145	1682	2433	3382	p/V	is	plotted	against	p	in	Fig.	22B.1.	The	plot	is	observed	to	be	linear	so	we	conclude	that	the	data	fits	the	Langmuir	isotherm	for	these	low	pressures	and,	therefore,	low	coverage.	The
regression	slope	equals	1/V∞;	the	regression	intercept	equals	1/KV∞.	Thus,	V∞	=	1/slope	=	1/(1.77	cm–3)	=	0.565	cm3	and	K	=	1/(	V∞	×	intercept)	=	1/(0.565	cm3	×	629	Pa	cm–3)	=	2.81	×	10–3	Pa–1	Comment.	It	is	unlikely	that	low-pressure	data	can	be	used	to	obtain	an	accurate	value	of	the	volume	corresponding	to	complete	coverage.	See	Problem
22B.4	for	adsorption	data	at	higher	pressures	Figure	22B.1	4000	y	=	1.7667x	+	629.13	R²	=	0.9947	p/V	/	Pa	cm−3	3000	2000	1000	0	0	400	800	1200	1600	p	/	Pa	22B.4	We	assume	that	the	data	fit	the	Langmuir	isotherm;	to	confirm	this	we	plot	p/V	against	p	and	expect	a	straight	line	[Example	22B.1].	We	draw	up	the	following	table	and	a	data	plot	is
shown	in	Fig.	22B.2:	p	/	atm	V	/	cm3	p	/	V	/(10−2	atm	cm	−3	)	0.050	1.22	4.10	0.100	1.33	7.52	0.150	1.31	11.5	22:6	0.200	1.36	1.47	0.250	1.40	17.9	Figure	22B.2	The	plot	fits	closely	to	a	straight	line	with	slope	0.720	dm−3.	Hence,	V∞	=	1/	slope	=	1.39	cm−3	=×	1.39	10−3	dm	−3	≈	Vmon	The	number	of	H	2	molecules	corresponding	to	this	volume	is
pVN	A	(1.00	atm)	×	(1.39	×	10−3	dm3	)	×	(6.02	×	1023	mol−1	)	=	=	3.73	×	1019	2	RT	(0.0821dm3	atm	K	−1	mol−1	)	×	(273K)	The	area	occupied	is	the	number	of	molecules	times	the	area	per	molecule.	The	area	per	molecule	can	be	estimated	from	the	density	of	the	liquid.	N=	H	23	æ	ö	é	ù	æ	3V	ö		=	=	M	ú	π	çç	3M	=	A	π=	êV	volume	of	molecule	ç		ρ	N
A	ûú	è	4π	ø	ëê	è	4	πρ	N	A	ø	23	æ	ö	3×(2.02	g	mol−1	)		23	−3	−1		×	×	×	π	4	(0.708	g	cm	)	(6.022	10	mol	è	ø	23	=	π	çç	=	3.41×	10−16	cm	2	Area	occupied	=	(3.73	×	1019	)	×	(3.41×	10−16	cm	2	)	=(1.3	×	104	cm	2	)	=	1.3	m	2	Comment.	The	value	for	V∞	calculated	here	may	be	compared	to	the	value	obtained	in	Problem	22B.2.	The	agreement	is	not	good



and	illustrates	the	point	that	these	kinds	of	calculations	provide	only	rough	value	surface	areas.	22B.6	For	the	Langmuir	and	BET	isotherm	(using	p*	=	200	kPa)	tests	we	draw	up	the	following	table	using	eqns	22B.2	and	22B.6	with	the	methods	of	Examples	22B.1	and	22B.3.	p/kPa	p	/V	3	10	z	−3	(kPa	cm	)	13.3	26.7	40.0	53.3	66.7	80.0	0.743	0.809
0.851	0.877	0.886	0.876	67	134	200	267	334	400	22:7	103	z	(1	−	z	)(V/cm3	)	3.98	4.67	5.32	5.98	6.65	7.30	p/V	is	plotted	against	p	is	in	Fig.	22B.3.	z/(1	−	z)V	is	plotted	against	z	in	Fig.	22B.4.	Figure	22B.3	0.9	p/V	/	(kPa	cm−3	)	0.85	0.8	0.75	0.7	0	20	40	60	80	100	p	/	kPa	Figure	22B.4	z/{(1	−	z)V}	×	103	cm3	8	7	y	=	9.9387x	+	3.3294	R²	=	1	6	5	4	3	0
0.1	0.2	z	0.3	0.4	We	see	that	the	plot	of	p/V	against	p	is	non-linear	so	we	reject	the	proposition	that	it	is	described	by	a	Langmuir	isotherm.	The	plot	of	z	/(1	−	z	)V	against	z	appears	to	be	linear	so	we	accept	the	proposition	that	it	is	described	by	the	BET	isotherm	and	the	linear	regression	fit	is	summarized	in	Fig.	22B.4.	The	BET	isotherm	has	an
intercept	of	3.33	×	10−3	cm−3	and	a	slope	of	9.94	×	10−3	cm−3.	Since	1/cVmon	equals	the	intercept	of	a	BET	isotherm	and	(c	–	1)/cVmon	equals	the	slope,	we	find	that	c	=	1	+	slope/intercept	=	1	+	9.94/3.33	=	3.96	and	Vmon	=	1/(c	×	intercept)	=	1/(3.96	×	3.33	×	10−3	cm−3)	=	75.8	cm3	22:8	22B.8‡	Equilibrium	constants	vary	with	temperature
according	to	the	van’t	Hoff	equation	[22B.5,	K	=	αpʅ]	which	can	be	written	in	the	form	−	é	∆	ad	H	O	(	T1	−	T1	)	/	R	ù	K2	2	1	ûú	e	ëê	[Integration	of	eqn	22B.5	at	constant	∆	ad	H	O	and	θ	.]	K1	or	é	160	×	103	J	mol	−1	æ	1	K2	1	öù	=	=	−	exp	ê		ú	0.0247	−1	−1	ç	K1	ë	8.3145	J	K	mol	è	773K	673K	ø	û	As	measured	by	the	equilibrium	constant	of	absorption,	NO	is
less	strongly	absorbed	by	a	factor	of	0.0247	at	500°C	than	at	400°C.	22B.10	θ	=	c1	p1/	c2	[Freundlich	isotherm,	22B.10]	We	adapt	the	Freundlich	gas	isotherm	to	a	liquid	by	noting	that	wa	∝	θ	and	replacing	p	by	[	A	]	/	c	O	,	the	concentration	of	the	acid	divided	by	the	standard	concentration	c	O	=	1	mol	dm3	.	Then	wa	=	c1	([	A	]	/	c	O	)	1/	c2	/	g	)	ln	(
c1	/	g	)	+	(with	c1,	c2	modified	constants),	and	hence	ln	(	wa=	1	×	ln	([A]	/	c	O	)	.	A	plot	of	ln	(	wa	/	g	)	c2	against	ln	([A]	/	c	O	)	is	predicted	to	be	linear	in	a	Freundlich	isotherm	with	intercept	ln	(	c1	/	g	)	and	slope	1/c2.	We	draw	up	the	following	table	and	prepared	the	desired	plot,	shown	in	Figure	22B.5.	[A]/(mol	dm	−3	)	wa/g	ln([A]/mol	dm	−3	)	0.05
0.10	0.50	1.0	1.5	0.04	–3.00	0.06	–2.30	0.12	–0.693	0.16	–0.00	0.19	0.405	ln(	wa	/	g)	–3.22	–2.81	–2.12	–1.83	–1.66	Figure	22B.5	Since	the	plot	is	linear,	the	linear	regression	fit	shown	in	Figure	22B.5	is	appropriate	and	the	Freundlich	coefficients	are	−1.83	c1	eintercept	g	e=	0.16	g	=	=	=	c2	1/=	slope	1/=	0.45	2.2	p	p	1	[Example	22B.1,	K	=	=	+	α	]	,
so	V	V∞	KV∞	that	it	describes	adsorption	from	solution.	This	can	be	done	with	the	transforms:	p	→	concentration,	c	and	V	→	amount	adsorbed	per	gram	adsorbent,	s.	This	gives	22B.12‡	We	must	adapt	the	Langmuir	gas	adsorption	isotherm,	22:9	Langmuir	isotherm	and	regression	analysis:	c	c	1	[Langmuir	solution	isotherm]	=	+	s	s∞	Ks∞	This	says
that	a	plot	of	c/s	against	c	should	be	linear	and	we	find	that	the	linear	regression	fit	of	the	data	gives	1	slope	=	=	0.163	g	mmol−1	,	standard	deviation	=	0.017	g	mmol–1	s∞	intercept	=	1	=	35.6	(mmol	dm	−3	)	×	(g	mmol−1	)	,	std.	dev.	=	5.9	(mmol	dm	−3	)	×	(g	mmol−1	)	Ks∞	R	(Langmuir)	=	0.973	K	=	slope	0.163	g	mmol−1	=	=	0.0046	dm3
mmol−1	intercept	35.6	(mmol	dm	-3	)	×	(g	mmol−1	)	Similarly,	the	Freundlich	solution	isotherm	[22B.10]	and	regression	analysis	of	the	data	is:	=	s	c1	(	c	/	mmol	dm	−3	)	1/c2	or	ln	=	(	s	/	mmol	g	−1	)	ln	(	c1	/	mmol	g	−1	)	+	1	c2	ln	(	c	/	mmol	dm	−3	)	This	says	that	a	plot	of	ln	(	s	/	mmol	g	−1	)	against	ln	(	c	/	mmol	dm	−3	)	should	be	linear	and	we	find
that	the	linear	regression	fit	of	the	data	gives	intercept	=	c1	e=	mmol	dm	−3	0.139	mmol	dm	−3	,	standard	deviation	=	0.012	mmol	dm	−3	=	slope	1	=	0.539,	c2	standard	deviation	=	0.003	R	(Freundlich)	=	0.999	94	The	Temkin	solution	isotherm	[22B.9]	and	regression	analysis	gives:	s	=	c1	ln(c2	c	/	mmol	dm	−3	)	c1	=	1.08	mmol	dm	−3	,	c2	=	0.074,
standard	deviation	=	0.14	mmol	dm	−3	standard	deviation	=	0.023	R	(Temkin)	=	0.9590	The	correlation	coefficients	and	standard	deviations	indicate	that	the	Freundlich	isotherm	provides	the	best	fit	of	the	data.	22B.14‡	We	write	the	isotherms	in	the	following	forms	where	q	is	milligrams	of	solvent	sorbed	per	gram	of	ground	rubber	(gR)	and	K,	KF,
KL,	and	M	are	empirical	constants.	Linear	isotherm:	q=	K	×	(	ceq	/	mg	dm	−3	)	Freundlich	isotherm:	q	=	K	F	×	(	ceq	/	mg	dm	−3	)	or	ln	(	q	/	mg	g	R	−1	)	=	ln	(	K	F	/	mg	g	R	−1	)	+	1	n	ln	(	ceq	/	mg	dm	−3	)	1/	n	1	1	æ	1	ö	1	=+	ç	×	q	K	L	è	K	L	M	ø	ceq	[g	R	=	mass	(grams)	of	rubber]	Langmuir	isotherm:	q	=	K	L	Mceq	/	(1	+	Mceq	)	or	(a)	K	unit:	mg	g	R	−1
K	F	unit:	mg	g	R	−1	K	L	unit:	mg	g	R	−1	M	unit:	mg	−1	dm3	(b)	Determination	of	best	description	of	data.	Data	analysis	with	the	linear	sorption	isotherm.	Since	K	=	q/ceq,	we	calculate	q/ceq	and	calculate	the	average	and	standard	deviation.	K	=	0.126	mg	g	R	−1	[standard	deviation	=	0.041	mg	g	R	−1	]	The	standard	deviation	is	a	large	percentage	of
K,	which	may	indicate	some	combination	of	random	and/or	systematic	variation.	A	test	of	a	relationship	is	often	facilitated	by	checking	the	appearance	of	a	plot.	To	further	test	the	linear	hypothesis	between	q	and	c,	we	prepare	the	plot,	shown	in	Figure	22B.6,	with	the	constraint	that	the	intercept	equal	zero.	The	plot	appears	to	have	a	systematic	non-
linear	component	and	only	88%	of	the	22:10	variation	is	explained	by	the	linear	regression.	However,	with	the	small	number	of	data	points	random	error	could	give	this	appearance	so	we	tentatively	reject	the	linear	hypothesis.	Figure	22B.6	Data	analysis	with	the	Freundlich	isotherm.	To	test	the	Freundlich	hypothesis	between	q	and	c,	we	prepare	the
plot	of	lnq	against	lnceq,	shown	in	Figure	22B.7.	The	appearance	of	the	plot	appears	to	be	linear	with	considerable	random	scatter	but	there	is	no	definitive	visual	indicator	of	systematic	non-linearity.	94%	of	the	variation	is	explained	by	the	linear	regression	fit.	Figure	22B.7	Data	analysis	with	the	Langmuir	isotherm.	To	test	the	Langmuir	hypothesis
between	q	and	c,	we	prepare	the	plot	of	1/q	against	1/ceq,	shown	in	Figure	22B.8.	The	appearance	of	the	plot	appears	to	be	linear	with	considerable	random	scatter	but	there	is	no	definitive	visual	indicator	of	systematic	non-linearity.	94%	of	the	variation	is	explained	by	the	linear	regression	fit.	However,	the	negative,	but	very	small,	intercept	of	the
regression	fit	implies	either	that	KL	<	0	or	that	KL	is	so	small	that	it	has	been	swamped	by	the	random	scatter.	22:11	We	further	recognize	that	a	Langmuir	isotherm	must	have	a	positive	KL	because	it	is	an	equilibrium	constant.	The	data,	such	as	it	is,	does	not	firmly	support	the	Langmuir	isotherm	hypothesis.	Figure	22B.8	Summary:	Only	the
Freundlich	isotherm	gives	an	adequate	description	of	the	data.	The	empirical	constants	for	this	isotherm	are	calculated	with	the	linear	regression	fit	shown	as	an	insert	in	the	Freundlich	plot.	Freundlich	constants:	−1.81	=	K	F	eintercept	=	mg	g	R	−1	e=	mg	g	R	−1	0.164	mg	g	R	−1	=	n	1/=	slope	1/=	0.878	1.14	0.164ceq0.878	q	(c)	The	ratio	of
rubber-to-charcoal	Freundlich	sorption	isotherms	=	is	rubber	=	qcharcoal	c1.6	eq	0.164	ceq−0.72	The	sorption	efficiency	of	ground	rubber	is	much	less	than	that	of	activated	charcoal	and	drops	significantly	with	increasing	concentration.	The	only	advantage	of	the	ground	rubber	is	it’s	exceedingly	low	cost	relative	to	activated	charcoal,	which	might
convert	to	a	lower	cost	per	gram	of	contaminant	adsorbed.	22C	Heterogeneous	catalysis	Answers	to	discussion	questions	22C.2	Heterogeneous	catalysis	on	a	solid	surface	requires	the	reacting	molecules	or	fragments	to	encounter	each	other	by	adsorption	on	the	surface.	Therefore,	the	rate	of	the	catalyzed	reaction	is	determined	by	the	sticking
probabilities	of	the	species	on	the	surface	as	described	by	Fig.	22C.2	of	the	text.	Solutions	to	exercises	22C.1(b)	Let	us	assume	that	the	carbon	monoxide	molecules	are	close-packed,	as	shown	in	Fig.	22C.1	as	spheres,	in	the	monolayer.	Then,	one	molecule	occupies	the	parallelogram	area	of	2	3	r	2	where	r	is	the	radius	of	the	adsorbed	molecule,	which
is	expected	to	be	comparable	to	the	radius	of	an	adsorbed	nitrogen	molecule.	Furthermore,	let	us	assume	that	the	collision	cross-section	of	Table	1B.1	(σ	~	σdinitrogen	=	0.43	nm2	=	4πr2)	gives	a	reasonable	estimate	of	r:	r	=	(σ/4π)1/2.	With	these	assumptions	the	surface	area	occupied	by	one	molecule	is:	22:12	=	Amolecule	2=	3	(σ	/	4π	)	=	3	σ	/	2π
=	3	(	0.43	nm	2	)	/	2π	0.12	nm	2	In	this	model	the	surface	area	per	gram	of	the	catalyst	equals	AmoleculeN	where	N	is	the	number	of	adsorbed	molecules.	N	can	be	calculated	with	the	0°	C	data,	a	temperature	that	is	so	high	compared	to	the	boiling	point	of	nitrogen	that	all	molecules	are	likely	to	be	desorbed	from	the	surface	as	perfect	gas.	−6	5	3	pV
(1.00	×	10	Pa	)	×	(	3.75	×	10	m	)	=	=	9.94	×	1019	N	=	kT	(1.381×	10−23	J	K	−1	)	×	(	273.15	K	)	Amolecule	N	=	(	0.12	×	10−18	m	2	)	×	(	9.94	×	1019	)	=	12	m	2	Figure	22C.1	r	60o	Integrated	activities	22.2	Electron	microscopes	can	obtain	images	with	much	higher	resolution	than	optical	microscopes	because	of	the	short	wavelength	obtainable	from
a	beam	of	electrons.	For	electrons	moving	at	speeds	close	to	c,	the	speed	of	light,	the	expression	for	the	de	Broglie	wavelength	(eqn	7A.14,	λ	=	h/p)	needs	to	be	corrected	for	relativistic	effects:	=	ℎ	�2 e	 ∆	�1	+	 ∆	1/2	��	2 e	 	2	where	c	is	the	speed	of	light	in	vacuum	and	∆φ	is	the	potential	difference	through	which	the	electrons	are
accelerated.	(a)	Use	the	expression	above	to	calculate	the	de	Broglie	wavelength	of	electrons	accelerated	through	50	kV.	(b)	Is	the	relativistic	correction	important?	(a)	The	shortest	de	Broglie	wavelength	as	estimated	without	relativistic	correction	is	calculated	as	follows:	h	h	h	λnon-relativistic=	=	=	p	(	2m	E	)1/	2	(	2m	eV	)1/	2	e	=	k	{2	(9.109	×	10	e
6.626	×	10−34	J	s	−31	)	(	)	(	kg	×	1.602	×	10−19	C	×	50.0	×	103	V	=	5.48	pm	The	relativistic	de	Broglie	wavelength	is	22:13	)}	1/	2	λrelativistic	=	h	æ	eV	ïì	í2me	eV	ç1	+	2	2	m	ec	è	îï	1/	2	ö	ïü	ý	ø	þï	λnon-relativistic	5.48	pm	=	1/	2	1/	2	æ	ì	ü	eV	ö	1.602	×	10−19	C	)(	50.0	×	103	V	)	(	ï	ï	+	1	ç	2		í1	+	ý	è	2me	c	ø	−31	−1	2	8	ïî	2	(	9.109	×	10	kg	)(	3.00	×
10	m	s	)	ïþ	=	=	5.35	pm	(b)	For	an	electron	accelerated	through	50	kV	the	non-relativistic	de	Broglie	wavelength	is	calculated	to	be	high	by	2.4%.	This	error	may	be	insignificant	for	many	applications.	However,	should	an	accuracy	of	1%	or	better	be	required,	use	the	relativistic	equation	at	accelerations	through	a	potential	above	20.4	kV	as
demonstrated	in	the	following	calculation:	1/	2	æ	λnon-relativistic	−	λrelativistic	λnon-relativistic	eV	ö	=	−	1=	ç1	+		λrelativistic	λrelativistic	2me	c	2	ø	è	−1	2	3	1	æ	eV	ö	1	æ	eV	ö	1	⋅	3	æ	eV	ö	−	+	ç	ç	ç		−		−1	2		2		2	è	2me	c	ø	2	⋅	4	è	2me	c	ø	2	⋅	4	⋅	6	è	2me	c	2	ø	1	æ	eV	ö		ç	because	2nd	and	3rd	order	terms	are	very	small.		2	è	2me	c	2	ø	The	largest	value	of	V
for	which	the	non-relativistic	equation	yields	a	value	that	has	less	than	1%	error:	æ	2m	c	2	ö	æ	λ	æ	2m	c	2	ö	−	λrelativistic	ö	V		2	ç	e		×	ç	non-relativistic	2	ç	e		(	0.01)	=	20.4	kV	=	λrelativistic	ø	è	e	ø	è	è	e	ø	=1	+	22.4	V	−	E=	2.00	eV=	3.20	×	10−19	J	=	κ	{2m	(V	−	E	)}	1/	2	e	/		[8A.20]	{	}	/	(1.055	×10	=	2	×	(	9.109	×	10−31	kg	)	×	(	3.20	×	10−19	J	)	1/	2
−34	J	s)	=	7.24	×	109	m	−1	Since	κL	≫	1	for	the	distances	of	this	problem,	we	use	eqn	8A.23B	for	the	transmission	probability	T.	T	≈	16ε	(1	−	ε	)	e	−2κ	L	where	ε	=	E	/V	We	regard	the	tunnelling	current	to	be	proportional	to	the	transmission	probability,	so	the	ratio	of	the	currents	at	different	distances	is	equal	to	the	ratio	of	transmission
probabilities.	current	at	L2	T	(	L2	)	e	−2κ	L2	−2κ	L	−	L	=	=	=	e	(	2	1)	−2κ	L1	current	at	L1	T	(	L1	)	e	=e	(	)(	−2×	7.24×109	m	−1	×	1.00×10−10	m	)	=	0.235	We	conclude	that,	at	the	distance	of	0.60	nm	between	the	surface	and	the	needle,	the	current	is	about	24%	of	the	value	measured	when	the	distance	is	0.50	nm.	22:14	Atkins	&	de	Paula:	Atkins’
Physical	Chemistry	10e	Solutions	to	a)	exercises	Foundations	Topic	A	EA.1(a)	Example	(i)	Group	2	(ii)	Group	7	(iii)	Group	15	EA.2(a)	Element	Ca,	calcium	Mn,	manganese	As,	arsenic	Ground-state	Electronic	Configuration	[Ar]4s2	[Ar]3d54s2	[Ar]3d104s24p3	(i)	Chemical	formula	and	name:	MgCl2,	magnesium	chloride	ions:	Mg2+	and	Cl–	oxidation
numbers	of	the	elements:	magnesium,	+2;	chlorine,	–1	(ii)	Chemical	formula	and	name:	FeO,	iron(II)	oxide	ions:	Fe2+	and	O2–	oxidation	numbers	of	the	elements:	iron,	+2;	oxygen,	–2	(iii)	Chemical	formula	and	name:	Hg2Cl2,	mercury(I)	chloride	ions:	Cl–	and	Hg22+	(a	polyatomic	ion)	oxidation	numbers	of	the	elements:	mercury,	+1;	chlorine,	–1
EA.8(a)	(i)	CO2	is	a	linear,	nonpolar	molecule.	(ii)	SO2	is	a	bent,	polar	molecule.	(iii)	N2O	is	linear,	polar	molecule.	(iv)	SF4	has	a	seesaw	molecule	and	it	is	a	polar	molecule.	EA.9(a)	In	the	order	of	increasing	dipole	moment:	CO2,	N2O,	SF4,	SO2	EA.10(a)	(i)	Mass	is	an	extensive	property.	(ii)	Mass	density	is	an	intensive	property.	(iii)	Temperature	is
an	intensive	property.	(iv)	Number	density	is	an	intensive	property.	EA.11(a)	(i)	0.543	mol	(ii)	3.27	×	1023	molecules	EA.12(a)	(i)	180.	g	(ii)	1.77	N	EA.13(a)	0.43	bar	EA.14(a)	0.42	atm	EA.15(a)	1.47	×	105	Pa	EA.16(a)	T	=	310.2	K	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	EA.17(a)	θ	/	°C	=	5	9	×	(θ	F	/	°F	−	32
)	EA.18(a)	105	kPa	EA.19(a)	S8	EA.20(a)	1.8	MPa	EA.21(a)	4.6	×	105	Pa	,	6.9	×	105	Pa	or	θ	F	/	°F	=	9	5	×	θ	/	°C	+	32	,	=	θ	F	173	°F	Topic	B	EB.1(a)	(i)	9.81	m	s	−1	,	48	mJ	(ii)	29.4	m	s	−1	,	0.43	J	EB.2(a)	sterminal	=	EB.4(a)	(i)	2.25	×	10−20	J	EB.5(a)	(i)	1.88	×	108	m	s	−1	,	100	keV	EB.6(a)	1.15	×	10−18	J	,	1.48	×	10−20	J	EB.7(a)	−2.40	V	EB.8(a)
24.1	kJ	,	28.8	°C	EB.9(a)	27.2	K	or	27.2	°C	EB.10(a)	128	J	EB.11(a)	2.4194	J	K	−1	g	−1	EB.12(a)	75.3	J	K	−1	mol−1	EB.13(a)	8.3145	kJ	mol−1	EB.14(a)	S	H2	O(g)	>	S	H2	O(l)	EB.15(a)	S	Fe(3000	K)	>	SFe(300	K)	EB.17(a)	(i)	1.6	×	10	EB.19(a)	4.631×	10−6	EB.21(a)	1.07	EB.22(a)	1.25	zeE	6πη	R	−17	©	Oxford	University	Press,	2014.	(ii)	9.00	×	10−20
J	(ii)	0.021	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	EB.23(a)	0.47	kJ	EB.24(a)	(i)	1.38	kJ	EB.25(a)	12.47	J	mol−1	K	−1	EB.26(a)	(i)	20.79	J	mol−1	K	−1	(ii)	4.56	kJ	(ii)	24.94	J	mol−1	K	−1	Topic	C	EC.1(a)	2.26	×	108	m	s	−1	EC.2(a)	4.00	μm	,	7.50	×	1013	Hz	Chapter	1	Topic	1A	E1A.1(a)	24	atm,	no	E1A.2(a)	(i)	3.42	bar	E1A.3(a)	30	lb	in-2
E1A.4(a)	4.20	×	10-2	E1A.5(a)	0.50	m3	E1A.6(a)	102	kPa	E1A.7(a)	8.3147	J	K-1	mol-1	E1A.8(a)	S8	E1A.9(a)	6.2	kg	E1A.10(a)	(i)	0.762,	0.238,	0.752	bar,	0.235	bar	0.205	bar	E1A.11(a)	169	g	mol-1	E1A.12(a)	273oC	E1A.13(a)	(i)	0.67,	0.33	Topic	1B	E1B.1(a)	(i)	9.975	©	Oxford	University	Press,	2014.	(ii)	3.38	atm	(ii)	0.782,	0.208,	0.0099	bar,	0.772	bar,
(ii)	2.0	atm,	1.0	atm	(iii)	3.0	atm	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E1B.2(a)	1.90	×	103	m	s-1	=	1.90	km	s-1,	458	m	s-1	E1B.3(a)	0.00687	E1B.4(a)	333	m	s-1,	375	m	s-1,	596	m	s-1	E1B.5(a)	(i)	475	m	s-1	E1B.6(a)	�	Pa	0.195	E1B.7(a)	(ii)	8.3	×	10-8	m	(iii)	8.1	×	10-9	s-1	1.4	×	10-6	m	Topic	1C	(ii)	1.8	×	103	atm	E1C.1(a)	(i)	1.0	atm
E1C.2(a)	7.61×	10−2	kg	m5	s	−2	mol−2	,	2.26	×	10−5	m3	mol−1	E1C.3(a)	(i)	0.88	E1C.4(a)	140	atm	E1C.5(a)	(i)	50.7	atm	E1C.6(a)	1.78	dm6	atm	mol–2,	0.0362	dm3	mol–1,	0.122nm	E1C.7(a)	(i)	1.41	×	103	K	E1C.8(a)	(i)	3.64	×	103	K,	8.7	atm	0.18	atm	E1C.9(a)	0.46	×	10−4	m3	mol−1	,	0.66	(ii)	1.2	dm3	mol-1,	attractive	(ii)	35.1	atm,	0.692	(ii)
0.139nm	(ii)	2.62	×	103	K,	4.5	atm	(iii)	47K,	Chapter	2	Topic	2A	E2A.1(a)	−1	(i)	72	R	,	8.671	kJ	mol	E2A.2(a)	(i)	Pressure,	(ii)	temperature,	and	(iv)	enthalpy	are	state	functions.	E2A.3(a)	−75	J	E2A.4(a)	∆H	=	0	,	−2.68	kJ	,	+2.68	kJ	(i)	∆U	=	∆U	=	∆H	=	0	−1	(ii)	3R	,	7.436	kJ	mol	w=0,	0	E2A.5(a)	1.33atm	,	+1.25	kJ	,	w	=	0	,	+1.25	kJ	E2A.6(a)	(i)	−88	J
(ii)	−167	J	©	Oxford	University	Press,	2014.	(iii)	7R	,	17.35	kJ	mol−1	∆H	=	0	,	−1.62	kJ	,	+1.62	kJ	(ii)	∆U	=	(iii)	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Topic	2B	E2B.1(a)	−1	−1	30	J	K–1	mol–1,	22	J	K	mol	E2B.2(a)	(i)	1.07	×	104	J	=	+10.7	kJ	,	−0.624	×	103	J	=	−0.624	kJ	,	+10.1kJ	(ii)	+10.7	kJ	,	+10.1	kJ	,	w	=	0	,	+10.1	kJ	E2B.3(a)	+2.2	kJ	,
+2.2	kJ	,	+1.6	kJ	Topic	2C	E2C.1(a)	22.5	kJ	,	−1.6	kJ	,	20.9	kJ	E2C.2(a)	−4564.7	kJ	mol-1	E2C.3(a)	+53kJ	mol−1	,	−33kJ	mol−1	E2C.4(a)	−167	kJ/mol−1	E2C.5(a)	−5152	kJ	mol−1	,	1.58	kJ	K	−1	,	+3.08	K	E2C.6(a)	(i)	−114.40	kJ	mol−1	,	−111.92	kJ	mol−1	E2C.7(a)	−1368	kJ	mol−1	E2C.8(a)	(i)	+131.29	kJ	mol−1	,	+128.81kJ	mol−1	E2C.9(a)	−803.07	kJ
mol−1	E2C.10(a)	−1892	kJ	mol−1	(ii)	−92.31kJ	mol−1	,	−241.82	kJ	mol-1	(ii)	+134.14	kJ	mol−1	,	+130.17	kJ	mol−1	Topic	2D	E2D.1(a)	5.03	mbar	E2D.2(a)	+130.1	J	mol−1	,	+7.52	×	103	J	mol−1	,	−7.39	×	103	J	mol−1	E2D.3(a)	1.31×	10−3	K	−1	E2D.4(a)	2.0	×	103	atm	E2D.5(a)	−7.2	J	atm	−1	mol−1	,	+6.1kJ	©	Oxford	University	Press,	2014.	Atkins
&	de	Paula:	Atkins’	Physical	Chemistry	10e	Topic	2E	E2E.1(a)	Closer	,	closer	E2E.2(a)	13	1	K	E2E.3(a)	0.00846	m3	,	257	K	,	−0.89	×	103	J	E2E.4(a)	−194	J	E2E.5(a)	9.7	kPa	Chapter	3	Topic	3A	E3A.1(a)	Not	spontaneous.	E3A.2(a)	Tc	=	191.2	K	E3A.3(a)	(i)	366	J	K	−1	E3A.4(a)	I2(g)	E3A.5(a)	3.1	J	K	−1	E3A.6(a)	30.0	kJ/mol−1	E3A.7(a)	152.67	J	K	−1
mol−1	E3A.9(a)	∆H	=	0	,	+2.7	J	K	−1	,	∆H	tot	=	0	E3A.10(a)	(i)	+2.9	J	K	−1	,	−2.9	J	K	−1	,	0	E3A.11(a)	(i)	+87.8	J	K	−1	mol−1	E3A.12(a)	∆S	=	92.2	J	K	−1	(ii)	309	J	K	−1	(ii)	+2.9	J	K	−1	,	0,	+2.9	J	K	−1	(iii)	0,	0,	0	(ii)	−87.8	J	K	−1	mol−1	Topic	3B	E3B.1(a)	(i)	9.13	J	K–1	mol–1	(ii)	13.4	J	K–1	mol–1	(iii)	14.9	J	K–1	mol–1	E3B.2(a)	(i)	−386.1J	K	−1	mol−1
(ii)	+92.6	J	K	−1	mol−1	(iii)	−153.1J	K	−1	mol−1	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Topic	3C	E3C.1(a)	(i)	-521.5	kJ	mol−1	E3C.2(a)	−480.98	kJ	mol−1	E3C.3(a)	817.90	kJ	mol−1	E3C.4(a)	(i)	−522.1kJ	mol−1	E3C.5(a)	−340	kJ	mol−1	(ii)	+25.8	kJ	mol-1	(iii)	−178.7kJ	mol−1	(ii)	+25.78	kJ	mol	−1	(iii)
−178.6	kJ	mol−1	(b)	two	phases	(c)	three	phases	Topic	3D	E3D.1(a)	−17	J	E3D.2(a)	−36.5	J	K	−1	E3D.3(a)	+10	kJ	,	1.6	kJ	mol−1	E3D.4(a)	+11	kJ	mol−1	Chapter	4	Topic	4A	E4A.1(a)	(a)	Single	phase	phases	E4A.2(a)	0.71	J	E4A.3(a)	4	Topic	4B	E4B.1(a)	−1.0	×	10−4	K	E4B.2(a)	5.2	×	103	J	mol−1	=	5.2	kJ	mol−1	E4B.3(a)	70	J	mol−1	E4B.4(a)	2.71	kPa
E4B.5(a)	+45.23J	K	−1	mol−1	,	+16	kJ	mol−1	E4B.6(a)	304	K,	31°C	©	Oxford	University	Press,	2014.	(d)	two	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E4B.7(a)	+20.80	kJ	mol−1	E4B.8(a)	(i)	+34.08	kJ	mol−1	E4B.9(a)	281.8	K	or	8.7°C	E4B.10(a)	25	g	s	−1	E4B.11(a)	(i)	1.7	×	103	g	E4B.12(a)	(i)	+4.9	×	104	J	mol−1	=	+49	kJ	mol−1	E4B.13(a)
272.80	K	E4B.14(a)	0.0763	(ii)	350.5	K	(ii)	31×	103	g	(iii)	1.4	g	(ii)	215°C	,	+101	J	K	−1	mol−1	Chapter	5	Topic	5A	E5A.1(a)	0,	(35.6774	−	0.91846	x	+	0.051975	x	2	)	cm3	mol−1	E5A.2(a)	17.5	cm3	mol–1,	18.07	cm3	mol−1	E5A.3(a)	−1.2	J	mol−1	E5A.4(a)	−0.35	kJ	,	+1.2	J	K	−1	E5A.5(a)	+4.70	J	K	−1	mol−1	E5A.6(a)	6.7	kPa	E5A.7(a)	886.8	cm3
E5A.8(a)	56	cm3	mol−1	E5A.9(a)	6.4×103	kPa	E5A.10(a)	3.67	×	10−3	mol	dm	−3	E5A.11(a)	(i)	3.4	×	10−3	mol	kg	−1	E5A.12(a)	0.17	mol	dm–3	Topic	5B	E5B.1(a)	1.3×102	kPa	©	Oxford	University	Press,	2014.	(ii)	3.37	×	10−2	mol	kg	−1	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E5B.2(a)	85	g	mol−1	E5B.3(a)	3.8	×	102	g	mol−1	E5B.4(a)	–
0.09°C	E5B.5(a)	−3.10	kJ	,	+10.4	J	K	−1	,	0	E5B.6(a)	(i)	1	E5B.7(a)	0.135	mol	kg-1,	24.0	g	anthracene	E5B.8(a)	87	kg	mol-1	E5B.9(a)	32.2	Torr,	6.1	Torr,	38.3	Torr,	0.840	,	0.160	E5B.10(a)	0.92,	0.08,	0.97,	0.03	E5B.11(a)	0.267,	0.733,	58.6	kPa	E5B.12(a)	(i)	solution	is	ideal	(ii)	0.830,	0.1703	E5B.13(a)	(i)	20.6	kPa	(ii)	0.668,	0.332	2	(ii)	0.8600	Topic	5C
E5C.1(a)	(i)	yM	=	0.36	E5C.4(a)	0.25,	193oC	E5C.6(a)	(i)	76%	(ii)	52%	(iii)	1.11,	1.46	E5C.7(a)	(ii)	620	Torr	(iii)	490	Torr	(iv)	0.50,	0.72	(v)	0.50,	0.30	(ii)	yM	=	0.80	(i.e.,	yO	=	0.20)	Chapter	6	Topic	6A	E6A.1(a)	0.9	mol,	1.2	mol	E6A.2(a)	−0.64	kJ	E6A.3(a)	5.80	×	105	E6A.4(a)	2.85	×	10−6	E6A.5(a)	(i)	0.141	E6A.6(a)	(i)	−68.26	kJ	mol−1	,	9.13	×	1011
(ii)	13.5	©	Oxford	University	Press,	2014.	(ii)	1.32	×	109	,	−69.8	kJ	mol−1	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E6A.7(a)	K	=	K	c	×	(	c	O	RT	/	p	O	)	E6A.8(a)	(i)	Initial	amounts	/	mol	Stated	change	/	mol	Implied	change	/	mol	Equilibrium	amounts	/	mol	Mole	fractions	(ii)	0.33	A	1.00	B	2.00	–0.60	0.40	0.087	–0.30	1.70	0.370	(iii)	0.33	C	0
+0.90	+0.90	0.90	0.196	D	1.00	Total	4.00	+0.60	1.60	0.348	4.60	1.001	(iv)	+2.8	kJ	mol−1	E6A.9(a)	+12.3	kJ	mol−1	E6A.10(a)	−14.4	kJ	mol−1	,	toward	the	ammonia	product	E6A.11(a)	−1108	kJ	mol−1	Topic	6B	E6B.1(a)	0.045	,	1500	K	E6B.2(a)	+2.77	kJ	mol−1	,	−	16.5	J	K	−1	mol−1	E6B.3(a)	50%	E6B.4(a)	0.9039	,	0.0961	E6B.5(a)	(i)	52.89	kJ	mol−1
E6B.6(a)	1110	K	E6B.7(a)	70.2	kJ	mol−1	,	110	kJ	mol−1	K	−1	,	−6.3	kJ	mol−1	,	3.0	(ii)	−52.89	kJ	mol−1	Topic	6C	(ii)	+0.22	V	(iii)	+1.23	V	E6C.2(a)	(i)	+1.10	V	E6C.3(a)	(i)	Cd2+(aq)	+	2Br–(aq)	+	2	Ag(s)	→	Cd(s)	+	2	AgBr(s)	(iii)	−0.62	V	Topic	6D	E6D.1(a)	(i)	6.5	×	109	(ii)	1.4	×	1012	E6D.2(a)	(i)	8.47×10–17	(ii)	9.20	×	10−9	mol	dm	−3	or	2.16	μg	dm
−3	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Chapter	7	Topic	7A	E7A.1(a)	(i)	6.6	×	10−19	J	,	4.0	×	102	kJ	mol−1	6.6	×	10−34	J	,	4.0	×	10−13	kJ	mol−1	(ii)	6.6	×	10−20	J	,	40	kJ	mol−1	E7A.2(a)	λ	/	nm	E	/	aJ	Em	/	(kJ	mol–1)	(i)	600	331	199	(ii)	550	361	218	(iii)	400	497	299	E7A.3(a)	λ	/	nm	Ephoton	/	aJ	v	/	(km
s–1)	(i)	600	331	19.9	(ii)	550	361	20.8	(iii)	400	497	24.4	E7A.4(a)	21	m	s	−1	E7A.5(a)	(i)	2.77	×	1018	E7A.6(a)	(i)	no	electron	ejection	E7A.7(a)	6.96	keV	,	6.96	keV	E7A.8(a)	7.27	×	106	m	s	−1	,	150	V	E7A.9(a)	0.024	m	s	−1	E7A.10(a)	332	pm	E7A.11(a)	(i)	6.6	×	10−29	m	(ii)	2.77	×	1020	Topic	7B	©	Oxford	University	Press,	2014.	(ii)	3.19	×	10−19	J	,
837	km	s	−1	(ii)	6.6×10−36	m	(iii)	99.7	pm	(iii)	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	1/	2	E7B.3(a)	æ	1	ö	N	=ç		è	2π	ø	E7B.4(a)	(1	/	2π	)	dφ	E7B.5(a)	1	2	Topic	7C	E7C.1(a)	Vˆ	=	E7C.5(a)	L	2	1	2	kf	x	2	−1	E7C.7(a)	−27	1.1×10−28	m	s	,	1.1×10	m	E7C.8(a)	700	pm	E7C.9(a)	(i)	−	1	x2	(ii)	2x	Chapter	8	Topic	8A	E8A.1(a)	5	×	10−20	J	E8A.2(a)
Aeikx	E8A.3(a)	(i)	1.81×	10−19	J	,	1.13	eV	,	9100	cm	−1	,	109	kJ	mol−1	4.1	eV	,	33	000	cm	−1	,	400	kJ	mol−1	E8A.4(a)	(i)	0.04	E8A.5(a)	h2	4	L2	E8A.6(a)	1	ö	æ1	L2	ç	−	2		è	3	2π	ø	E8A.7(a)	λ	h	=	C	81/	2	me	c	81/2	E8A.8(a)	L	L	5L	,	and	6	2	6	(ii)	0	©	Oxford	University	Press,	2014.	(ii)	6.6	×	10−19	J	,	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e
E8A.9(a)	−17.4%	E8A.10(a)	2kTmL2	1	−	2	h2	E8A.11(a)	n1=1,	n2=4	E8A.12(a)	3	E8A.13(a)	0.8	Topic	8B	E8B.1(a)	4.30	×	10−21	J	E8B.2(a)	278	N	m	−1	E8B.3(a)	2.64	µ	m	E8B.4(a)	8.3673	×	10−28	kg	,	1.6722	×	10−27	kg	,	93.3	THz	E8B.5(a)	(i)	3.3	×	10−34	J	E8B.6(a)	5.61×	10−21	J	E8B.7(a)	±0.525α	or	±1.65α	E8B.8(a)	±α	E8B.9(a)	0.056,	0.112
Topic	8C	E8C.1(a)	0,	±	E8C.2(a)	æ	1	ö	ç		è	2π	ø	E8C.3(a)	3.32	×	10−22	J	E8C.4(a)	2.11×	10−22	J	E8C.5(a)	4.22	×	10−22	J	E8C.6(a)	21/2,	1.49×10–34	J	s	E8C.8(a)	7	1/	2	©	Oxford	University	Press,	2014.	(ii)	3.3	×	10−33	J	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Chapter	9	Topic	9A	E9A.1(a)	(i)	g	=	1	(ii)	g	=	9	(iii)	g	=	25	E9A.2(a)	N=	E9A.3(a)
4a0	,	r	=	0.	E9A.4(a)	r	=	0.35a0	E9A.5(a)	101	pm	and	376pm	E9A.6(a)	2	E1s	,	−	E1s	E9A.7(a)	5.24	E9A.8(a)	r	=	2a0	/	Z	E9A.10(a)	6a0	/	Z	,	xy	plane,	θ	=	π/2,	yz,	θ	=	0,	xz,	θ	=	0	2	a03	2	a0	Ζ	Topic	9B	E9B.2(a)	(i)	[Ar]3d8	(ii)	S	=	1,	0	,	M	S	=	−1,	0,	+	1	,	M	S	=	0	Topic	9C	E9C.1(a)	9.118	×	10−6	cm	,	1.216	×	10−5	cm	E9C.2(a)	3.292	×	105	cm-1	,	3.038
×	10−6	cm	,	9.869	×	1015	s-1	E9C.3(a)	14.0	eV	E9C.4(a)	(i)	Forbidden	(ii)	allowed	E9C.5(a)	(i)	52	,	32	(ii)	72	,	52	E9C.6(a)	l	=1	E9C.7(a)	L	=2,	S	=0,	J	=2	E9C.8(a)	(i)	1,	0	,	3,1	(iii)	allowed	(ii)	32	,	12	,	and	12	,	4,	2,	2	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E9C.9(a)	E9C.10(a)	3	D3	,	3	D	2	,	3	D1	,	1D	2	,	3	D
set	of	terms	are	the	lower	in	energy	(ii)	J	=	32	,	12	,	4,	2	states	respectively	(i)	J	=	0	,	1state	(iii)	J	=	2,1,	0	,	5,	3,	1	states	respectively	E9C.11(a)	(i)	2	S1/	2	(ii)	2	P3/	2	and	2P1/	2	E9C.12(a)	(i)	Allowed	(ii)	forbidden	(iii)	allowed	Chapter	10	Topic	10A	E10A.1(a)	{s(1)pz(2)+s(2)pz(1)}	×	{α(1)β(2)–α(2)β(1)}	E10A.2(a)	ψ	=aψ	VB	+	bψ	H	F	+	cψ	H	F
E10A.6(a)	N=3	−	+	–1/2	,ψ=3	+	−	–1/2	(s	+	21/2p)	Topic	10B	1/	2	E10B.1(a)	1	æ	ö	N	=ç	2		è	1	+	2λ	S	+	λ	ø	E10B.2(a)	N	=	1.12,	ψ1	=	0.163A	+	0.947B,	b	=	0.412,	a	=	–1.02,	ψ2	=	–1.02A	+	0.412B	E10B.3(a)	1.9	eV,	130	pm	E10B.4(a)	u,	g	Topic	10C	E10C.1(a)	(i)	1σg2,	b=1	(ii)	1σg21σu2,	b=0	E10C.2(a)	C2	E10C.3(a)	F2+	E10C.4(a)	b=1,	b=0,	b=1,
b=2,	b=3,	b=2,	b=1	E10C.5(a)	1σg,	1σu,	1πu,	1πu,	2σg,	1πg,	1πg,	1σu,	1πu,	1πu,	2σg,	1πg,	1πg,	2σu	E10C.6(a)	4	×	105	m	s	−1	E10C.7(a)	(i)	2.1×10–10	m	=	0.21	nm	©	Oxford	University	Press,	2014.	(iii)	1σg21σu21πu4,	b=2	(ii)	1.0×10–10	m	=	0.10	nm	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Topic	10D	E10D.1(a)	(i)	1σ22σ21π43σ2
E10D.3(a)	NO+	E10D.5(a)	7.2,	8.3	E10D.6(a)	−6.6	or	−	8.9	E10D.7(a)	–5.0	or	–10.7	eV	(ii)	1σ22σ23σ21π42π1	(iii)	1σ22σ21π43σ2	Topic	10E	E10E.2(a)	(i)	a2u2e1g4e2u1,	7α	+	7β	(ii)	a2u2e1g3,	5α	+	7β	E10E.3(a)	(i)	7β,	0	E10E.5(a)	(i)	14α	+	19.314β	(ii)	7β,	2β	(ii)	14α	+	19.448β	Chapter	11	Topic	11A	E11A.1(a)	Identity	E,	C3	axis,	three	vertical	mirror
planes	σv	E11A.2(a)	D2h,	3C2	axes,	a	centre	of	inversion,	3σh	mirror	planes	E11A.3(a)	(i)	R3	E11A.4(a)	(i)	C2v	(ii)	C∞v	E11A.5(a)	(i)	C2v	(ii)	C2h	E11A.6(a)	(i)	pyridine	(ii)	nitroethane	(ii)	C2v	(iii)	D3h	(iv)	D∞h	(iii)	C3v	(iv)	D2h	E11A.7(a)	Isomers	and	Point	Groups	of	m,n-Dichloronaphthalene	m,n	1,2	1,3	1,4	Point	Group	Cs	©	Oxford	University	Press,
2014.	Cs	1,5	1,6	1,7	1,8	C2v	C2h	Cs	Cs	2,3	2,6	2,7	C2v	C2v	C2h	C2v	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E11A.8(a)	i,	σ	h	Topic	11B	E11B.1(a)	æ	−1	0	0	0	ö	ç		0	−1	0	0		ç	D(σ	h	)	=	ç	0	0	−1	0		ç		è	0	0	0	−1ø	E11B.2(a)	æ	−1	0	0	0	ö	ç		ç	0	0	−1	0		=	D(	S	)	3	ç	0	0	0	−1	ç		è	0	−1	0	0	ø	Topic	11C	E11C.4(a)	no	N	orbitals,	d	xy	E11C.6(a)	2A1	+
B1	+	E	E11C.7(a)	(i)	Either	E1u	or	A2u	E11C.8(a)	zero	(ii)	B3u	(	x	-polarized)	,	B2u	(	y	-polarized)	,	B1u	(	z	−	polarized)	Chapter	12	Topic	12A	E12A.1(a)	(i)	0.0469	J	m	−3	s	(ii)	1.33	×	10−13	J	m	−3s	E12A.2(a)	82.9	%	E12A.3(a)	5.34	×	103	dm3	mol−1	cm	−1	E12A.4(a)	1.09	mmol	dm	−3	©	Oxford	University	Press,	2014.	(iii)	4.50	×	10−28	J	m	−3	s
Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E12A.5(a)	450	dm3	mol–1	cm–2	E12A.6(a)	159	dm3	mol−1	cm	−1	,	23	per	cent	E12A.7(a)	(i)	0.87	m	E12A.8(a)	1.3	×	108	dm3	mol−1	cm	−2	E12A.9(a)	(i)	5	×	107	dm3	mol−1	cm	−2	(ii)	2.5	×	106	dm3	mol−1	cm	−2	E12A.10(a)	0.9999	×	λ	E12A.11(a)	(i)	27	ps	E12A.12(a)	(i)	δν	=	53	cm	−1	(ii)	δν	=
0.53	cm	−1	(ii)	2.9	m	(ii)	2.7	ps	Topic	12B	E12B.1(a)	6.33	×	10−46	kg	m	2	,	0.4421	cm	−1	E12B.3(a)	(i)	Asymmetric	E12B.4(a)	106.5	pm	,	115.6	pm	E12B.5(a)	2.073	×	10	−4	cm	(ii)	oblate	symmetric	−1	(iii)	spherical	,	0.1253	Topic	12C	E12C.2(a)	3.07	×	1011	Hz	E12C.3(a)	127.4	pm	E12C.4(a)	4.442	×	10−47	kg	m	2	,	165.9	pm	E12C.5(a)	(i)	20
E12C.6(a)	(iii)	CH4	is	inactive,	(i),	(ii),	and	(iv)	are	active.	E12C.7(a)	20	475cm	−1	E12C.8(a)	198.9	pm	E12C.9(a)	5	3	(ii)	23	Topic	12D	©	Oxford	University	Press,	2014.	(iv)	prolate	symmetric	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E12D.1(a)	1.6	×	102	N	m	−1	E12D.2(a)	1.077	%	E12D.3(a)	328.7	N	m	−1	E12D.4(a)	967.0,	515.6,	411.8,
314.2	E12D.5(a)	(i)	0.067	E12D.6(a)	1580.38	cm	−1	,	7.644	×	10−3	E12D.7(a)	5.13	eV	(ii)	0.20	Topic	12E	E12E.3(a)	127	(	v1	+	v2	+	v3	)	E12E.4(a)	1	E12E.6(a)	Raman	active	E12E.7(a)	4A1	+	A	2	+2B1	+	2B2	E12E.8(a)	A1	,	B1	and	B2	are	infrared	active,	all	modes	are	Raman	active	2	Chapter	13	Topic	13A	E13A.1(a)	3,	u	E13A.2(a)	(i)	Allowed
E13A.3(a)	2	2	−2	ax02	/3	e	3	E13A.4(a)	1	æ	4ö	ç3+		32	è	πø	E13A.5(a)	1	E13A.6(a)	1	E13A.7(a)	30.4	cm	−1	<	B	'	<	40.5	cm	−1	,	greater	E13A.8(a)	∆	O	=	P	−	v	,	14	×	10	cm	(ii)	allowed	(iii)	forbidden	(iv)	forbidden	(v)	allowed	2	2	(	B	'+	B	)	/	(	B	'−	B	)	2	(	B	'+	B	)	/	(	B	'−	B	)	−	1	,	7	3	©	Oxford	University	Press,	2014.	–1	Atkins	&	de	Paula:	Atkins’	Physical
Chemistry	10e	1/	2	E13A.9(a)	3	æ	a3	ö	ç		8	è	b	−	12	a	ø	E13A.10(a)	1	4	e	−1/16	a	Topic	13B	13B.1(a)	(i)	Lower,	v	≈	1800	cm	−1	(ii)	no	information	Topic	13C	E13C.1(a)	λ	=	2.0	cm	(v	=	15.0	GHz)	E13C.2(a)	20	ps	,	70	MHz	Chapter	14	Topic	14A	E14A.1(a)	s-1	T	-1	E14A.2(a)	±54.74	9.133	×	10−35	J	s	,	±5.273	×	10−35	J	s	,	±0.9553	rad	=	E14A.3(a)	574
MHz	E14A.4(a)	−1.473	×	10−26	J	×	mI	E14A.5(a)	165	MHz	E14A.6(a)	(i)	3.98	×	10−25	J	E14A.7(a)	(i)	1×	10−6	E14A.8(a)	13	E14A.9(a)	2	×	102	T	,	(ii)	6.11×	10−26	J	,	(a).	(ii)	5.1×	10−6	10	mT	Topic	14B	E14B.1(a)	(i)	Independent	©	Oxford	University	Press,	2014.	(ii)	13	(iii)	3.4	×	10−5	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	(ii)	110µ	T
E14B.2(a)	(i)	11µ	T	E14B.5(a)	753	MHz	E14B.9(a)	0.39	ms,	2.6	×	103	s	−1	Topic	14C	E14C.1(a)	9.40	×	10−4	T	,	6.25	μs	E14C.2(a)	0.21	s	E14C.3(a)	1.234	Topic	14D	E14D.1(a)	2.0022	E14D.2(a)	2.3	mT	,	2.0025	E14D.3(a)	Equal	intensity	,	330.2	mT,	332.2	mT,	332.8	mT,	334.8	mT	E14D.5(a)	(i)	332.3	mT	E14D.6(a)	I=	(ii)	1.206	T	3	2	Chapter	15	Topic
15A	E15A.1(a)	21621600	E15A.2(a)	(i)	40320	E15A.3(a)	1	E15A.4(a)	524	K	E15A.5(a)	7.43	E15A.6(a)	354	K	(ii)	5.63×103	Topic	15B	©	Oxford	University	Press,	2014.	(iii)	3.99×104	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E15B.1(a)	(i)	8.23	×	10−12	m	,	8.23	pm	,	2.60	×	10−12	m	,	2.60	pm	E15B.2(a)	0.3574	E15B.3(a)	72.2	E15B.4(a)	(i)	7.97
×	103	E15B.5(a)	18	K	E15B.6(a)	37	K	E15B.7(a)	4.5	K	E15B.8(a)	(i)	1	E15B.9(a)	660.6	E15B.10(a)	4500	K	E15B.11(a)	2.571	E15B.12(a)	42.3	E15B.13(a)	4.292	,	0.0353	to	0.0377	to	1	(ii)	2	(ii)	1.12	×	104	(iii)	2	(iv)	12	(v)	3	Topic	15C	E15C.1(a)	8.16	×	10−22	J	E15C.2(a)	18.5	K	E15C.3(a)	25	K	E15C.4(a)	4.5	K	E15C.5(a)	4600	K	E15C.6(a)	10500	K
E15C.7(a)	6500	K	E15C.8(a)	4.033	×	10−21	J	Topic	15D	E15D.1(a)	He	gas,	CO	gas,	H2O	vapour	©	Oxford	University	Press,	2014.	(ii)	1.79	×	1027	,	5.67	×	1028	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Topic	15E	E15E.1(a)	(i)	72	R	(ii)	3R	(iii)	7R	E15E.2(a)	Closer,	closer	E15E.3(a)	(i)	4.158	E15E.4(a)	(i)	14.93	J	K–1	mol–1	(ii)	25.65	J	K–1	mol–
1	E15E.5(a)	(i)	126	J	K	−1	mol−1	(ii)	169	J	K	−1	mol−1	E15E.6(a)	2.35	×	103	K	E15E.7(a)	43.1	,	22.36	K	,	43.76	J	K	−1	mol−1	E15E.8(a)	11.5	J	K	−1	mol−1	E15E.9(a)	(i)	34.72	J	K–1	mol–1	(ii)	4.489	(ii)	119.06	J	K–1	mol–1	Topic	15F	E15F.1(a)	−13.8	kJ	mol−1	,	−0.20	kJ	mol−1	E15F.2(a)	(i)	−6.42	kJ	mol−1	E15F.3(a)	3.70	×	10−3	(ii)	−14.0	kJ	mol−1
Chapter16	Topic	16A	E16A.1(a)	CIF3,	O3	,	H2O2	E16A.2(a)	1.4	D	E16A.3(a)	37	D	,	11.7°	E16A.4(a)	1.66	D	,	1.01×	10−39	J	−1	C2	m	2	,	9.06	×	10−30	m3	E16A.5(a)	4.75	E16A.6(a)	1.42	×	10−39	J	−1	C2	m	2	E16A.7(a)	1.34	E16A.8(a)	17.7	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Topic	16B	E16B.1(a)	1.07	×
103	kJ	mol−1	E16B.2(a)	6l	4	Q12	πε	0	r	5	E16B.3(a)	0.071	J	mol−1	E16B.4(a)	289	kJ	mol−1	Topic	16C	E16C.1(a)	2.6	kPa	E16C.2(a)	72.8	mN	m	−1	E16C.3(a)	728	kPa	Chapter	17	Topic	17A	E17A.1(a)	27	nm	E17A.2(a)	3.08	μm	,	30.8	nm	E17A.3(a)	2.4	×	103	E17A.4(a)	0.017	E17A.5(a)	6.4	×	10−3	E17A.6(a)	+41.42%	,	+182.8%	E17A.7(a)	1000	+895	%
when	N	=	1000	,	+9.84	×	104	%	when	N	=	E17A.8(a)	1.6	×	102	pm	Topic	17B	E17B.1(a)	−19	mJ	mol−1	K	−1	E17B.2(a)	3.7	×	10−14	N	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Topic	17C	E17C.1(a)	3.43	Topic	17D	E17D.1(a)	70	kg	mol−1	,	71	kg	mol−1	E17D.2(a)	(i)	18	kg	mol−1	E17D.3(a)	100	E17D.4(a)	64
kg	mol−1	E17D.5(a)	0.73	mm	s	−1	E17D.6(a)	31	kg	mol−1	E17D.7(a)	3.4	×	103	kg	mol−1	(ii)	20	kg	mol−1	Chapter	18	Topic	18A	E18A.1(a)	N	=	4	,	4.01	g	cm	−3	E18A.2(a)	(323)	and	(110)	E18A.3(a)	229	pm	,	397	pm	,	115	pm	E18A.4(a)	220	pm	E18A.5(a)	70.7	pm	E18A.6(a)	10.1	,	14.4	,	17.7	E18A.7(a)	8.16°	,	4.82°	,	11.75°	E18A.8(a)	f	Br	−	=	36
E18A.9(a)	f	Br	−	=	36	E18A.10(a)	f	E18A.11(a)	3	f	for	h	+	k	even	and	−	f	for	h	+	k	odd	E18A.15(a)	6.1	km	s	−1	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E18A.16(a)	233	pm	Topic	18B	E18B.1(a)	0.9069	E18B.2(a)	(i)	0.5236	(ii)	0.6802	E18B.3(a)	(i)	74.9	pm	(ii)	132	pm	E18B.4(a)	Expansion	E18B.5(a)	3500.	kJ
mol−1	(iii)	0.7405	Topic	18C	E18C.1(a)	9.3	×	10−4	cm	3	E18C.2(a)	Group	14.	n-type;	the	dopant,	arsenic,	belongs	to	Group	15	whereas	germanium	belongs	to	E18C.3(a)	Three	unpaired	spins	E18C.4(a)	−6.4	×	10−5	cm	3	mol	−1	=	−6.4	×	10−11	m3	mol−1	E18C.5(a)	4.326	,	5	E18C.6(a)	+1.6	×	10−8	m3	mol−1	Topic	18D	E18D.1(a)	3.54	eV	Chapter
19	Topic	19A	E19A.1(a)	7.6	×	10−3	J	K	−1	m	−1	s	−1	E19A.2(a)	(i)	D	=	1.5	m2	s−1	,	Jz/NA	=	−61	mol	m−2	s−1	(ii)	D	=	1.5×10−5	m2	s−1,	Jz/NA	=	−6.1×10−4	mol	m−2	s−1	(iii)	D	=	1.5×10−7	m2	s−1,	Jz/NA	=	−6.1×10−6	mol	m−2	s−1	E19A.3(a)	−0.078	J	m	−2	s	−1	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry
10e	E19A.4(a)	0.0795	nm	2	E19A.5(a)	103	W	E19A.6(a)	0.201	nm	2	E19A.7(a)	(i)	η	=	178	µP	(ii)	η	=	186	µP	(iii)	η	=	342	µP	E19A.8(a)	1.9	×	1020	E19A.9(a)	104	mg	E19A.10(a)	2.15	×	103	Pa	E19A.11(a)	42.4	g	mol−1	E19A.12(a)	1.3	days	Topic	19B	E19B.1(a)	16.8	J	mol−1	E19B.2(a)	7.63	×	10−3	S	m	2	mol−1	E19B.3(a)	283	μm	s	−1	E19B.4(a)	13.87
mS	m	2	mol−1	E19B.5(a)	4.01×	10−8	m	2	V	−1	s	−1	,	5.19	×	10−8	m	2	V	−1	s	−1	,	7.62	×	10−8	m	2	V	−1	s	−1	E19B.6(a)	420	pm	E19B.7(a)	1.90	×	10−9	m	2	s	−1	Topic	19C	E19C.1(a)	6.2	×	103	s	E19C.2(a)	(i)	0.00	mol	dm	−3	E19C.3(a)	25	kN	mol−1	,	∞	E19C.4(a)	67.5	kN	mol−1	E19C.5(a)	1.3	×	103	s	E19C.6(a)	0.42	nm	©	Oxford	University	Press,
2014.	(ii)	0.0121	mol	dm	−3	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E19C.7(a)	27.3	ps	E19C.8(a)	113	μm	,	56	μm	Chapter	20	Topic	20A	E20A.1(a)	No	change	in	pressure	E20A.2(a)	8.1	mol	dm–3	s–1,	2.7	mol	dm–3	s–1,	2.7	mol	dm–3	s–1,	5.4	mol	dm–3	s–1	E20A.3(a)	1.35	mol	dm	−3	s	−1	,	4.05	mol	dm	−3	s	−1	,	2.7	mol	dm–3	s–1,	1.35	mol	dm
−3	s	−1	E20A.4(a)	dm3	mol–1	s–1,	E20A.5(a)	1	kr	[A][B][C]	,	dm	6	mol−2	s	−1	2	E20A.6(a)	(i)	[kr]	=	dm3	mol–1	s–1,	[kr]	=	dm6	mol–2	s–1	(i)	kr[A][B]	(ii)	3kr[A][B]	(ii)	[kr]	=	kPa–1	s–1,	[kr]	=	kPa–2	s–1	Topic	20B	E20B.1(a)	n=2	E20B.2(a)	1.03	×	104	s	,	(i)	498Torr	E20B.3(a)	(i)	0.098	mol	dm	−3	(ii)	0.050	mol	dm	−3	E20B.4(a)	1.11×	105	s	,	1.28	days
(ii)	461Torr	Topic	20C	E20C.1(a)	7.1×105	s–1,	1.28	×	104	dm3	mol−1	s	−1	Topic	20D	E20D.1(a)	E20D.2(a)	1.08	×	105	J	mol−1	=	108	kJ	mol−1	,	6.50×1015	dm3	mol–1	s–1,	6.50×1015	dm3	mol–1	s–1	35	kJ	mol−1	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Topic	20E	E20E.1(a)	(i)	k2	K	1/	2	[A	2	]1/	2	[B]
E20E.2(a)	–3	kJ	mol–1	(ii)	k2	2	[B]2	4k1′	æ	16k1′k1[A	2	]	ö	−	1	,	k2	K	1/	2	[A	2	]1/	2	[B]	,	2k1[A	2	]	çç	1	+	2	2		k	[B]	2	è	ø	Topic	20F	E20F.1(a)	1.9	×	10−6	Pa	−1	s	−1	,	1.9	MPa–1	s–1	E20F.2(a)	251	,	0.996	E20F.3(a)	0.125	Topic	20G	E20G.1(a)	3.3	×	1018	E20G.2(a)	0.56	mol	dm	−3	Topic	20H	E20H.1(a)	kb	K	[AH]2	[B]	[BH	+	]	E20H.2(a)	1.50	mmol	dm
−3	s	−1	E20H.3(a)	2.0	×	10−5	mol	dm	−3	Chapter	21	Topic	21A	E21A.1(a)	1.13	×	1010	s	−1	,	1.62	×	1035	s	−1	m	−3	,	1.7%	E21A.2(a)	(i)	1.04×10–3,	0.069	(ii)	1.19×10–15,	1.57×10–6	E21A.3(a)	(i)	22%,	3%	(ii)	170%,	16%	E21A.4(a)	1.03	×	10−5	m3	mol−1	s	−1	,	1.03	×	10−2	dm3	mol−1	s	−1	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:
Atkins’	Physical	Chemistry	10e	E21A.5(a)	0.79	nm	2	,	1.16	×	10−3	E21A.6(a)	0.73	E21A.7(a)	5.1×	10−7	Topic	21B	E21B.1(a)	4.5	×	107	m3	mol−1	s	−1	,	4.5	×	1010	dm3	mol−1	s	−1	E21B.2(a)	(i)	6.61×	106	m3	mol−1	s	−1	,	6.61×	109	dm3	mol−1	s	−1	(ii)	3.0	×	107	m3	mol−1	s	−1	,	3.0	×	1010	dm3	mol−1	s	−1	E21B.3(a)	8.0	×	106	m3	mol−1	s	−1	,
8.0	×	109	dm3	mol−1	s	−1	,	4.2	×	10−8	s	E21B.4(a)	1.81×	108	mol	dm	−3	s	−1	Topic	21C	E21C.1(a)	+69.7	kJ	mol–1,	−25	J	K	−1	mol−1	E21C.2(a)	+73.4	kJ	mol–1,	+71.9	kJ	mol–1	E21C.3(a)	−91	J	K	−1	mol−1	E21C.4(a)	−74	J	K	−1	mol−1	E21C.5(a)	(i)	−46	J	K	−1	mol−1	E21C.6(a)	7.1	dm6	mol–2	min–1	(ii)	+5.0	kJ	mol–1	(iii)	+18.7	kJ	mol–1	Topic	21D
E21D.1(a)	Reactant	is	high	in	translational	energy	and	low	in	vibrational	energy,	product	is	high	in	vibrational	energy	and	relatively	lower	in	translational	energy	Topic	21E	E21E.1(a)	4×10–21	J,	2	kJ	mol–1	E21E.2(a)	12.5	nm	−1	Topic	21F	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	E21F.1(a)	0.138	V	E21F.2(a)
2.82	mA	cm–2	E21F.3(a)	Increases,	factor	of	50	E21F.4(a)	(i)	1.7×10–4	A	cm–2	(ii)	1.7×10–4	A	cm–2	E21F.5(a)	(i)	0.31	mA	cm–2	(ii)	5.44	mA	cm–2	E21F.6(a)	4.9	×	1015	cm	−2	s	−1	,	1.6	×	1016	cm	−2	s	−1	,	3.1×	107	cm	−2	s	−1	,	3.9	s–1,	12	s–1,	2.4×10–8	s–1	E21F.7(a)	(i)	33	Ω	E21F.8(a)	One	can	(barely)	deposit	zinc	(iii)	–2×1042	mA	cm–2	(ii)	3.3	×
1010	Ω	Chapter	22	Topic	22A	22A.1(a)	(i)	1.4	×	1014	cm–2	s–1	22A.2(a)	0.13	bar	(ii)	3.1	×	1013	cm–2	s–1	Topic	22B	E22B.1(a)	33.6	cm3	E22B.2(a)	Chemisorption	,	50	s	E22B.3(a)	0.83	,	0.36	E22B.4(a)	(i)	0.24	kPa	E22B.5(a)	15	kPa	E22B.6(a)	−12.4	kJ	mol−1	E22B.7(a)	65	1	kJ	mol−1	E22B.8(a)	61	1	kJ	mol−1	E22B.9(a)	(i)	9.1	ps	,	0.60	ps	E22B.10(a)
Zeroth-order	,	(ii)	25	kPa	(i)	1.6	×	1097	min	(ii)	4.1×	106	s	,	6.6	µs	first-order	©	Oxford	University	Press,	2014.	(ii)	2.8	×	10–6	min	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Topic	22C	E22C.1(a)	12	m	2	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Solutions	to	odd-numbered	problems	Chapter	1	Topic	1A
P1A.1	–233°N	P1A.3	-272.95oC	P1A.5	(a)	0.0245	kPa	(b)	9.14	kPa	P1A.7	2.8	x	108	dm3	=	2.8	x	105	m3,	4.1	x	108	dm3	=	4.1	x	105	m3	P1A.9	(a)	1.7	x	10-5	P1A.13	51	km,	0.0029	atm	(c)	0.0245	kPa	(b)	0.72	Topic	1B	12	P1B.3	æ	2RT	ö	ç		è	M	ø	P1B.5	0.47	vx	P1B.7	n	2	e3(1−	n	P1B.9	(a)	11.2	km	s-1	(b)	5.04	km	s-1	P1C.1	(a)	12.5	dm3	mol−1	(b)	12.3	dm3
mol−1	P1C.3	(a)	0.941dm3	mol−1	(b)	2.69	dm3	mol-1	,	2.67	dm3	mol−1	2	initial	)/	2	,	5.53	x	10-5,	2.71	x	10-9	Topic	1C	inversion	temperature	P1C.5	(a)	0.1353dm3	mol−1	P1C.7	59.4	cm3	mol−1	,	5.649	dm	6	atm	mol−2	,	21	atm	P1C.9	B=	b	−	P1C.11	2	B3	3C	1	,	B	,	,	2	3	RC	B	3	27C	(b)	0.6957	(c)	0.7158	a	,	C	=	b	2	,	34.6	cm3	mol–1,	1.26	dm	6	atm
mol−2	RT	©	Oxford	University	Press,	2014.	(c)	5.11dm3	mol−1	,	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P1C.13	0.0866	atm	−1	,	2.12	dm3	mol−1	P1C.17	0.011	P1C.21	b	{1	±	(bRT	/	a	)1/	2	}	1	−	bRT	/	a	Chapter	2	Topic	2A	P2A.1	P2A.3	P2A.5	æ	V	−	nb	ö	2	æ	1	1	ö	−nRT	ln	ç	2		−	n	aç	−		è	V1	−	nb	ø	è	V2	V1	ø	(a)	−1.7	kJ	(b)	−1.8	kJ	(a)	−1.5kJ
(b)	−1.6kJ	1	2	(c)	−1.5	kJ	kF	xf	2	Topic	2B	P2B.1	62.2	kJ	mol−1	P2B.3	w	=	0,	∆U	=	+2.35	kJ	,	+3.03	kJ	Topic	2C	P2C.1	−1270	kJ	mol−1	P2C.3	−67.44	,	n	=	0.9253	,	−6625.5	kJ	mol-1	,	2.17	per	cent	P2C.5	−994.30	kJ	mol−1	P2C.7	−802.31	kJ	mol−1	P2C.9	+37	K	,	4.09	kg	Topic	2D	P2D.1	1.6	m	,	0.80	m	,	2.8	m	P2D.3	nR	©	Oxford	University	Press,
2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P2D.5	æ	p	ö	æ	na	T=ç		×	(V	−	nb)	+	ç	2	è	nR	ø	è	RV	P2D.7	γp	cs	=	ρ	P2D.11	(a)	23.5	K	MPa	−1	(	)	1/	2	æ	∂T	ö	V	−	nb	ö		=		×	(V	−	nb)	,	ç	nR	ø	è	∂p	øV	,	322	m	s-1	(b)	14.0	K	MPa	-1	Topic	2E	P2E.1	41.40	J	K	−1	mol−1	Chapter	3	Topic	3A	P3A.5	1.00	kJ,	8.4	kJ	P3A.7	10.7	J	K	−1	mol−1	P3A.9	Path	(a)
−2.74	kJ	,	0	,	+2.74	kJ	,	+9.13	J	K	−1	,	0	,	−9.13	J	K	−1	Path	(b)	−1.66	kJ	,	0	,	+1.66	kJ	,	+9.13	J	K	−1	,	−5.53	J	K	−1	,	+3.60	J	K	−1	Tf	T	+	nC	p	,m	ln	f	,	+22.6	J	K	−1	Th	Tc	P3A.11	nC	p	,	m	ln	P3A.13	477	J	K	−1	mol−1	Topic	3B	(b)	232.0	J	K	−1	mol−1	P3B.1	(a)	200.7	J	K	−1	mol−1	P3B.3	+41.16	kJ	mol−1	,	+42.08	J	K	−1	mol−1	,	+40.84	kJ	mol−1	,
+41.08	J	K	-1	mol-1	P3B.5	34.4	kJ	mol-1	,	243	J	K	−1	mol−1	Topic	3C	P3C.1	(a)	50.7	J	K	−1	,	−11.5	J	K	−1	indeterminate	(b)	+3.46	kJ	,	indeterminate	(d)	+39.2	J	K	−1	,	−39.2	J	K	−1	©	Oxford	University	Press,	2014.	(c)	3.46	×	103	J	,	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P3C.3	(b)	12	W	m	−3	,	1.5	×	104	W	m	−3	(a)	+35	J	K	−1	mol−1	(c)
0.46	mol	ATP	mol	glutamine	Topic	3D	P3D.1	−501	kJ	mol−1	P3D.3	−21kJ	mol−1	P3D.5	(	∂∂VS	)	P3D.7	(	)	æ	ö	=	ç	∂T		,	∂S	∂	p	p	è	ø	S	∂V	T	æ	∂p	ö	=ç		è	∂T	øV	C	p	dT	−	α	TV	dp	,	−α	TV	∆p	,	−0.50	kJ	Chapter	4	Topic	4B	P4B.1	196.0	K	,	11.1Torr	P4B.3	(a)	+5.56	×	103	Pa	K	−1	(b)	2.6	per	cent	P4B.5	(a)	−1.63	cm3	mol−1	(b)	+30.1	dm3	mol−1	P4B.7	22°C
P4B.9	(a)	227.5°C	P4B.13	9.8Torr	P4B.15	363	K	P4B.17	α	−	α1	dp	dp	C	p	,	m2	−	C	p	,	m1	=	2	,	=	dT	κ	T	,	2	−	κ	T	,1	dT	TVm	(α	2	−	α1	)	Chapter	5	Topic	5A	P5A.1	18.079	−	0.11482x	3/	2	P5A.3	15.58	kPa	,	47.03kPa	P5A.5	4.6	cm3	©	Oxford	University	Press,	2014.	(b)	+53	kJ	mol–1	(c)	+	6	×	102	J	mol−1	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry
10e	Topic	5B	P5B.3	109.0	cm3	mol–1,	279.3	cm3	mol–1	P5B.5	165	K,	0.99978,	19.89	g	solute	(100	g	solvent)–1,	–∆fusH/R	P5B.7	(a)	(i)	2	(ii)	3	P5B.9	∆	fus	H	−∆	fus	H	æ	1	1	ö	,	ln	=	xA	×ç	−	∗		2	R	RT	èT	T	ø	P5B.11	1.26	×	105	g	mol	,	1.23	×	104	dm3	mol−1	P5B.13	xA	=	xB	=	0.5	P5B.15	4.78	×	104	dm3	mol−1	(b)	(ii)	0.19,	0.82,	0.24	(c)	xPb	=	0.19,	xCu
=	0.18	−1	Topic	5C	(c)	0.532	P5C.1	(b)	391.0	K	P5C.7	(b)	Ca2Si	and	a	Ca-rich	liquid	(xSi	=	0.13),	0.5	P5C.9	xA	pA*	/	pB*	1	+	(	pA*	/	pB*	−	1)	xA	Topic	5E	P5E.3	Π	=	φ[B]RT	Chapter	6	Topic	6A	P6A.1	(a)	+4.48	kJ	mol−1	P6A.3	0.007	mol	H	2	,	0.107	mol	I	2	,	0.786	mol	HI	P6A.5	ξ	=	1−	ç	æ	ö	1	O		+	/	1	ap	p	è	ø	(b)	0.101	atm	1/	2	Topic	6B	©	Oxford
University	Press,	2014.	(c)	0.53	,	0.67	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P6B.1	(a)	1.24	×	10−9	P6B.3	300.	kJ	mol−1	P6B.5	0.740	,	5.71	,	−103	kJ	mol−1	P6B.7	(a)	1.2	×	108	P6B.9	æT	ö	K	c	(T	)	K	c	(Tref	)	×	ç	ref		e	=	è	T	ø	(c)	1.8	×	10−4	(b)	1.29	×	10−8	(b)	2.7	×	103	∆v	∆r	H	O	R	æ	1	1ö	×çç	−		è	Tref	T	ø	Topic	6C	P6C.1	(a)	+1.23V	(b)
+1.09	V	P6C.3	+14.7	kJ	mol−1	,	+18.8	kJ	mol−1	Topic	6D	P6D.1	+0.26843	V	Chapter	7	Topic	7A	(b)	2.5	×	10−4	J	m	−3	P7A.1	(a)	1.6	×	10−33	J	m	−3	P7A.3	λmax	T	≅	P7A.5	255	K	or	18	°C	,	11	μm	,	P7A.7	(a)	8πhc	,	hc	P7A.9	(a)	223	1	K	,	θE	=	0.0315	1	5	hc	/	k	cE	4	æ4ö	(b)	ç		σ	WienT	4	ècø	(b)	343	K	,	θE	=	0.897	Topic	7B	1/	2	æ2ö	P7B.1	(a)	N	=	ç		èLø
P7B.3	0.0183	(b)	N	=	©	Oxford	University	Press,	2014.	1	c(2	L)1/	2	(c)	N	=	1	(πa	3	)1/	2	(d)	N	=	1	(32πa	5	)1/	2	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P7B.5	(a)	9.0	×	10−6	P7B.7	xmax	=	a	(b)	1.2	×	10−6	Topic	7C	æ	æ	2	d	2	2	d	2	e2	ö	Eψ	(b)	ç	−	−	ψ	=	2	2	4πε	0	x	ø	è	2m	dx	è	2me	dx	ö	æ	2	d	2	ö	Eψ	(c)	ç	−	Eψ	−	cx	ψ	=	ψ	=	2	2	m	d	x	ø	è	ø	P7C.1
(a)	ç	−	P7C.3	(a)	Yes	(b)	Yes	(c)	No	(d)	No	P7C.5	(a)	Yes,	−k	2	(b)	Yes	(c)	Yes	(d)	No	(i)	(a)	and	(b)	(ii)	(c)	P7C.7	(a)	+	k		(b)	0	P7C.9	1	a	P7C.11	(a)	(i)	N	=	(	πa03	)	−	12	(c)	0	(ii)	N	=	(	32πa05	)	−	12	(c)	(i)	1.5a0	,	4.5a02	30a02	P7C.15	[	xˆ,	pˆ	x	]	=	i	Chapter	8	Topic	8A	P8A.1	1.24	×	10−39	J	,	2.2	×	109	,	1.8	×	10−30	J	P8A.3	(a)	P8A.5	1.2	×	106	P8A.7
4k12	k22	T	=|	A3	|2	=A3	×	A3*	=	2	2	(a	+	b	)	sinh	2	(k2	L)	+	b	2	(a)	L	,	L	2	31/	2	æ	2	ö	1	(b)	L	,	ç	L	−	2	è	3	4(nπ	/	L)	2	ø	1/	2	where	a	2	+	b	2	=	(k12	+	k22	)(k22	+	k32	)	and	b	2	=	k22	(k1	+	k3	)	2	Topic	8B	©	Oxford	University	Press,	2014.	(ii)	5a0	,	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P8B.1	HI	<	HBr	<	HCl	<	NO	<	CO	P8B.5	1æ	1ö	ç	v	+	
ω	2è	2ø	Topic	8C	P8C.1	(a)	±5.275×10–34	J	s,	7.89	×	10−19	J	P8C.3	(a)	+	(b)	−2	(c)	0	(d)		cos	2	χ	2	(a)		2	(b)	2	2	(c)		2	(d)		2I	I	(b)	5.2	×	1014	Hz	2I	2I	P8C.5	0,	2.62,	7.86,	15.72	P8C.7	1	P8C.9	æ	∂	∂	ö	∂	ö	æ	∂	∂	ö	æ	∂		ç	y	−	z		,	ç	z	−	x		,	ç	x	−	y		,	−	lz.	∂x	ø	∂y	ø	i	è	∂x	i	è	∂z	i	∂z	ø	i	è	∂y	Chapter	9	Topic	9A	P9A.1	±106	pm	P9A.3	(b)	ρ	node	=	3	+	3	and	ρ	node	=	3
−	3	,	ρ	node	0=	=	and	ρ	node	4	,	ρ	node	=	0	27	a	á	r	ñ	3s	=	0	2	Z	a0	Z	4a0	Z	4a0	P9A.7	(a)	P9A.11	60957.4	cm	−1	,	60954.7	cm	−1	,	329170	cm	−1	,	329155	cm	−1	(b)	Topic	9B	P9B.1	0.420	pm	Topic	9C	P9C.1	n2	→	6	©	Oxford	University	Press,	2014.	(c)	(d)	Z	a0	(c)	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P9C.3		R	Li	2	+	=	987663cm	−1	,
137175cm	−1	,	185187	cm	−1	,	122.5	eV	P9C.5	2	P1/	2	and	2	P3/	2	,	2	D3	/	2	and	2	D5	/	2	,	2	D3	/	2	P9C.7	3.3429	×	10−27	kg	,	1.000272	P9C.9	(a)	0.9	cm	−1	(b)	small	P9C.11	(a)	2kT	(b)	23.8	T	m	−1	Chapter	10	Topic	10A	P10A.1	Z	3/	2	e	−	ρ	/	2	æ	2	−	ρ	ρ	sin	θ	ö	+	1/	2	×	(−	cos	φ	+	31/	2	sin	φ	)		,	120°	1/	2	3/	2	ç	(24π	)	a	è	2	8	ø	Topic	10B	P10B.1
1.87×106	J	mol–1	=	1.87	MJ	mol–1	P10B.3	EH1s	−	P10B.5	(b)	2.5a0	=	1.3×10–10	m,	–0.555j0/a0	=	–15.1	eV,	–0.565j0/a0	=	–15.4	eV,	0.055j0/a0	=	1.5	eV,	0.065j0/a0	=	1.8	eV	j	+	k	j0	j	−	k	j0	+	,	EH1s	−	+	1+	S	R	1−	S	R	Topic	10C	P10C.1	2.1a0	P10C.3	(c)	π/4	or	3π/4	Topic	10D	P10D.1	α	A	+	α	B	−	2β	S	2(1	−	S	)	2	αB	−	β	S	1−	S	2	P10D.3	−	±	αA	−
αB	æ	ç1	+	2(1	−	S	2	)	è	1/	2	4(	β	+	α	A	S	)(	β	+	α	B	S	)	ö		(α	A	−	α	B	)	2	ø	,	αA	−	β	S	1−	S	2	+	(	β	+	α	A	S	)(	β	+	α	B	S	)	,	(α	A	−	α	B	)(1	−	S	2	)	(	β	+	α	A	S	)(	β	+	α	B	S	)	(α	A	−	α	B	)(1	−	S	2	)	(i)	E/eV	=	–10.7,	–8.7,	and	–6.6	©	Oxford	University	Press,	2014.	(ii)	E/eV	=	–10.8,	–8.9,	and	–6.9	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Topic	10E	P10E.1
E	=	αO,	1æ	12	β	2	ç	α	O	+	α	C	±	(α	O	−	α	C	)	1	+	2	çè	(α	O	−	α	C	)	2	æ	12	β	2	4β	2	(α	O	−	α	C	)	ç	1	+	−	1+	2	ç	(α	O	−	α	C	)	(α	O	−	α	C	)	2	è	ö	,		ø	ö	4β	2	,		αO	−	αC	ø	P10E.7	Standard	potential	increases	as	the	LUMO	decreases	P10E.13	(b)	26780	cm-1	Chapter	11	Topic	11A	P11A.1	(a)	D3d	P11A.3	S4	,	C2	,	S4	(b)	D3d	,	C2v	(c)	D2h	(d)	D3	(b)	A1	+	3E	(c)
A1	+	T1	+	T2	(e)	D4d	Topic	11B	P11B.1	trans	-CHCl=CHCl	P11B.3	Γ	=	3A1	+	B1	+	2B2	P11B.7	+1	or	−	1	,	+1	,	−1	P11B.9	(a)	2A1	+	A	2	+	2B1	+	2B2	A	2u	+	T1u	+	T2u	Topic	11C	P11C.1	A1	+	T2	,	s	and	p,	(d	xy	,	d	yz	,	d	zx	)	Chapter	12	Topic	12A	P12A.1	4.4	×	103	©	Oxford	University	Press,	2014.	(d)	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry
10e	P12A.3	=	A	ε	′	[	J	]0	(1	−	e	−	L	/	λ	)	,	A	=	ε'[J]0	P12A.7	1æ	π	ö	4	3	−1	−2	ç		ε	max	∆v1/	2	,	5.7	×	10	dm	mol	cm	2	è	ln	2	ø	P12A.9	(a)	receding	,	1.128	×	10−3	c	=	3.381×	105	m	s	−1	P12A.11	2	(	kT	/	mc	2	)	1/	2	1/	2	Topic	12B	P12B.1	meff	R	2	Topic	12C	P12C.1	596	GHz,	19.9	cm–1,	0.503	mm,	9.941	cm	−1	P12C.3	128.393pm	,	128.13pm	,	slightly
different	P12C.5	116.28	pm	,	155.97	pm	P12C.7	14.35	m	−1	,	26	,	15	P12C.9	æ	kT	ö	ç		ø	è	2hcB	12	12	−	1	æ	kT	ö	,	30	,	ç			2	è	hcB	ø	−	1	,	6	2	Topic	12D	P12D.1	kf	=	2	Da	2	.	P12D.3	142.81cm	−1	,	3.36	eV	,	93.8	N	m	−1	P12D.7		e	/	ν	−	1	2D	2	P12D.9	112.83	pm	,	123.52	pm	P12D.11		0	=	10.433	cm-1	B	P12D.13	x2	=		1	=	10.126	cm-1	,	B	1	(v	+	½)ω.	,
rotational	constant	B	decreases,	B	decreases	with	increased	kf	anharmonicity	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P12D.15	(a)	2143.26	cm–1	1.91cm	−1	(b)	12.8195	kJ	mol−1	(c)	1.85563	×	103	N	m	−1	(d)	(e)	113	pm	Topic	12E	P12E.1	(a)	Cannot	undergo	simple	harmonic	motion	P12E.3	(a)	C3v	(b)	nine
(c)	3A1	+	3E	all	modes	are	Raman	active	Chapter	13	Topic	13A	Σ	g+	←	2	Σ	u+	is	allowed	P13A.1	2	P13A.3	6808.2	cm	−1	or	0.84411	eV	,	5.08	eV	Topic	13C	P13C.1	4	×	10−10	s	or	0.4	ns	Chapter	14	Topic	14A	P14A.1	10.3	T	,	2.42	×	10−5	,	β	,	(	mI	=	−	12	)	Topic	14B	P14B.1	29	μT	m	-1	P14B.3	Both	fit	the	data	equally	well.	P14B.5	cos	φ	=	B/4C	Topic
14C	P14C.1	400	×	106	Hz	±	8	Hz	,	0.29s	©	Oxford	University	Press,	2014.	(d)	all	modes	are	infrared	active	(e)	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P14C.5	aτ	æ1ö	ç		2	2	è	2	ø	1	+	(ω0	−	ω	)	τ	P14C.7	158	pm	P14C.9	0.58	mT	Topic	14D	P14D.1	2.8	×	1013	Hz	P14D.3	6.9	mT	,	2.1mT	Chapter	15	Topic	15A	P15A.1	{2,	2,	0,	1,	0,	0},	{2,	1,	2,	0,
0,	0}	P15A.7	e	−	Mgh	/	RT	,	0.363	,	0.57	Topic	15B	(ii)	6.26	(b)	1.00	,	0.80,	6.58	×	10−11	,	0.122	P15B.3	(a)	(i)	5.00	P15B.5	1.209	,	3.004	P15B.7	(a)	1.049	(b)	1.548	,	0.953	,	0.645	,	0.044	,	0.230	,	0.002	,	0.083	P15B.9	(a)	660.6	(b)	4.26	×	104	(a)	104	K	(b)	1	+	a	Topic	15C	P15C.3	Topic	15E	P15E.1	0.351,	0.079,	0.029	P15E.3	4.2	J	K	−1	mol−1	P15E.5
28,	258	J	mol−1	K	−1	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P15E.7	2	ì	eq	ö	æ	q	ö	æ	q	ï	q	æ	q	ö	ü	(a)	nRT	ç		,	nR	í	−	ç		ïý	,	nR	ç	+	ln		q	Nø	q	èq	ø	ï	è	èq	ø	ï	î	þ	P15E.11	191	J	K	−1	mol−1	P15E.17	éθ	V	ëê	Ti	P15E.19	(b)	and	(c)	2α	CV	,m	(H)	+	(1	−	α	)CV	,m	(H	2	)	,	(a)	87.55	K	,	6330	K	1.5R,	2.5R	+	ê	×	e	−	(θ	(b)
5.41	J	K	−1	mol−1	V	1	−	eθ	2Ti	)	V	Ti	2	ù	ú	R	ûú	9.57	×	10−15	J	K	−1	Topic	15F	P15F.3	100	T	P15F.5	45.76	kJ	mol−1	Chapter	16	Topic	16A	P16A.1	(a)	0	P16A.5	1.00	μD	P16A.7	1.2	×	10−23	cm3	,	0.86	D	P16A.9	2.24	×	10−24	cm3	,	1.58	D	,	5.66	cm3	mol−1	P16A.11	68.8	cm3	mol−1	,	4.40	,	2.10	,	8.14	cm3	mol−1	,	1.76	,	1.33	P16A.13	Increase	in	the
relative	permittivity.	(b)	0.7	D	(c)	0.4	D	Topic	16B	P16B.1	1.9	nm	P16B.3	−1.8	×	10−27	J	=−1.1×	10−3	J	mol−1	P16B.5	−6C	r7	P16B.7	(b)	re	=	1.3598	r0,	A	=	1.8531	©	Oxford	University	Press,	2014.	(	kTi	ΛH2i	)	3	e	−	(	D	RTi	)	p	O	qiV	qiR	(	ΛHi	)	6	,	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	Chapter	17	Topic	17A	P17A.1	(a)	2	(b)	1	P17A.3	Nl
2	P17A.5	(a)	1	5	{	}	a	,	0.046460	×	(υs	/	cm3	g	−1	)	×	(	M	/	g	mol−1	)	2	a,	2	a,	a/2	1	12	(b)	1	2	a,	1	1	æ	RT	ö	2	ç		,	6.3	GHz	2πl	è	M	ø	Topic	17D	P17D.1	æ	2γ	ö	M	+ç		è	π	ø	P17D.3	(a)	1/	2	θ	/°	,	1.96	nm	l	,	0.35	nm	,	46	nm	Topic	17B	P17B.1	1/3	20	45	90	Irod	/	Icc	0.976	0.876	0.514	(b)	90°	P17D.5	3500	r.p.m.	P17D.7	69	kg	mol−1	,	3.4	nm	P17D.9	0.0716
dm3	g	−1	P17D.11	1.6	×	105	g	mol−1	Chapter	18	Topic	18A	©	Oxford	University	Press,	2014.	1	12	l	(c)	2	5	a	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	−1	P18A.1	3.61×	105	g	mol	P18A.3	V	=	3	3	/	2	a2c	P18A.5	834	pm	,	606	pm	,	870	pm	P18A.7	4	P18A.9	1	æhö	æk	ö	æl	ö	=	ç		+ç		+ç		d2	è	a	ø	è	b	ø	è	c	ø	P18A.11	Simple	(primitive)	cubic	lattice,	a	=
344	pm	P18A.13	629	pm	,	gave	support	P18A.15	0	P18A.17	(a)	14.0o	,	24.2o	,	0.72o	,	1.23o	(	)	2	2	2	(b)	RCCl	=	176	pm	and	RClCl	=	289	pm	Topic	18B	P18B.1	0.340	P18B.3	7.654	g	cm	−3	P18B.7	(a)	0.41421	(b)	0.73205	Topic	18C	P18C.1	P18C.3	µ	,	3λ	+	2	µ	3	=	P(	E	)	1	when	E	<	µ	,	lim	lim	f	(	E	)	0	when	E	>	µ	,	(	3N	/	8π	)	=	T	→0	T	→0	2/3	(h	2	/	2me
)	,	3.1	eV	P18C.5	0.736	eV	P18C.7	0.127	×	10−6	m3	mol−1	,	0.254	×	10−6	m3	mol−1	,	0.423	×	10−6	m3	mol−1	,	0.254	cm	mol	P18C.9	0.41	3	Chapter	19	Topic	19A	©	Oxford	University	Press,	2014.	–1	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P19A.1	(a)	σ	=	0.602	nm2,	d	=	(σ/π)1/2	=	438	pm	pm	P19A.3	2.37	×	1017	m	2	s	−1	,	2.85	J	K	−1
m	−1	s	−1	P19A.5	(a)	1.7	×	1014	s	−1	(b)	σ	=	0.421	nm2,	d	=	(σ/π)1/2	=	366	(b)	1.1×	1016	s	−1	Topic	19B	P19B.1	10.2	kJ	mol−1	P19B.3	12.78	mS	m	2	mol−1	,	2.57	mS	m	2	(mol	dm	−1	)	−3/	2	P19B.5	12.6	mS	m	2	mol−1	,	6.66	mS	m	2	(mol	dm	−1	)	−3/	2	120	mS	m	−1	P19B.7	0.83	nm	P19B.9	9.3	kJ	mol−1	(a)	12.02	mS	m	2	mol−1	(b)	(c)	172	Ω	Topic
19C	P19C.1	(a)	12	kN	mol−1	,	2.0	×	10−20	N	molecule	−1	(b)	16.5	kN	mol−1	,	2.7	×	10−20	N	molecule	−1	(c)	24.8	kN	mol−1	,	4.1×	10−20	N	molecule	−1	1/	4	/	x2	1/	2	=	31/	4	P19C.7	x4	P19C.9	(a)	0	P19C.11	æ	2	ö	−	n2	/	2	N	P=ç		e	è	πN	ø	(b)	0.0156	(c)	0.0537	½	Chapter	20	Topic	20A	P20A.1	Second	order	P20A.3	(a)	1,	2,	3	(b)	2.2	×109	mol−2	dm6
s−1	Topic	20B	P20B.3	Second-order,	kr	=	0.0594	dm3	mol−1	min	−1	,	2.94	g	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P20B.5	7.0×10–5	s–1,	7.3×10–5	dm3	mol–1	s–1	P20B.7	14	yr	6	×	10−14	mol	dm	−3	s	−1	,	4.4	×	108	s	=	P20B.9	First-order,	5.84×10–3	s–1,	kr	=	2.92×10–3	s–1,	first-order,	1.98	min
P20B.11	3.65×10–3	min–1,	190	min	,	274	min	P20B.13	2.37	×	107	dm3	mol−1	s	−1	,	kr	=	1.18×10	dm	mol	s	,	4.98	×	10−3	s	P20B.15	First-order,	third-order	P20B.17	æ	ö	æ	(2	x	−	A0	)	B0	ö	1	ç		lnç		è	3	A0	−	2	B0	ø	è	A0	(3	x	−	B0	)	ø	P20B.19	7	3	–1	–1	2n	−1	−	1	(	34	)	n	−1	−1	Topic	20C	P20C.3	kr′	([A]0	+	[B]0	)	+	(kr	[A]0	−	kr′[B]0	)e	−	(	kr	+	kr′	)t	æ	kr′	ö
,ç		×	([A]0	+	[B]0	)	,	kr	+	kr′	è	kr	+	kr′	ø	[B]∞	kr	æ	kr	ö	=	ç		×	([A]0	+	[B]0	)	,	[A]∞	kr′	è	kr	+	kr′	ø	P20C.5	(a)	(i)	8ka	ka′	[A]tot	+	(ka′	)	2	(c)	1.7	×	107	s	−1	,	2.7	×	109	dm3	mol−1	s	−1	,	1.6	×	102	Topic	20D	P20D.3	16.7	kJ	mol−1	,	1.14	×	1010	dm3	mol−1	s	−1	P20D.5	(a)	2.1×	10−16	mol	dm	−3	s	−1	Topic	20E	P20E.1	Steady-state	approximation	P20E.3
Steady-state	intermediate	P20E.5	kr	K1	K	2	[HCl]3	[CH	3	CH=CH	2	]	Topic	20F	©	Oxford	University	Press,	2014.	(b)	4.3	×	1011	kg	or	430	Tg	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P20F.3	(1	+	2k	t[A]	)	2	12	0	r	Topic	20G	P20G.1	1.11	P20G.3	(a)	6.7	ns	P20G.5	1.98	×	109	dm3	mol−1	s	−1	P20G.7	3.5	nm	(b)	0.105	ns	−1	Topic	20H	P20H.1
ν=	ν	max	1+	P20H.5	1	K	[S]0	Rate	law	based	on	rapid	pre-equilibrium	approximation	2.31	μmol	dm−3	s−1,	115	s−1,	115	s−1,	1.11	μmol	dm−3,	104	dm3	μmol−1	s−1	Chapter	21	Topic	21A	P21A.1	(a)	4.35	×	10−20	m	2	P21A.3	1.7	×	1011	mol−1	dm3	s	−1	,	3.6	ns	P21A.5	3.12	×	1014	dm3	mol−1	s	−1	,	193	kJ	mol−1	,	7.29	×	1011	dm3	mol−1	s	−1	,
175	kJ	mol−1	(b)	0.15	Topic	21C	P21C.1	Ea	=	86.0	kJ	mol–1,	+83.9	kJ	mol–1,	+19.6	J	K	−1	mol−1	,	+79.0	kJ	mol–1	P21C.5	+60.44	kJ	mol–1,	+62.9	kJ	mol–1,	−181	J	K	−1	mol−1	,	+114.7	kJ	mol–1	©	Oxford	University	Press,	2014.	Atkins	&	de	Paula:	Atkins’	Physical	Chemistry	10e	P21C.7	3	×	107	P21C.9	Two	univalent	ions	of	the	same	sign	P21C.11
(a)	0.06	(b)	0.89	,	0.83	Topic	21D	P21D.1	I	=	I	0	e	−σ	N	L	Topic	21E	P21E.1	kr	≈	(kAAkDDK)1/2	P21E.3	1.15	eV	Topic	21F	P21F.1	0.78,	0.38	P21F.3	(a)	−0.618	V	P21F.5	2.00×10–5	mA	m–2,	0.498	,	no	Chapter	22	Topic	22A	P22A.1	−76.9	kJ	mol−1	,	−348.1	kJ	mol−1	,	corner	is	the	likely	settling	point	P22A.3	(a)	1.61	×	1015	cm	−2	(b)	1.14	×	1015	cm
−2	P22B.3	(a)	165,	13.1	cm3	(b)	263,	12.5	cm3	P22B.5	5.78	mol	kg	−1	,	7.02	Pa	−1	P22B.7	−20.0	kJ	mol−1	,	−63.5	kJ	mol−1	P22B.9	(a)	R	values	in	the	range	0.975	to	0.991	(c)	1.86	×	1015	cm	−2	Topic	22B	2.62	×	10−5	ppm	−1	,	∆	b	H	=−15.7	kJ	mol	©	Oxford	University	Press,	2014.	−1	(b)	3.68	×	10−3	,	−8.67	kJ	mol	−1	,	Atkins	&	de	Paula:	Atkins’
Physical	Chemistry	10e	P22B.11	0.138	mg	g	−1	,	0.58	P22B.13	(a)	k	=	0.2289	,	n	=	0.6180	,	k	=	0.2289	,	n	=	0.6180	Topic	22C	P22C.1	−	kr	pNH	3	p	−	p0	p0	p	=	−	ln	,	kc	,	kc	=	2.5×10−3	kPa	s−1	K	pH	2	t	t	p0	©	Oxford	University	Press,	2014.	(c)	k	=	0.5227	,	n	=	0.7273
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